一种用于锂离子电池隔膜的纳米纤维膜及其制备方法与流程

文档序号:16972407发布日期:2019-02-26 18:40阅读:455来源:国知局
一种用于锂离子电池隔膜的纳米纤维膜及其制备方法与流程

本发明涉及本发明属于碳纤维材料领域,特别是指一种用于锂离子电池隔膜的纳米纤维膜及其制备方法。



背景技术:

锂电池由正、负极材料,电解液,隔膜,外壳组成,隔膜是锂电池工作的必要部分,为离子转移提供路径,同时将正极和负极进行物理隔开。隔膜根据结构和组成可以有:聚烯烃隔膜,无纺布,聚合物/无机复合隔膜等,市场比较多的为:聚乙烯(pe),聚丙烯(pp)微孔膜及聚丙烯/聚乙烯/聚丙烯(pp/pe/pp)三层隔膜,聚烯烃隔膜具有强度高、耐酸耐碱性好等特点,但是孔隙率低、润湿性及热稳定性差,当电池温度升高到超过170℃时,隔膜收缩熔融等会导致结构完整性破坏,无法起到作用,造成短路,加剧电解液气化、电池着火、爆炸等。因此需要开发一种新材料以满足锂离子电池隔膜的各项要求,包括:热稳定性,机械强度,孔隙率,吸液率,润湿性等。

pi(聚酰亚胺)具有许多优异的性能,如高强度模量、高抗蠕变性能、优良的尺寸稳定性、良好的绝缘性能、耐腐蚀耐化学性能以及低的热膨胀系数和低的介电常数与损耗等。石墨烯具有极高的导热系数,良好的导电性、具有良好的结构刚性,所以将石墨烯掺入pi中改善其性能。pvdf-hfp是pvdf(聚偏氟乙烯)共聚物,机械强度高,孔隙率大、吸液率高,优异的聚合物电解质稳定性。静电纺丝是一种基于高压静电场下导电流体产生高速喷射原理发展而来的不同于常规方法的纺丝技术,所纺纳米纤维具有较细的直径和较大的比表面积。本发明的目的在于提供高热稳性,高润湿性,机械强度高,孔隙率均匀的锂离子电池隔膜制备方法。



技术实现要素:

本发明提出一种用于锂离子电池隔膜的纳米纤维膜及其制备方法,解决了现有技术中电池隔膜存在热稳定性低、机械强度低、孔隙率低、润湿性差的问题。

本发明的技术方案是这样实现的:

一种用于锂离子电池隔膜的纳米纤维膜,包括三层纳米纤维隔膜,其中芯层为rgo-pi纳米纤维隔膜、上下表层为pvdf-hfp纳米纤维隔膜,隔膜中纤维直径均为100-200nm,rgo质量分数占pi的0.1%。

所述pi纳米纤维隔膜中掺杂有单层石墨烯,pi纳米纤维隔的厚度为25μm、溶解温度为500℃。

所述pvdf-hfp纳米纤维隔膜的熔点为175℃。

所述的用于锂离子电池隔膜的纳米纤维膜的制备方法,步骤如下:

(1)将go(石墨烯)分散在dmac中,分散24-48h,得到go溶液;

(2)向go溶液中先加入oda(4,4’-二氨基二苯醚),搅拌至完全溶解,再在1-2h内分批加入pmda(均苯四甲酸二酐),加完升温至35℃,继续搅拌5h,等溶液出现爬杆现象即可形成均一的go-paa溶液;

(3)将go-paa溶液进行静电纺丝ⅰ,其中电压为20-25kv,纺丝距离为20cm,推注速度为0.2-0.4ml/h,纺丝四个小时得到go-paa纳米纤维隔膜;

(4)将go-paa纳米纤维隔膜放入通有n2的炭化炉中,通过梯度升温法进行热亚胺化处理,得到rgo-pi(氧化石墨烯-聚酰亚胺)纳米纤维隔膜;

(5)将pvdf-hfp(聚偏氟乙烯-六氟丙烯共聚物)溶解在nmp(n-甲基吡咯烷酮)和丙酮的混合溶液中,得到pvdf-hfp溶液,将pvdf-hfp溶液通过静电纺丝ⅱ处理到rgo-pi纳米纤维隔膜正反两面直至厚度均为10μm,最终得到pvdf-hfp/rgo-pi/pvdf-hfp纳米纤维隔膜即为用于锂离子电池隔膜的纳米纤维膜。

所述步骤(1)中,go溶液的质量浓度为0.5-1%。

所述步骤(2)中oda粉末和pmda粉末均预先烘干1h,pmda和oda的质量比为(1.01-1.02:1);go-paa溶液的质量浓度为24%-30%。

所述步骤(3)中go-paa纳米纤维隔膜的厚度为25μm。

所述步骤(4)中梯度升温法为:20℃、90min,200℃、30min,200℃、30min,250℃、30min,250℃、30min,300℃、30min,0℃、30min,350℃、120min,0℃、200min。

所述步骤(5)中nmp和丙酮的混合溶液中nmp和丙酮的体积比为7:3,pvdf-hfp溶液的质量浓度为12-15%,用于锂离子电池隔膜的纳米纤维膜厚度为40-45μm。

所述步骤(5)中静电纺丝的条件为:电压控制在25-30kv,纺丝距离控制在20-25cm,出液速度为1.2-1.8ml/h。

本发明的有益效果在于:

(1)本发明制备的纳米纤维隔膜呈三维立体结构,纤维细度小,比表面积大,孔隙率高,所以纤维隔膜的吸液率比较高,形成的三层复合结构隔膜,上层的pvdf-hfp的孔径尺寸小于100nm,并且孔径分布是连续的;这些曲折的小孔和均匀的孔径分布在缓解自放电和在高充电/放电速率下实现均匀的电流密度方面起关键作用,还有利于防止形成锂枝晶,具有制备方法简单、工艺简单、对环境友好等特点。

(2)锂离子电池隔膜的纤维pi直径200-300nm之间,孔隙率较大在92%,吸液率在1200%,断裂强度在34mpa;pvdf-hfp的孔径尺寸小于100nm,pvdf-hfp纤维隔膜本身具有很好的电解液吸收性吸液率达到138.4%;隔膜韧性较好,较好的机械强度和热稳定性,优良的界面特性核电化学性能,隔膜的电导率很低在10-6s/cm以下。

(3))pvdf-hfp纤维隔膜的熔点低于pi纳米纤维隔膜,在电池本身温度很高,175℃下pvdf-hfp纤维隔膜就会先熔融,pi隔膜的微孔就会被堵上,然后形成电池隔膜需要的闭孔,从而防止电池温度继续升高,来保证电池的安全性。

附图说明

图1是pi不同放大比例的sem图。

图2是rgo-pi不同放大比例的sem图。

图3是pvdf-hfp不同放大比例的sem图。

图4是pdf-hfp/rgo-pi/pvdf-hfp纳米纤维隔膜示意图。

具体实施方式

下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

本实施例的用于锂离子电池隔膜的纳米纤维膜的制备方法,步骤如下:

(1)氧化石墨烯的分散:取0.05g单层go,再取9.95gdmac溶液在烧杯中,用保鲜膜密封烧杯口部,放入超声波机器中,使其保持常温超声48h,最后得到黑色均匀的0.5%go溶液;

(2)配置pi前驱体溶液:先取1.2ggo溶液,放入一个干净烧杯中,将oda在60℃烘箱中烘30min、pmda在120℃烘60min,然后向go溶液中加入2.970goda粉末,待其溶解完全以后,在1.5h内分批次加入3.029gpmda每次加入剩余量的1/3,等加入完全后将搅拌器升温至35℃,等溶液出现爬杆现象即可,持续搅拌5h后,形成均匀的go/paa溶液;

(3)静电纺丝:将配置好的go-paa溶液进行静电纺丝,将溶液吸至针筒晶型静电纺丝,电压为24kv,纺丝距离为20cm,推注速度为0.3ml/h,纺丝四个小时得到25μm厚度的隔膜;

(4)paa隔膜热亚胺化处理:将上述隔膜,按如下梯度加热进行亚胺化处理和对go还原:20℃,20min;200℃,90min;200℃,30min;300℃,60min;300℃,30min;350℃,30min;350℃,30min;0℃,200min;热亚胺化后,即为rgo-pi隔膜;

(5)pvdf-hfp溶液的配制及静电纺丝:pvdf-hfp溶解在nmp:丙酮=7:3的溶液中,得到溶液浓度为12%的pvdf-hfp溶液,pvdf-hfp溶液进行静电纺丝电压控制在25kv,纺丝距离控制在20cm,出液速度为1.2ml/h,纺到rgo-pi隔膜正反两面直至厚度均为10μm,最终得到用于锂离子电池隔膜的纳米纤维隔膜,隔膜厚度为45μm。

实施例2

本实施例的用于锂离子电池隔膜的纳米纤维膜的制备方法,步骤如下:

(1)氧化石墨烯的分散:取0.05g单层go,再取4.95gdmac溶液在烧杯中,用保鲜膜密封烧杯口部,放入超声波机器中,使其保持常温超声48h,最后得到黑色均匀的1%go溶液;

(2)配置pi前驱体溶液:先取1.0ggo溶液,放入一个干净烧杯中,将oda在60℃烘箱中烘30min、pmda在120℃烘60min,然后向go溶液中加入2.475goda粉末,待其溶解完全以后,在2h内分批次加入2.54gpmda每次加入剩余量的1/3,等加入完全后将搅拌器升温至35℃,等溶液出现爬杆现象即可,持续搅拌5h后,形成均匀的go/paa溶液;

(3)静电纺丝:将配置好的go-paa溶液进行静电纺丝,将溶液吸至针筒晶型静电纺丝,电压为25kv,纺丝距离为20cm,推注速度为0.4ml/h,纺丝四个小时得到25μm厚度的隔膜;

(4)paa隔膜热亚胺化处理:将上述隔膜,按如下梯度加热进行亚胺化处理和对go还原:20℃,20min;200℃,90min;200℃,30min;300℃,60min;300℃,30min;350℃,30min;350℃,30min;0℃,200min;热亚胺化后,即为rgo-pi隔膜;

(5)pvdf-hfp溶液的配制及静电纺丝:pvdf-hfp溶解在nmp:丙酮=7:3的溶液中,得到溶液浓度为14%的pvdf-hfp溶液,pvdf-hfp溶液进行静电纺丝电压控制在28kv,纺丝距离控制在20cm,出液速度为1.2ml/h,纺到rgo-pi隔膜正反两面直至厚度均为10μm,最终得到用于锂离子电池隔膜的纳米纤维隔膜,隔膜厚度为40μm。

实施例3

本实施例的用于锂离子电池隔膜的纳米纤维膜的制备方法,步骤如下:

(1)氧化石墨烯的分散:取0.05g单层go,再取6.25gdmac溶液在烧杯中,用保鲜膜密封烧杯口部,放入超声波机器中,使其保持常温超声48h,最后得到黑色均匀的0.8%go溶液;

(2)配置pi前驱体溶液:先取0.96ggo溶液,放入一个干净烧杯中,将oda在60℃烘箱中烘30min、pmda在120℃烘60min,然后向go溶液中加入2.423goda粉末,待其溶解完全以后,在1.8h内分批次加入2.376gpmda每次加入剩余量的1/3,等加入完全后将搅拌器升温至35℃,等溶液出现爬杆现象即可,持续搅拌5h后,形成均匀的go/paa溶液;

(3)静电纺丝:将配置好的go-paa溶液进行静电纺丝,将溶液吸至针筒晶型静电纺丝,电压为23kv,纺丝距离为20cm,推注速度为0.3ml/h,纺丝四个小时得到25μm厚度的隔膜;

(4)paa隔膜热亚胺化处理:将上述隔膜,按如下梯度加热进行亚胺化处理和对go还原:20℃,20min;200℃,90min;200℃,30min;300℃,60min;300℃,30min;350℃,30min;350℃,30min;0℃,200min;热亚胺化后,即为rgo-pi隔膜;

(5)pvdf-hfp溶液的配制及静电纺丝:pvdf-hfp溶解在nmp:丙酮=7:3的溶液中,得到溶液浓度为12%的pvdf-hfp溶液,pvdf-hfp溶液进行静电纺丝电压控制在28kv,纺丝距离控制在25cm,出液速度为1.8ml/h,纺到rgo-pi隔膜正反两面直至厚度均为10μm,最终得到用于锂离子电池隔膜的纳米纤维隔膜,隔膜厚度为45μm。

实施例4

本实施例的用于锂离子电池隔膜的纳米纤维膜的制备方法,步骤如下:

(1)氧化石墨烯的分散:取0.05g单层go,再取9.95gdmac溶液在烧杯中,用保鲜膜密封烧杯口部,放入超声波机器中,使其保持常温超声48h,最后得到黑色均匀的0.5%go溶液;

(2)配置pi前驱体溶液:先取1ggo溶液,放入一个干净烧杯中,将oda在60℃烘箱中烘30min、pmda在120℃烘60min,然后向go溶液中加入2.475goda粉末,待其溶解完全以后,在1.8h内分批次加入2.54gpmda每次加入剩余量的1/3,等加入完全后将搅拌器升温至35℃,等溶液出现爬杆现象即可,持续搅拌5h后,形成均匀的go/paa溶液;

(3)静电纺丝:将配置好的go-paa溶液进行静电纺丝,将溶液吸至针筒晶型静电纺丝,电压为25kv,纺丝距离为22cm,推注速度为0.5ml/h,纺丝四个小时得到25μm厚度的隔膜;

(4)paa隔膜热亚胺化处理:将上述隔膜,按如下梯度加热进行亚胺化处理和对go还原:20℃,20min;200℃,90min;200℃,30min;300℃,60min;300℃,30min;350℃,30min;350℃,30min;0℃,200min;热亚胺化后,即为rgo-pi隔膜;

(5)pvdf-hfp溶液的配制及静电纺丝:pvdf-hfp溶解在nmp:丙酮=7:3的溶液中,得到溶液浓度为14%的pvdf-hfp溶液,pvdf-hfp溶液进行静电纺丝电压控制在30kv,纺丝距离控制在23cm,出液速度为1.2ml/h,纺到rgo-pi隔膜正反两面直至厚度均为10μm,最终得到用于锂离子电池隔膜的纳米纤维隔膜,隔膜厚度为45μm。

本发明的得到的锂离子电池隔膜:(1)采用静电纺丝发制备锂离子电池隔膜材料,静电纺丝制备的隔膜呈三维立体结构,纤维细度小,比表面积大,孔隙率高,所以纤维隔膜的吸液率比较高。(2)pi隔膜本身具有良好的热稳定性能,机械强度高,高韧性。(3)pvdf-hfp隔膜熔点较低,耐化学腐蚀、耐热性好、机械性能好。(4)形成的三层复合结构隔膜,上层的pvdf-hfp的孔径尺寸小于100nm,并且孔径分布是连续的。这些曲折的小孔和均匀的孔径分布在缓解自放电和在高充电/放电速率下实现均匀的电流密度方面起关键作用,还有利于防止形成锂枝晶。(5)pvdf-hfp纤维隔膜的熔点低于pi纳米纤维隔膜,在电池本身温度很高,175℃下pvdf-hfp纤维隔膜就会先熔融,pi隔膜的微孔就会被堵上,然后形成电池隔膜需要的闭孔,从而防止电池温度继续升高,来保证电池的安全性。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1