半导体塑封料传送系统及相关方法与流程

文档序号:19735122发布日期:2020-01-18 04:22阅读:369来源:国知局
半导体塑封料传送系统及相关方法与流程

本发明技术涉及用于传送塑封料及模制半导体装置结构的系统及方法。特定来说,本发明技术的一些实施例涉及半导体装置结构及封装的压缩模制。



背景技术:

封装半导体装置,例如存储器芯片及微处理器芯片,通常包含安装到衬底且围封于保护罩中的半导体装置。所述装置包含功能特征,例如存储器单元、处理器电路及互连电路系统。保护罩常规地包含沉积于半导体装置封装上方且囊封于压缩模制机中的塑封料。如图1中所展示,常规模制传送系统10包含沉积到离型膜14上且堆叠于托盘罩盖16的装纳区域内的粒状塑封料12。所堆叠的粒状塑封料12包含粒状塑封料12的个别粒状物之间的填隙空间中的截留空气18。所沉积的粒状塑封料12在离型膜14上方延伸达厚度(t)。将包含离型膜14、托盘罩盖16及粒状模制材料12的常规模制传送系统10传送到模制机且放置于具有多个半导体装置封装的半导体晶片上方。接着从模制机移除托盘罩盖16,且离型膜14及粒状模制材料12保留以经历压缩模制。使粒状模制材料12经由压缩模制而熔化以在半导体装置封装上方形成囊封物。在半导体晶片上模制粒状模制材料12之后,移除离型膜14。

上文所描述的常规系统及方法的一个缺点为:当使粒状模制材料12回流时,所堆叠的粒状模制材料12的个别粒状物之间的截留空气可能会导致空隙。因而,一般需要在模制之前减少囊封物材料内的截留空气的量。常规系统及方法的另一缺点为:离型膜无法承受用于厚半导体封装模制的高伸长率且因此无法产生大于1.5mm的模制厚度。另外,全球竞争继续促使半导体制造商降低成本、提高制造效率,且改进上文所描述的常规系统及方法。

附图说明

参考以下图式可更好地理解本发明技术的许多方面。图式中的组件不一定按比例。代替地,将重点放在清楚地说明本发明技术的原理上。

图1是根据现有技术的常规塑封料传送系统的横截面侧视图。

图2a是根据本发明技术的选定实施例配置的塑封料传送系统的横截面侧视图,且图2b为图2a中所展示的塑封料传送系统的俯视图。

图3是根据本发明技术的选定实施例的用于将塑封料传送到模制机的方法的流程图。

图4a到4d是绘示根据本发明技术的选定实施例的用于模制半导体装置的方法的选定步骤处的半导体装置的横截面侧视图。

具体实施方式

本文中描述用于在模制机中形成模制半导体装置封装的方法的若干实施例的特定细节,以及相关方法、装置及系统。术语“半导体装置”通常是指包含半导体材料的固态装置。半导体装置的实例包含逻辑装置、存储器装置及二极管等。此外,术语“半导体装置”可指成品装置或可指处于成为成品装置之前的各个处理阶段的组合件或其它结构。取决于术语“衬底”被使用的内容背景,术语“衬底”可指晶片级衬底、条带级衬底或单一化裸片级衬底。所属领域的技术人员将认识到,可在晶片级、条带级或裸片级执行本文中所描述的方法的适合步骤。此外,除非内容背景另有指示,否则可使用常规半导体制造技术来形成本文中所揭示的结构。

术语“半导体装置封装”可指经堆叠或以其它方式并入到共同封装中的半导体装置的组合件。半导体封装可包含部分地或完全囊封半导体装置的组合件的外壳。术语“半导体装置组合件”可指半导体装置的组合件。此术语也可指半导体装置的组合件及耦合到半导体装置的组合件的支撑衬底。支撑衬底包含承载半导体装置的组合件且提供到半导体装置组合件的电连接的印刷电路板(pcb)或其它适合衬底。术语“模制机”可指使用热及/或压缩力来至少部分地在一或多个半导体装置封装周围(例如上方)模制囊封物的设备。举例来说,模制机可包含具有上部模套(chase)及下部模套且使塑封料压缩及/或回流成所要形状的任何机器。所属领域的技术人员也将理解,所述技术可具有额外实施例,且可在无下文参考图2a到4c所描述的实施例的若干细节的情况下实践所述技术。

图2a及2b绘示根据本发明技术的选定实施例配置的塑封料传送系统200。一起参考图2a及2b,传送系统200包含托盘罩盖202及定位于支撑结构(例如台板、模套等)208上方的支撑板206。托盘罩盖202界定内部装纳区域204。支撑板206可处于闭合位置(如图2b中所展示)以支撑装纳区域204内的材料,或处于敞开位置(以虚线示意性地展示)以允许材料通过装纳区域204。

在操作中,当支撑板206处于闭合位置时,第一塑封料210的片状物定位于装纳区域204中且与支撑板206至少部分地重叠。片状塑封料210具有面向支撑板206的第一侧215a及背对支撑板206的第二侧215b。在图2a及2b中所展示的实施例中,片状塑封料210基本上横跨装纳区域204的整个宽度。在塑封料210的片状物处于适当位置之后,将第二塑封料220的粒状物221沉积于片状塑封料210的第二侧215b上方。随着粒状物221经沉积以形成粒状塑封料220的堆叠,粒状物221与托盘罩盖202的形状共形。粒状塑封料220包含个别粒状物221之间的填隙空间中的截留空气222。片状塑封料210支撑及承载所堆叠的粒状塑封料220。所堆叠的粒状塑封料220包含第一厚度d1,且片状塑封料210包含等于或大于第一厚度d1的第二厚度d2。片状塑封料210及粒状塑封料220的组合厚度d1+d2通常大于约3毫米(mm)。在一些实施例中,组合厚度d1+d2介于约3mm与约10mm之间,或约3mm与约8mm之间,或约5mm与约7mm之间。因此,可使用片状塑封料210及粒状塑封料220来产生大于约3mm的模制晶片或条带。

片状塑封料210可由所属领域中通常已知的可流动树脂材料或其它囊封物材料构成。片状塑封料210可为自支撑且经形成以配合在托盘罩盖206的装纳区域204内的预压制固体片状物。在一些实施例中,片状塑封料可包含用于用识别标记来激光标记个别片状塑封料的玻璃纤维材料。在一些实施例中,片状塑封料210类似于由日本信越化学株式会社(shin-etsuchemicalco.,ltd.)制造的片状塑封料的结构及功能。因而,片状塑封料210可具有设置重量、长度及厚度,且可普遍地用作不同晶片及/或半导体装置封装的囊封物材料。粒状塑封料220可包括如片状塑封料210的材料中的任一者。因而,片状塑封料210及粒状塑封料220可由相同材料或由不同材料形成。

片状塑封料210通常不包含截留空气,或至少包含比粒状塑封料220中存在的截留空气少的截留空气。因而,片状塑封料210的密度大于粒状塑封料210的密度。此外,因为片状塑封料220的厚度d2大于或等于粒状塑封料220的厚度d1,所以片状塑封料220的重量通常大于粒状塑封料210的重量。可基于多个因素来选择片状塑封料210的重量对粒状塑封料220的重量的比率。举例来说,粒状塑封料220包含截留空气222,且因此通常应限制粒状塑封料220的量以避免出现空隙。然而,如下文关于图3更详细地所阐释,需要足够量的粒状材料来适应特定晶片或条带的裸片及裸片堆叠的数目。另外,片状塑封料210对粒状塑封料220的重量比需要足够高以确保片状塑封料210具有足够强度以支撑粒状塑封料220。在一些实施例中,片状塑封料210的重量对粒状塑封料220的重量的比率为约3:1到约5:1。在其它实施例中,片状塑封料210对粒状塑封料220的重量比为约4:1。

根据本发明技术的各种实施例,塑封料传送系统200不包含或不需要离型膜。不同于需要离型膜来将粒状塑封料传送到模制机的常规系统及方法,片状塑封料210充当粒状塑封料220的载体。因此,可从工艺移除离型膜,从而减少半导体制造商的成本(例如离型膜的成本)及制造工艺步骤数目(例如移除离型膜的步骤)。

本发明技术的另一特征为:相较于相等厚度的仅粒状塑封料,片状塑封料210及粒状塑封料220中的截留空气的量减少。如先前所提及,截留空气222存在于个别粒状物221之间的多孔空间中且可在粒状塑封料220熔化以形成囊封物时导致模制空隙。本发明技术减轻了此问题,这是因为从不包含截留空气的预压制片状塑封料210供应用于形成囊封物的大部分塑封料。从粒状塑封料220供应的塑封料的剩余量明显小于常规系统及方法中使用的粒状塑封料的量。

本发明技术的又一特征为:片状塑封料210及粒状塑封料220的厚度减小。在常规系统及方法中单独使用的粒状塑封料相比于片状塑封料220具有较低密度。因而,片状塑封料210及粒状塑封料220的组合厚度d1+d2小于粒状塑封料本身的厚度(例如图1中的“t”)。组合厚度d1+d2的减小允许片状塑封料210及粒状塑封料220的更快速且更均匀的加热。厚度减小也防止片状塑封料210及粒状塑封料220在压缩期间过早凝胶化,这由此可减少线接合半导体装置460a到460b的甩线(wiresweeping)。

所属领域的技术人员将认识到,包含片状塑封料210及粒状塑封料220的塑封料传送系统200的此组合可并入到多种其它系统中。因此,塑封料传送系统200可包含除图2中所绘示的那些特征及配置以外或代替那些特征及配置的特征及配置。举例来说,装纳区域204可由除托盘罩盖202以外的结构形成。类似地,片状塑封料210及粒状塑封料220的比率及厚度可变化以适应个别晶片或条带及半导体装置封装。

图3为根据本发明技术的选定实施例的用于将塑封料传送到模制机的方法300的流程图。方法300可包含将片状塑封料210放置于托盘罩盖202的装纳区域204内(工艺部分302)。一旦将片状塑封料210放置于装纳区域204内,就将粒状塑封料220施配于片状塑封料210上方(工艺部分304)。如先前关于图2a及2b所提及,片状塑封料210可被预压制且具有设置厚度及重量(即,设置量的材料)。举例来说,“预压制”片状塑封料210可为在其定位于装纳区域204中之前制成的预形成片状物。因而,片状塑封料220的量(即,体积)是已知的,且粒状塑封料210的量为在确定特定晶片或条带所需的塑封料的总量时可变的唯一塑封料。所需粒状塑封料220的量等于所需塑封料的总量与由片状塑封料210供应的量之间的差。所需粒状塑封料220的总量(及因此,所需粒状塑封料220的量)可取决于例如裸片厚度、所要模制厚度以及每一晶片或条带上的半导体装置封装的裸片及/或裸片堆叠数目而变化。因而,对于相同模制厚度的给定晶片或条带,具有多个裸片的半导体装置封装相比于具有相同厚度的单个裸片的半导体装置封装将需要较少粒状塑封料,这是因为多个裸片之间存在需要用塑封料填充的较少填隙空间。举例来说,如果给定条带具有附接到其的100个裸片,且在裸片附接工艺期间,条带上的五个裸片变得未附接,那么需要添加更多粒状塑封料以补偿五个未附接裸片的体积且确保满足条带的所要模制厚度。

方法300通过将承载粒状塑封料220的片状塑封料210传送到模制机(工艺部分306)而继续。在一些实施例中,将片状塑封料210及粒状塑封料220传送到模制机包含将包含托盘罩盖202及支撑板206的整个塑封料传送系统200移动到模制机。将包含片状塑封料210及粒状塑封料220的塑封料传送系统200放置到模制腔体452中。一旦将塑封料传送系统200放置于模制机中,就将支撑板206移动到敞开位置且移除托盘罩盖202及支撑板206,仅将片状塑封料210及粒状塑封料220留在模制机上。接着,将片状塑封料210及粒状塑封料220暴露于热及/或压缩,且使其熔化以形成模制晶片或条带(工艺部分308)。

图4a到4d绘示放置于模制机400内的片状塑封料210及粒状塑封料220。模制机400包含朝向彼此移动以在半导体裸片460a到460b上方形成囊封物的上部模套450及下部腔体452。如图4a中所展示,包含半导体裸片460a到460b的条带通过真空固持到上部模套450,且片状塑封料210及粒状塑封料220放置于下部腔体452内。随着上部模套450及下部腔体452朝向彼此移动,粒状塑封料220熔化以形成混合塑封料。所熔化的粒状塑封料420形成于片状塑封料210上方,片状塑封料210可维持其自支撑结构至少直到粒状塑封料220已熔化之后。接着,片状塑封料210熔化以形成均匀囊封物材料440。如图4c中所绘示,上部模套450及下部腔体452进一步朝向彼此移动直到到达模制位置。随着上部模套450及下部腔体452进一步朝向彼此移动,囊封物440流向模制机的外端,如由箭头f所指示,且填充个别半导体裸片460a到460b之间的填隙空间以至少部分地囊封条带。如图4c中所绘示,上部模套450及下部腔体452固持于适当位置达特定时间(例如90秒到120秒)以允许均匀囊封材料440模制(即,硬化)。如图4d中所绘示,在均匀囊封材料440被模制之后,上部模套450及下部腔体452远离彼此移动。

本发明不意在为详尽的或将本发明技术限制于本文中所揭示的精确形式。所属领域的一般技术人员将认识到,尽管本文中出于说明性目的而揭示特定实施例,但各种等效修改在未偏离本发明技术的情况下是可能的。在一些情况下,尚未详细地展示或描述众所周知的结构及功能以避免不必要地混淆本发明技术的实施例的描述。尽管本文中可以特定顺序呈现方法的步骤,但替代性实施例可以不同顺序执行所述步骤。类似地,在特定实施例的内容背景中所揭示的本发明技术的某些方面可在其它实施例中被组合或消除。此外,虽然与本发明技术的某些实施例相关的优点可能已在那些实施例的内容背景中被揭示,但其它实施例也可展现此类优点,且并非全部实施例必定需要展现此类优点或本文中所揭示的其它优点以落在所述技术的范围内。因此,本发明及相关技术可涵盖本文中未明确展示或描述的其它实施例。

贯穿本发明,单数术语“一(a、an)”及“所述”包含多个参照物,除非内容背景另有明确指示。类似地,除非字词“或”明确限于仅表示关于两个或两个以上物品的列表排除其它物品的单个物品,否则“或”在此列表中的使用应被解释为包含(a)列表中的任何单个物品、(b)列表中的全部物品,或(c)列表中的物品的任何组合。另外,术语“包括”贯穿全文用于表示包含至少(若干)所述特征,使得不排除任何较大数目个相同特征及/或额外类型的其它特征。本文中对“一个实施例”、“一实施例”或类似表达的引用表示结合实施例描述的特定特征、结构、操作或特性可包含于本发明技术的至少一个实施例中。因此,此类词组或表达的出现在本文中不一定皆是指同一实施例。此外,在一或多个实施例中可以任何适合方式组合各种特定特征、结构、操作或特性。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1