本发明涉及一发光二极管封装结构,特别是涉及一种可提高亮度的发光二极管封装结构。
背景技术:
发光二极管(light-emittingdiode,简称led)是一种能将电能转化为光能的半导体电子装置。发光二极管因具有高亮度、低功耗、寿命长、启动快、发光效率高、无闪烁、不容易产生视角疲劳,而被广泛应用于显示器或是照明装置中。
在照明领域中,白光是最常被使用的光源色。因此,目前常应用蓝光发光二极管配合黄色或其他混合荧光粉来产生白光。然而,现有应用发光二极管所制造的照明装置在亮度以及发光效率仍有待进一步改进。
技术实现要素:
本发明提供一种发光二极管封装结构,能够通过改善封装体的荧光粉构成来获得较佳的荧光粉激发效率,以得到亮度较高的白光。
为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种发光二极管封装结构,其包括基板以及发光单元阵列。基板具有一固晶区域,发光单元阵列设置于固晶区域。发光单元阵列包括用以产生第一光束的多个非二次激发的第一发光单元以及用以产生第二光束的多个非二次激发的第二发光单元,多个第一发光单元所产生的第一光束与多个第二发光单元所产生的第二光束相互混光,以产生白光。每一第一发光单元包括一第一发光芯片以及覆盖第一发光芯片的一第一波长转换层,每一第二发光单元包括一第二发光芯片以及覆盖第二发光芯片的一第二波长转换层。第一光束至少包含通过激发第一波长转换层而产生的一第一受激发光,第二光束至少包含通过激发第二波长转换层而产生的一第二受激发光,且第一受激发光的峰值波长与第二受激发光的峰值波长之间的差值至少30nm。
综上所述,在本发明实施例所提供的发光二极管封装结构中,通过使用多个非二次激发的第一发光单元以及多个非二次激发的第二发光单元,来产生用以混成白光的第一光束与第二光束。由于非二次激发的第一发光单元与第二发光单元具有较高的荧光粉激发效率,而可使发光二极管封装结构所产生的白光具有高显色指数以及较高的亮度。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
图1为本发明其中一实施例的发光二极管封装结构的俯视示意图。
图2为图1中的发光二极管封装结构沿线ii-ii的局部剖面示意图。
图3为本发明另一实施例的发光二极管封装结构的局部剖面示意图。
图4为本发明另一实施例的发光二极管封装结构的俯视示意图。
图5为本发明另一实施例的发光二极管封装结构的俯视示意图。
具体实施方式
请参照图1。图1是本发明其中一实施例的发光二极管封装结构的俯视示意图。在本发明实施例中,通过使用非二次激发的发光单元所产生的光束,来混成高亮度的白光。
如图1所示,发光二极管封装结构m1包括基板10以及发光单元阵列11。基板10的其中一表面上定义出一固晶区域100。基板10可以是具有高导热性的基板,例如:陶瓷基板或金属基板。发光单元阵列11设置在基板10上,并位于固晶区域100内。
在本实施例中,发光二极管封装结构m1还包括正极接垫12、负极接垫13。正极接垫12、负极接垫13都设置在基板10上。
发光单元阵列11中的多个发光单元111、112可通过正极接垫12以及负极接垫13电性连接于一控制电路。也就是说,控制电路可通过正极接垫12以及负极接垫13对发光单元阵列11的多个发光单元施加电压,来控制这些发光单元111、112的开启、关闭,以及通过这些发光单元111、112的电流值,从而控制发光二极管封装结构m1所产生的白光的亮暗。
另外,发光单元阵列11中的多个发光单元可以相互串联或者是相互并联。在另一实施例中,发光单元阵列11中的一部份发光单元之间相互并联,再与其他的发光单元串联。因此,发光单元阵列11中的多个发光单元之间相互串并的方式可以根据实际需求来设计,本发明并不限制。
发光单元可以是垂直式发光单元、倒装发光单元或者是水平式发光单元,本发明并不限制。多个发光单元可通过打线接合或者覆晶接合等技术手段,而被固设于基板10上。在一实施例中,多个发光单元是垂直式发光单元。因此,可先将线路层14按实际的电路设计而以一预定方式配置于固晶区域100内,以使发光单元阵列11中的每一个发光单元可以通过对应的线路层14以及对应的导线15,来与其他发光单元建立电性连结。
在另一实施例中,发光单元为倒装发光单元,并且可通过覆晶接合的方式固设于基板10上。此时,发光二极管封装结构m1不一定会包括导线15。
在本实施例中,发光单元阵列11包括用以产生第一光束的多个第一发光单元111,以及用以产生第二光束的多个第二发光单元112。多个第一发光单元111所产生的第一光束与多个第二发光单元112所产生的第二光束会相互混光,以产生白光。
请先参照图2,图2为图1的发光二极管封装结构在线ii-ii的局部剖面示意图。每一个第一发光单元111包括一第一发光芯片111a以及覆盖第一发光芯片111a的一第一波长转换层111r。每一第二发光单元112包括一第二发光芯片112a以及覆盖第二发光芯片112a的一第二波长转换层112g。
第一发光芯片111a与第二发光芯片112a都用以产生一激发光,且激发光为蓝光或者紫光。也就是说,第一发光芯片111a与第二发光芯片112a可以是蓝光发光二极管芯片或者是紫光发光二极管芯片。具体而言,第一发光芯片111a与第二发光芯片112a可以都是蓝光发光二极管芯片,或者都是紫光发光二极管芯片,又或者是蓝光发光二极管芯片与紫光发光二极管芯片的组合。
在一实施例中,当激发光为蓝光时,激发光的峰值波长介于420nm至470nm之间,常用的蓝光的峰值波长是介于445nm至455nm之间。当激发光为紫光时,激发光的峰值波长介于380nm至420nm之间。
另外,第一发光芯片111a以及第二发光芯片112a可以选择垂直式芯片、倒装芯片或者是水平式芯片。在本实施例中,第一发光芯片111a以及第二发光芯片112a都是垂直式芯片。
形成第一波长转换层111r与第二波长转换层112g的其中一种方式,是先将荧光粉与胶按照一定比例混合之后,再涂布于第一发光芯片111a与第二发光芯片112a上。在其他实施例中,第一波长转换层111r与第二波长转换层112g都是萤光贴片,如:玻璃荧光贴片或者陶瓷荧光贴片。因此,可将荧光膜贴片直接贴附在第一发光芯片111a与第二发光芯片112a上。
另外,在图2的实施例中,第一波长转换层111r只覆盖第一发光芯片111a的顶面而裸露第一发光芯片111a的侧表面。相似地,第二波长转换层112g只覆盖第二发光芯片112a的顶面而裸露第二发光芯片112a的侧表面。然而,在其他实施例中,也可以只有第一波长转换层111r(或者第二波长转换层112g)只覆盖第一发光芯片111a(或第二发光芯片112a)的顶面而裸露第一发光芯片111a(或第二发光芯片112a)的侧表面。
请参照图3,在另一实施例中,第一波长转换层111r与第二波长转换层112g是分别完全覆盖第一发光芯片111a以及第二发光芯片112a的顶面以及所有侧表面。在另一实施例中,只有其中一部份发光单元的波长转换层会完全覆盖发光芯片的顶面以及所有侧表面。
需先说明的是,在现有的技术手段中,会以紫光或者蓝光激发不同的混合荧光粉,来产生多种复合色光以混成白光。混合荧光粉可能包含以预定浓度比例混合的绿色荧光粉与红色荧光粉。
然而,一部份的红色荧光粉可能会被由绿色荧光粉所产生的绿色光激发,而降低光效。此外,复合色光中的绿光比例也会降低,从而降低白光的显色指数以及明度(brightness)。
据此,在本实施例中,第一波长转换层111r与第二波长转换层112g都是单一色系的荧光粉层,以避免上述问题。第一波长转换层111r可吸收激发光,以产生第一受激发光,从而使第一发光单元111产生第一光束。第二波长转换层112g可吸收激发光,以产生第二受激发光,从而使第二发光单元112产生前述的第二光束。换句话说,第一光束至少包含第一受激发光,而第二光束至少包含第二受激发光。
在一实施例中,第一受激发光的峰值波长与第二受激发光的峰值波长之间的差值至少30nm。在一些实施例中,第一受激发光的峰值波长与第二受激发光的峰值波长之间的差值可以是40nm以上、50nm以上、甚至85nm以上。举例而言,第一受激发光可以是红橙色光,或者说第一受激发光的峰值波长介于580nm至675nm之间。第二受激发光是黄绿色光,或者说第二受激发光的峰值波长介于515nm至570nm。
据此,第一波长转换层111r可以包含一种或者多种红色荧光粉,以用于激发出峰值波长落在580nm至675nm的第一受激发光。进一步而言,第一波长转换层111r可以只包含一种红色荧光粉,而可用以激发出具有特定波长的红色光,或者也可以包含两种以上的红色荧光粉,而可用以激发出具有不同波长的红色光,其例如是波长为620nm的红色光以及波长为630nm的红色光。另外,第二波长转换层112g可以包含一种或者多种绿色荧光粉,其用于激发出峰值波长落在515nm至570nm的第二受激发光。
相较于使用混合不同色系荧光粉的波长转换层而言,具有单一色系的第一波长转换层111r与第二波长转换层112g中的荧光粉的转换效率也较高。
由于通过第一波长转换层111r的激发光不一定会完全被转换为第一受激发光,因此第一光束除了包含第一受激发光之外,也可能包含部分的激发光。相似地,第二光束可能包含第二受激发光以及部分的激发光。
通过将第一光束与第二光束混光,可形成白光。具体而言,在本发明实施例中,可通过控制第一受激发光(例如:红光)、第二受激发光(例如:绿光)以及激发光(例如:蓝光或紫光)的比例,来形成具有较高亮度以及显色指数的白光。
进一步而言,由明视觉函数可知,光的波长落在555nm时,会具有较高的亮度。因此,绿光对白光的亮度贡献较大。在一实施例中,为了使白光含有较高比例的绿光,因此会使第二波长转换层112g中的绿色荧光粉尽可能地被激发,以提高第二光束中的第二受激发光的比例。
当激发光为蓝光时,激发光对第二波长转换层112g的透射率是介于0%至16%。也就是说,大部份通过第二波长转换层112g的激发光都被绿色荧光粉层吸收,以产生绿光,而使白光具有较高的明度。
另外,第一光束中的第一受激发光与激发光的比例可以根据所欲得到的显色指数以及色温来进行调整。在一实施例中,当激发光为蓝光时,激发光对第一波长转换层111r的透射率是介于10%至85%。举例而言,若是要得到色温偏高的白光,可以使激发光对第一波长转换层111r具有较高的透射率,而使第一光束含有较高比例的蓝光。若是要得到色温偏低的白光,可以使激发光对第一波长转换层111r具有较低的透射率,而使第一光束含有较低比例的蓝光。
请再参照图1,第一发光单元111的数量与第二发光单元112的数量之间的比值可以介于0.5至1之间。第一发光单元111的数量与第二发光单元112的数量可以根据实际需求调整。在一实施例中,第一发光单元111的数量可以大于第二发光单元112的数量。通过使用第一发光单元111与第二发光单元112混成的白光的显色指数至少大于80,优选可达到90以上。另外,相较于使用具有混合荧光粉的发光单元来混成显色指数90的白光而言,通过使用非二次激发的第一发光单元111与第二发光单元112所混成的白光,不仅显色指数可达到可达到90,且亮度还可提升10%至12%。
值得注意的是,在本实施例中,位于发光单元阵列11最外圈的任两个第一发光单元111彼此不相邻,且位于发光单元阵列11的最外圈的任两个第二发光单元112也彼此不相邻。
也就是说,位于发光单元阵列11最外圈的多个发光单元中,在用以产生具有相同或相近峰值波长的受激发光(如:红光或橙光)的任两个发光单元之间,设置用以产生另一种受激发光(如:绿光)的另一个发光单元。如此,可避免发光二极管封装结构m1在靠近固晶区域100的边缘所产生的白光局部地偏红或者是局部地偏绿。
进一步而言,在本实施例中,位于发光单元阵列11的最外圈的多个第一发光单元111与多个第二发光单元112是交替设置。也就是说,位于发光单元阵列11的最外侧两列(row)以及位于每一列的前端与后端的多个第一发光单元111与多个第二发光单元112是交替设置。
请参照图1与图2,本发明实施例的发光二极管封装结构m1还进一步包括一挡墙16以及一被挡墙16限位的透光保护层17。挡墙16环绕发光单元阵列11设置于基板10上,且固晶区域100与所述发光单元阵列11都被透光保护层17所覆盖。透光保护层17可以是透明胶或者是掺有扩散粉的半透明胶。
请参照图4,图4为本发明另一实施例的发光二极管封装结构的俯视示意图。本实施例的发光二极管封装结构m2与图1的发光二极管封装结构m1相同的元件具有相同的标号。
本实施例中,除了多个第一发光单元111与多个第二发光单元112,发光单元阵列11还进一步包括用以产生第三光束的多个第三发光单元113。
第三发光单元113的结构可以与图2或者图3所绘示的第一发光单元111相似。也就是说,每一第三发光单元113包括一第三发光芯片(图中未绘示)以及覆盖第三发光芯片的一第三波长转换层(图中未绘示)。第三发光芯片所产生的激发光为紫光。在本实施例中,第一波长转换层111r为红色荧光粉层,第二波长转换层112g为绿色荧光粉层,第三波长转换层为蓝色荧光粉层。据此,第三波长转换层可吸收激发光,以产生第三受激发光。在本实施例中,第三受激发光为蓝光,且峰值波长介于440nm至480nm之间。
也就是说,第一受激发光、第二受激发光以及第三受激发光分别为红光、绿光以及蓝光。通过将第一光束、第二光束以及第三光束混光之后,可产生白光。
在一实施例中,可以通过第一发光单元111、第二发光单元112以及第三发光单元113之间的数量比例来调整白光的色温。
进一步而言,如图4所示,在本实施例的发光单元阵列11中,第三发光单元113的数量会小于第一发光单元111的数量以及第二发光单元112的数量。主要是因为以紫光来激发第三波长转换层中的蓝色荧光粉,所产生的蓝光比例较高,因此第三发光单元113的数量在三者之中最少,以免产生色温过高(超过10000k)的白光。另外,第一发光单元111的数量会小于第二发光单元112的数量,以使最后混合的白光具有较高的亮度。
另外,通过调整激发光对第一波长转换层111r、第二波长转换层112g以及第三波长转换层中的透射率,可进一步微调白光的色温、显色指数以及明度。
在一实施例中,激发光为紫光,且对第二波长转换层112g的透射率是介于0%至8%。另外,激发光对第三波长转换层的透射率是介于0%至5%。至于激发光对第一波长转换层111r的透射率可以根据所要得到的色温以及显色指数来进行调整。在一实施例中,第一光束、第二光束与第三光束混合而得到的白光的显色指数至少大于80,较好可达到90。
在图4的实施例中,位于发光单元阵列11最外圈的任两个第一发光单元111彼此不相邻,且位于发光单元阵列11的最外圈的任两个第二发光单元112也彼此不相邻。
因此,位于发光单元阵列11最外圈的任两个第一发光单元111之间,可设置第二发光单元112或者第三发光单元113。相似地,位于发光单元阵列11最外圈的任两个第二发光单元112之间,可设置第一发光单元111或者第三发光单元113。
在在本实施例中,位于发光单元阵列11最外圈的多个第一发光单元111与多个第二发光单元112也是交替设置,以避免在靠近固晶区域100的边缘所混成的白光产生局部地色偏(偏红或偏绿)。
如图4所示,其中两个第一发光单元111与其中两个第三发光单元113共同配置成一2×2子阵列11a。在2×2子阵列11a中的两个第一发光单元111沿着其中一对角线排列,而2×2子阵列11a中的两个第三发光单元113沿着另一对角线排列。
在另一实施例中,在2×2子阵列11a中的两个第一发光单元111也可以被取代为两个第二发光单元112,或者是将2×2子阵列11a的其中一个第一发光单元111取代为第二发光单元112,以产生具有预定显色指数以及亮度的白光。
通过上述配置方式,可以使多个第一发光单元111、多个第二发光单元112以及多个第三发光单元113所分别产生的第一光束、第二光束与第三光束混光较均匀。
需说明的是,图4仅显示其中一种实施例,本发明并不限制多个第一发光单元111、多个第二发光单元112与多个第三发光单元113的排设方式。请继续参照图5,图5为本发明另一实施例的发光二极管封装结构的俯视示意图。本实施例的发光二极管封装结构m3与图1的发光二极管封装结构m1相同的元件具有相同的标号。
本实施例中,除了多个第一发光单元111、多个第二发光单元112以及多个第三发光单元113,发光单元阵列11还进一步包括用以产生第四光束的多个第四发光单元114。
第四发光单元114的结构可以与图2或者图3所绘示的第一发光单元111相似。也就是说,每一第四发光单元114包括一第四发光芯片(图中未绘示)以及覆盖第四发光芯片的一第四波长转换层(图中未绘示)。第四发光芯片所产生的激发光为蓝光或紫光。
据此,在本实施例中,第一波长转换层111r为红色荧光粉层,以产生峰值波长介于605nm至675nm之间的第一受激发光。而第四波长转换层为橙色荧光粉层。在本实施例中,第四光束包含通过激发第四波长转换层而产生的第四受激发光,而第四受激发光为橙光,且峰值波长介于580nm至605nm之间。
另外,本实施例中,两个第三发光单元113与两个第四发光单元114共同配置成一2×2子阵列11b。2×2子阵列11b中的两个第三发光单元113沿着其中一对角线排列,而2×2子阵列11b中的两个第四发光单元114是沿着另一对角线排列。在其他实施例中,2×2子阵列11b中的两个第四发光单元114中的其中一个,也可以被第一发光单元111或者第二发光单元112取代。
需说明的是,本发明实施例的发光单元阵列11还可包括用以产生其他种光束的发光单元,例如:用以产生白光的发光单元或者是用以产生黄光的发光单元。用以产生白光的发光单元可以包括蓝光发光二极管芯片以及黄色荧光粉层。据此,只要发光单元中所使用的波长转换层为不至引起二次激发的单一色系荧光粉层(不限于单一波长的荧光粉),本发明并不限制发光单元的种类。
综上所述,本发明的有益效果在于,通过使用多个发光单元,其至少包括非二次激发的第一发光单元111以及第二发光单元112,以分别产生第一光束与第二光束,可混成具有高显色指数以及高亮度的白光。
进一步而言,相较于使用混合荧光粉来产生复合色光,再将复合色光混光形成白光的技术手段,本发明中用于混成白光的每一发光单元的波长转换层为单一色系荧光粉层。在以激发光激发单色荧光粉层时,大部分的荧光粉可被激发光所激发,而提高荧光粉的使用效率。由于非二次激发的发光单元具有较高的荧光粉激发效率,而可使发光二极管封装结构所产生的白光除了具有高显色指数之外,还具有较高的亮度。
另外,在本发明实施例中,通过适当地配置各种发光单元的位置,可以增加混光的均匀性。位于发光单元阵列11最外圈的多个发光单元中,用以产生相同受激发光(如:红光)的任两个发光单元彼此不相邻,可以使靠近固晶区域边缘的光束混光较均匀,以避免发光二极管封装结构m1~m3在靠近固晶区域100的边缘所产生的白光发生色偏。
以上所公开的内容仅为本发明的可行实施例,并非因此局限本发明的权利要求的保护范围,故凡运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求的保护范围内。