本发明大体上针对于一种真空处理设备,其中,设置一个或多于一个真空处理腔室,这一个或多于一个真空处理腔室由真空运输腔室内的一种运输布置提供待处理的工件,真空运输腔室通过开口与一个或多于一个处理腔室相连通,通过开口而进给了工件或从处理移除工件。
背景技术:
:由此,具体地提到了这样的设备,其中在一个或多于一个工件进行处理期间必须密封真空处理腔室与运输腔室隔开、并且在已与运输腔室密封隔离之后抽真空到相应真空处理所必需的真空水平。这样的设备例如从us6481955或thewo2010/105967已知。技术实现要素:本发明的目的在于提供具有一个或多个真空处理腔室的改进的排空时间的这样的设备。我们理解“真空处理”为工件的任何真空加工,因此,例如任何pvd或cvd真空过程或其中工件在低于大气压力,即在真空条件下进行表面处理的其它真空过程。根据本发明,通过一种真空处理设备来解决所提到的目的,该真空处理设备包括真空处理腔室和真空运输腔室。真空运输腔室包括具有至少一个工件支承件的运输布置,并且沿着移动路径而可驱动地移动。运输腔室经由一种开口而与处理腔室相连通,并且构思为通过开口沿着移动路径传递运输布置的至少一部分、工件支承件和其中的工件。真空处理腔室包括了在移动路径一侧上的工件处理隔室、和相对于移动路径与所提到的工件处理隔室相对着的抽吸隔室。抽吸隔室包括抽吸端口。本发明还提供一种可控制的密封布置,可控制的密封布置可控制地密封隔离所提到的在运输腔室与总真空处理隔室之间的开口。因而,总真空处理隔室被划分成工件处理隔室和抽吸隔室,工件处理隔室和抽吸隔室被设置成在运输布置的移动路径的两侧上彼此相对着、并且它们呈完全流体连通。由此实现了:实际上对于“将抽吸端口的范围构思为不设置在工件处理隔室中”并无限制。这允许设置/装设高容量抽吸,高容量抽吸显著地由在抽吸布置的低压侧上的抽吸管线的流动横截面来确定。由于在抽吸隔室中与在工件处理隔室中的总真空处理隔室之间所提到的分隔允许装设/设置高抽吸容量,则可以由连接到所提到的抽吸隔室处的抽吸端口的一种真空泵布置而至少基本上抽空运输腔室。借助于可控制的密封布置,一旦工件被加载到处理腔室中、并且因而准备就绪通过处理隔室的加工作用而将要受处理时,将运输腔室与真空处理腔室密封隔离。连接到所提到的抽吸隔室中的抽吸端口的所述抽吸布置可快速地抽空包括处理隔室的总处理隔室到预期真空过程所需的真空水平。特别地在使用本发明并且构思为具有由一种共同运输布置所服务的多个真空处理腔室的设备中,非常有利地提供将真空处理腔室中的选定腔室向环境打开以例如用于维护目的的可能性。使总设备的一部分淹没于环境中不应影响到设备的其余真空区。这例如为了在环境压力下交换工件,为了最小化总设备的停顿时间,或者甚至为了允许由设备进行另外的工件加工,尽管一个处理腔室淹没于环境中。在此方面,在本发明的一实施例中,可控制的密封布置被构思为用以随着处理隔室中的和与抽吸端口成流动连通的抽吸隔室的区域中的压力增加而增加密封力。换言之,每当根据本发明将运输腔室与处理隔室密封隔离、并且在抽吸隔室中或者在与抽吸端口成流动连通的抽吸隔室的至少该区域处和工件处理隔室中的压力升高,例如升高到环境压力时,那么增强所述密封布置的密封效果。如本领域技术人员已知的那样,这样的构思通常可通过分别定制在密封件闭合方向上加载相应压力的表面积的范围来实现。如刚提到的实施例可与随后提到的实施例中的任何实施例相组合。尽管根据本发明的设备的一般方面可被构思为使得所述密封布置可仅在一旦已从真空处理腔室移除了运输布置的情况下,在运输腔室与处理隔室/抽吸隔室之间建立密封隔离/分离,由此将工件留在真空处理腔室中,除非矛盾,在可与已经提到或者在下文中提到的实施例中的任何实施例相组合的本发明的一实施例中,可控制的密封布置被构思为当运输布置处于其中在运输布置上的工件支承件位于真空处理腔室中的位置时对所提到的开口进行密封隔离。在此实施例中,在工件处理期间,运输布置保持在真空处理腔室内。除非矛盾,在可与已经提到或者随后提到的任何实施例相组合的本发明的一实施例中,可控制的密封布置包括可驱动地延伸和缩回的管状波纹管。管状波纹管的一端密封地安装于抽吸隔室中。管状波纹管的另一端可绕开口可控制地移动以密封隔离所述开口。抽吸开口位于与波纹管内侧成流动连通的抽吸隔室的区域中。通过提供这样的管状波纹管,变得可以类似于幕布或窗帘,在所提到的整个开口上密封地移动波纹管的可移动端部。然后所述处理隔室通过波纹管的内侧与在抽吸隔室中的抽吸端口成自由流动连通。在本发明的一实施例中,使用所提到的管状波纹管,运输腔室横跨真空处理隔室延伸。其因而也与第二开口相连通,第二开口被构思为使运输布置、其上面的工件支承件和安置于其中的工件通过。第二开口与在真空处理腔室的壁中的一个开口相对着而定位。另一端,即波纹管的自由端,也可绕第二开口密封地移动。因而,通过分别控制管状波纹管的自由端的移动,可同时密封地闭合运输腔室到真空处理腔室的两个连通开口。在刚刚提到的实施例中的一实施例中,运输布置可沿着移动路径和沿着真空处理腔室、通过所提到的第一开口和第二开口而移动,并且包括大量间隔开的工件支承件。在此实施例中,在所提到的一个真空处理腔室中执行大量工件的内联/串列(inline)处理。除非矛盾,在可与如已经提到和如随后提到的任何实施例相组合的本发明的一实施例中,在运输布置上的工件支承件包括一种贯通开口。一种工件支承构件被保持在贯通开口中、并且可在朝向所述处理隔室的方向上提升,由此使得其承座在运输布置上。管状波纹管的另一端,即自由端,可驱动地移动成与所提到的工件支承构件成密封接触,以便将这个构件提升成沿着处理隔室的壁与环形区域成密封接触。因而,通过管状波纹管的自由端的从动移动,工件支承构件从运输布置的贯通开口而被提升、并且沿着处理隔室的内壁朝向所提到的环形区域而密封地受按压。由此,管状波纹管的自由端也在工件支承构件上密封地受偏压。在本发明的一实施例中,并且不同于之前提到的实施例,该设备包括一种提升布置,提升布置可从抽吸隔室朝向处理隔室而可控制地提升到处理隔室内。提升布置位于管状波纹管内侧。其包括促动器,促动器可提升地与管状波纹管的开口端协同工作以便与工件支承构件呈所提到的密封接触、并且进一步提升工件支承构件与沿着处理隔室的壁的所述环形区域成密封接触。因而,通过朝向处理隔室提升该提升布置,在提升布置处的促动器向上提升管状波纹管的开口端以接触工件支承构件,将工件支承构件沿着处理隔室的壁朝向环形区域提升并且提升到环形区域上,并且在那里建立在一方面在所提到的环形区域与工件支承构件之间、和另一方面在工件支承构件与管状波纹管上端之间的密封。在本发明的一实施例中,所提到的工件支承构件包括支承板,支承板具有沿着其周围的贯通开口。在此实施例中,待处理的工件在并且保持在支承构件上,并且将根据沿着处理隔室的壁与环形区域建立密封时支承构件所占据的该位置而被定位。工件的处理位置和工件支承板的密封位置并不独立。支承板具有沿着其周围的贯通开口,工件位于支承板的中心,以建立在抽吸隔室中的抽吸端口与处理隔室之间的自由流动连通。在本发明的另一实施例中,工件支承构件包括框架,框架可例如为圆形或矩形,通常在外框架圆周上适应于运输布置中的贯通开口的形状,和在内框架圆周上适应于待处理的多个工件之一的形状。框架包括用于在其内开放区内的至少一个工件的保持构件。保持构件被构思为允许将一个或多于一个工件从框架在朝向所述处理隔室的方向上提升开。在提升器上的促动器经由一种弹簧而与管状波纹管的另一端(自由端)协同工作。提升布置包括位于朝向处理隔室的提升布置的端部处的工件支承板。由此实施例,建立了工件支承构件的所有提到的密封,即沿着处理隔室的壁朝向环形区域的框架的、和在管状波纹管的开口端与所提到的框架之间的密封,但额外地并且由于在管状波纹管的自由端与促动器之间作用的所述弹簧布置,则所述提升布置可将支承板上的工件从框架提升、并且将工件定位于处理隔室内的特定位置处,在该位置独立于建立所提到的密封。除非矛盾,在可与已经提到或将要提到的实施例中的任何实施例相组合的根据本发明的设备的一实施例中,包括了额外机构以将工件从工件支承板提升从而使得工件的位置变得独立于工件支承板的位置。如果,例如,工件支承板配备着用于工件的加热或冷却设施,那么可利用所提到的额外机构来调整从工件或到工件的热转变,即使在处理工件期间。由此,实现了用于控制工件温度的一种调整构件,例如,呈负反馈控制环路。此实施例因而包括用于在工件处理腔室中的所述工件的一种工件处理保持器、和用于在所述工件处理保持器上的工件的一种可控制地可驱动的提升布置。在此实施例的变型中,提供适于感测在所述工件处理保持器上的工件的温度的温度感测器件,由此,温度感测器件和可控制地可驱动的提升布置被操作性地连接到用于工件温度的负反馈环路中。除非矛盾,在可与已经提到或者将要提到的实施例中的任何实施例相组合的根据本发明的设备的一实施例中,并且其中,运输布置可沿着其移动路径移动通过真空处理腔室,所述运输布置可沿着线性或者沿着圆形移动路径而移动。根据本发明的总设备可为下面这样的设备,其中多个工件由一种线性运输布置以转位方式从一个真空处理设施输送到下一真空处理设施,其中的至少一个根据本发明而构思,或者总设备可被构思为具有一种运输布置,运输布置以圆形方式绕圆心受驱动,并且由此在此以转位方式将多个工件从一个真空处理设施输送到下一真空处理设施。除非矛盾,在可与已经提到或者将提到的实施例中的任何实施例相组合的一实施例中,并且其中运输布置可沿着一种圆形移动路径而移动,处理隔室和抽吸隔室被布置成在圆形移动路径的轴线的方向上彼此相对着。在可与所提到的实施例中的任何实施例相组合的本发明的一实施例中,该设备还包括第一抽吸布置,第一抽吸布置在操作上连接到运输腔室并且其被构思为用以抽空运输腔室。其还包括第二抽吸布置,第二抽吸布置在操作上连接到处理隔室、并且其被构思为用以抽空所述处理隔室。由此,一种抽吸布置连接到抽吸隔室的抽吸端口,并且其为这样的抽吸布置:被构思为用以抽空运输腔室的抽吸布置的至少主要部分、和其单独地为被构思为用以抽空所述处理隔室的抽吸布置。附图说明现在将借助于附图进一步例示本发明。附图示出:图1示意性地并且简化地示出了根据本发明的设备的第一实施例,其中,在处理工件期间,从真空处理腔室移除一种运输布置;图2为本发明的第二实施例类似于图1的表示,其中在对工件进行真空处理期间,运输布置保持在真空处理腔室中;图3仍以示意图示出了类似于图1的本发明的再一实施例;图4为根据本发明并且根据图3的设备的一实施例的部分,其中由根据本发明的设备所提供的处理隔室中的高压加强了密封;图5以更详细的仍然示意性图示出了根据本发明的设备的另一实施例,组合了图2和图3的实施例的设施;图6以类似于图5的表示图示出了根据本发明另一目前实现的实施例;图7最示意性地示出了具有线性运输布置的根据本发明的设备的一部分;图8以根据图7的表示图,示出了具有圆形中央从动运输布置的根据本发明的设备;以及图9仍以类似于图7和图8的那些表示图,示出了具有环形的圆形运输布置的根据本发明的设备。附图标记列表1运输腔室3运输腔室泵布置5运输布置7工件支承件9工件11开口13真空处理腔室13t工件处理隔室13p抽吸隔室15支承件17密封布置18抽吸端口19抽吸布置20驱动器20'用于密封件的驱动器21管状波纹管22用于运输布置5的驱动器25框架或密封环27肩部表面31贯通开口33肩部35工件载板37提升杆39引入件41提升板61运输腔室65运输布置66工件支承区71对置泵73真空处理腔室75t处理隔室75p抽吸隔室77在65中的贯通开口79密封环81支承构件83管状波纹管85环肩部表面87第二密封环89提升杆91真空密闭的引入件93驱动器95凸缘97弹簧布置99提升板101抽吸端口75p'抽吸区103提升板107工件109销111驱动器115加热和/或冷却设施117温度感测装置119比较器单元具体实施方式借助于图1和图2,将描述根据本发明的一般概念。在可抽空,例如具有运输腔室泵布置3的运输腔室1内,一种运输布置5可沿着以虚线s所示的移动路径可控制地驱动。运输布置5具有用于待处理的工件9的至少一个工件支承件7。运输腔室1经由开口11与真空处理腔室13相连通。真空处理腔室13包括一方面在运输布置5的移动路径s一侧上的一种工件处理隔室13t、和相对于移动路径s与处理隔室13t相对着的一种抽吸隔室13p。根据图1,沿着真空处理腔室13中的运输布置5的移动路径s设置了一种工件接纳构件15,由运输布置5将工件9沉积到工件接纳构件15上,如虚线所示。在将工件9沉积到真空处理腔室13中之后并且根据图1的实施例,运输布置5从真空处理腔室13缩回,例如在如图1中所示的位置。在将工件9沉积到支承件15上之后,在图1中示意性地示出的密封布置17由驱动器20可控制地驱动以在整个开口11上移动并且密封隔离所述开口11。以虚线示出处于密封位置的密封布置17。由此,包括相互自由连通的隔室13t和13p的真空处理腔室13与运输腔室1密封地分隔/分离开。在支承件15上的工件9在处理隔室13t中经受一种真空处理。因此(在图1中未示出),处理隔室13t配备有用以执行所希望的工件处理的单元,例如具有溅镀源、电弧蒸镀机、气体供应器、例如用于pecvd的等离子体排放单元、加热器、冷却器等。在抽吸隔室13p中,设置较大抽吸端口18以应用一种抽吸布置19。抽吸隔室19p提供较大表面积,允许应用这样的较大抽吸端口18以很大截面用于抽吸布置19,从而使得包括处理隔室13t的总真空处理腔室13可被快速地抽真空到所需真空压力。由此,可定制所述抽吸布置19的抽吸效果为较大的从而使得每当开口11脱离密封布置17时,这种抽吸布置19也可用于在运输腔室1上提供至少主要抽吸效果。在此情况下,运输腔室抽吸布置3仅变成了一种辅助布置,如果有必要的话。如果运输布置服务于多于一个真空处理腔室13,则相应抽吸布置19通常也充当运输腔室抽吸布置。附图标记22示意性地示出了用于运输布置5的可控制驱动器。而在图1中示意性地示出了其中在真空处理腔室13中执行处理之前和因而在密封布置17密封地闭合开口11之前,运输布置5从真空处理腔室13缩回的实施例,而图2以类似的表示图示出了其中在工件处理期间,运输布置5与搁置于其上的工件9保留在真空处理腔室13中的实施例。根据图2的实施例,密封布置17a被构思为用以在运输布置5与开口11的边界之间,从而使得每当运输布置5完全引入到真空处理腔室13内并且保留在那里用于处理工件9时关掉开口11。偏离根据图1的本发明的一般方法,图3以类似于图1和图2的表示图示出了用以实现图1的设备的一实施例。在抽吸隔室13p中,密封地安装着一种管状波纹管21。管状波纹管21可朝向处理隔室13t可驱动地并且可控制地提取,并且因此可缩回到抽吸隔室13p内。用于抽吸布置19的抽吸端口18设于管状波纹管21内侧的抽吸隔室13p的壁中。因而,实际上,在抽吸隔室13p内侧,在波纹管21内侧建立了一种抽吸区13p'。朝向处理隔室13t的波纹管21的开口端如示意性地示出的那样由驱动器20可控制地驱动,可移动到相对于抽吸区13p'和处理隔室13t而密封地闭合开口11的位置,当密封地闭合开口11时抽吸区13p'和处理隔室13t二者保持开放连通。根据图3,通过在朝向处理隔室13t的波纹管21的端部处设置一种密封环或框架25来实现这个目的,密封环或框架25密封地接合着真空处理腔室13的肩部表面27。相对于开口11和移动路径s,环形或框架形肩部表面27朝向处理隔室13t定位。例如,为了工件交换、出于维护目的、或者为了交换处理设施,常常需要打开处理隔室13t和由此使总真空处理腔室13向环境压力暴露。由此,在一方面应当防止具有运输腔室1的处理设备的其余部分和可能由运输布置5服务的额外处理设施变得被污染,或者将必须被再抽空。常常也可希望由设备继续对工件进行处理,尽管多个处理设施之一正在被维护,更通常地向环境压力开放。因此,在如图4中示意性地例示的一实施例中,正如图3的实施例的示例,密封布置被构思为使得相对于处理腔室中的压力,在更高压力的真空处理腔室13与在较低压力的运输腔室1之间存在的压差在密封所述开口11时提供增加的密封力。这通常通过在可移动的密封布置处设置向源自处理隔室13t和抽吸隔室13p中的压力与在运输腔室1中的压力之间的压差暴露的表面,使得合力指向密封接合来实现。不同于图3的实施例,图4示出了这样的实施例。在已建立相对于环或框架肩部表面27的密封之后,在波纹管21中的密封环25的表面沿着图4中的交叉阴影线示出的表面区域f,向在处理隔室13t和抽吸区13p'中的压力pa暴露;而同时密封环25的相对表面向运输腔室1的较低压力pv暴露。沿着表面区域f和在密封环25上形成这样的压差导致了如图4中所示在密封环25上的合力q,其指向密封闭合方向。这相对于管状波纹管21的轴线a实现了沿着具有半径r7'的的环区域建立在密封环25处到图4中的肩部27的密封1',半径r7'小于密封环密封地连结到管状波纹管21端部处的环区域的半径r21。在如图5中示意性地示出的实施例中,组合了根据图2和图3的方法,即,图5示出了其中当由于来自处理隔室13t的作用处理工件19时运输布置5保留在真空处理腔室13中,并且使用管状波纹管21来密封地闭合了到运输腔室1的开口11。运输布置5'具有贯通开口31。贯通开口31例如为圆形。贯通开口31的边界限定了一种支承肩部33或更通常地一种固持布置。一种工件载板35搁置于贯通开口31内在支承肩部33上。因而,可从运输布置5'朝向处理隔室13t自由地提升工件载板35。以虚线示出了搁置于运输布置5'的贯通开口31中的工件载板35的位置。管状波纹管21的上端密封地联结到密封环25。如图3中示意性地示出的用来提升和缩回波纹管21的驱动器20在根据图5的实施例中由可控制地被驱动的一种提升布置20'(在图5中未图示)来实现。与管状波纹管21的轴线a同轴的一种提升杆37在真空密闭的引入件39中被引导穿过抽吸隔室13p的壁,并且在其朝向处理隔室13t的端部处承载着一种提升板41。定制所述提升板41以便在波纹管21端部处接合着密封环或框架25,由此与工件载板35密封接合地提升密封环25、并且由此与肩部环表面27密封接合地提升这个板35。提升板41沿着其周围具有大量或少量较大贯通开口43。工件载板35也沿着其周围具有大量或少量几个较大贯通开口45。用于工件9的工件支承件7主要由朝向工件载板35的中心区域中的处理隔室13t的表面而设置。图6以类似于图5的表示图示出了目前实现的本发明的另一实施例。相对于图5实施例的总体差异在于根据图6的实施例包括一种运输布置和一种分别解释的运输腔室,运输腔室穿过真空处理腔室、并且因而特别适合于实现于真空处理设备的框架中,其中,基板以单向转位方式从一个真空处理设施运输到另一真空处理设施。此外,根据图6的实施例允许将工件定位于处理隔室中,与在一方面处理隔室/抽吸隔室与另一方面运输腔室之间建立密封无关。图6示出了设备处于工件处理位置。根据图6的实施例,运输腔室61由两个相对的开口71与真空处理腔室73连通。被成形为圆盘板、环形板或线性延伸的带形板的一种运输布置65位于运输腔室61中,并且穿过真空处理腔室73运行。运输布置65由相应驱动器(在图6中未图示)在一个方向或来回以转位方式可控制地驱动移动,并且然后在每个转位循环中将工件支承区66运输到真空处理腔室73的中央。真空处理腔室73在运输布置65的移动路径s的一侧上包括了处理隔室75t、并且包括相对于所提到的移动路径s与处理隔室75t相对着的抽吸隔室75p。运输布置65包括类似于图5实施例的工件支承区66、贯通开口77,其中,密封环76类似于工件载板35位于图5的运输布置5'中的相应贯通开口中。密封环79包括支承构件81,支承构件81在径向突出到环79内。另外,类似于图5的实施例,设置了管状波纹管83。管状波纹管83的一端密封地连结到抽吸隔室75p的环肩部表面85。管状波纹管83的相对端密封地连结到第二密封环87。绕轴线a与管状波纹管83同轴地设置的一种提升布置包括了提升杆89,提升杆89通过抽吸隔室75p的壁经过一种真空密闭引入件91并且由驱动器93可控制地上下移动。提升杆89具备凸缘95作为促动器。凸缘95刚性地安装到提升杆89上。凸缘95朝向处理隔室75t支承着弹簧布置97,弹簧布置97支承提升板99,提升板99可沿着提升杆89移动并且位于弹簧布置97上并且由弹簧布置97相对于凸缘95支承。还设置了与管状波纹管83的内部相连通的较大抽吸端口101,因而管状波纹管83的内部类似于图5的实施例而形成了抽吸区75p'。提升板99包括宽贯通开口105。提升杆89朝向处理隔室75t的端部配备有一种工件提升板103,工件提升板103可具备例如无源卡盘或者有源卡盘,如静电卡盘,用于保持工件107,例如圆盘形工件,例如晶片。作为替代或作为补充,工件107可如本领域中通常已知的那样利用位于工件107周围的配重环(未图示)而保持在提升板103上。根据图6的实施例如下操作:当提升板103完全朝向抽吸隔室75p缩回时,运输布置65可自由移动穿过真空处理腔室73。连接到较大抽吸端口101的抽吸布置(在图6中未图示)抽吸真空处理腔室73以及运输腔室61。然后,例如由箭头i所示以转位方式移动所述运输布置65以便将工件支承区66定位到真空处理腔室73中央。工件107,例如晶片,位于密封环79中,由支承构件81保持,并且密封环79位于于贯通开口77中,沿着运输布置65上的贯通开口77的边界而受支承。提升板103在运输布置65的移动路径s下方且因而在运输布置65下方完全缩回,具有第二密封环87的管状波纹管83,具有弹簧布置97的凸缘95,受支承的提升板99全都缩回到运输布置65下方。高容量真空泵连接到抽吸端口101,例如持续地运行,由驱动器93来提升该提升杆89。通过凸缘95的提升移动和基本上不受偏压的弹簧布置97,该提升板99被提升并且接合着第二密封环87,第二密封环87密封地联结到管状波纹管83的上端。利用在密封环79处的支承构件81来将提升板103从其支承件提升出。第二密封环87由提升板99朝向密封环79'提升,由此向上提升所述密封环79以密封地搁靠抵靠在处理隔室75t处的环形肩部表面109上。由此第二密封环87密封地接合所述密封环79,并且通过克服弹簧布置97的力的所述提升板99的偏压力来在环肩部表面109、密封环79与第二密封环87之间建立密封。尽管具有用于工件107的支承构件81的密封环79已经密封地靠在环肩部109上,提升杆89还克服弹簧布置97的偏压力而被向上驱动,并且从在处理隔室75t中的特定位置提升工件107,在该特定位置,其将受到所设置的真空过程的处理。这个位置在图6中示出。总之,每当具有提升板103的工件107已移动到处理位置时,在第二密封环87与密封环79之间,在密封环79与环肩部表面109之间建立密封。管状波纹管83分离所述抽吸区75'p与真空处理腔室73的该区域,其中运输腔室61经由开口71而连通。经由密封环79的较宽开放的贯通开口、较宽开放的第二密封环87、在提升板99中的较大贯通开口和由环肩部表面85所保持开放的较大内空间来建立起在处理隔室75t与抽吸端口101之间的自由流动连通。一旦已根据需要对工件107进行处理,则缩回提升杆89,由此,打开所提到的密封、并且将工件107以及密封环79一起放回到运输布置65上,其然后可进一步转位,因为在操作上联接到提升杆89的所有构件缩回到抽吸隔室75t内、并且因而并不阻碍所述运输布置65的移动。由于以下事实即根据本发明,由于在处理隔室的旁侧设置一种单独隔室,其中工件被进行真空处理,并且与所提到的处理隔室成流动连通,和从处理隔室到具有运输布置的运输腔室的切换流动连通,运输布置用于将至少一个工件送入和在处理后移除这样的至少一个工件,存在着充足的空间可用于提供也对于处理隔室而言很大截面的一种抽吸端口。由此,将处理隔室很快速地抽真空到所希望的较低真空变得可能。注意到图4,应当指出的是也在图5或图6的实施例中,有利地实现了每当处理隔室向环境打开时,例如出于维护目的,环境压力增加了在将所述处理隔室与所述运输腔室进行分隔的密封件上的密封力。仍注意图4,在关于该图的上下文中已解释的表面考虑也有效地用于图5或图6的实施例,例如关于第二密封环87和波纹管83,类似于图4的密封环25和波纹管21的实现方式。如已经提到的那样,如图6的根据本发明的设备优选地适合于沿着多个真空处理工位而转位运输大量工件,工件在多个真空处理工位处被连续/连贯地处理。如在图6的上下文中所例示,可设置提升销109(以虚线示出),提升销109可由相应驱动器111相对于工件107所在的提升板103而同步地提升和缩回。由此,也在处理工件期间,从所提到的表面可控制地并且准确地提升工件。如果例如所述提升板103配备有一种加热和/或冷却设施115,则可通过对介于工件底表面与提升板顶表面之间的距离进行受控调整从而调整在提升板与工件之间的热交换。通过提供用于工件温度的温度感测装置117,在比较器单元119处比较其输出与额定、所希望的温度值,根据比较结果,其输出作用于驱动器111上,建立对工件温度的负反馈控制,利用了所述提升销布置作为一种调整构件。显然,这样的销布置和可能这样的控制环路可设置于本发明的任何实施例中,其中,在处理期间,工件位于支承件上。图7最示意性地示出了根据本发明的这样的设备,其中,根据本发明实现了大量真空处理腔室中的至少一个,并且以如由箭头所示线性转位方式来由一种共同运输布置而服务于所有的真空处理腔室。如果将要由这样的真空处理工位110a……110c执行的所有真空过程需要对相应加工真空进行单独抽吸,那么,所有这样的工位由如图6的实施例已特别地例示的那样而实现。如果(另一方面)一个过程或其它过程并不需要单独抽吸,然后可常规地实现相应真空处理腔室,而不需要抽吸端口。而根据图7,在112处以虚线示意性地示出的运输布置以线性移动转位,图8以类似表示图示出了总设备,其中由一种圆形板型运输布置112'实现了转位运输。在类似的表示图中,图9示出了根据本发明的总设备的又一实施例,其中借助于环形运输布置112"实现了转位工件运输。当前第1页12