本发明涉及在光检测领域等中使用的光电转换元件和光电转换装置。
背景技术:
在专利文献1中公开有检测入射光的强度(照度)的光电转换元件(半导体受光元件)。作为这样的光电转换元件,例如公知有使用结晶硅基板的元件。在使用结晶硅基板的光电转换元件中,即使在暗电流比较小,入射光的强度较低的情况下,s/n比也比较高,并且是高灵敏度(不受照度影响的稳定的响应)。
专利文献1:日本专利第6093061号公报
然而,迫切期望能够检测入射光的光点尺寸的光电转换元件。
技术实现要素:
本发明的目的在于提供一种用于检测入射光的光点尺寸的光电转换元件和光电转换装置。
本发明所涉及的光电转换元件包括具备两个主面的光电转换基板,其中,包括具有不同的光电转换特性的第1灵敏度部分和第2灵敏度部分,若将第1灵敏度部分的在主面显露的灵敏度区域作为第1灵敏度区域,并将第2灵敏度部分的在主面显露的灵敏度区域作为第2灵敏度区域,则第1灵敏度区域接收向主面入射的入射光的至少一部分,并成为随着主面中的被照射入射光的照射区域的增大而使照射区域中的第1灵敏度区域相对于第2灵敏度区域的比率变小的图案。
本发明所涉及的光电转换装置包括配置于入射光的上游侧的第1光电转换元件、和配置于入射光的下游侧并且为上述的光电转换元件的第2光电转换元件。
根据本发明,能够提供用于检测入射光的光点尺寸的光电转换元件和光电转换装置。
附图说明
图1是表示第1实施方式所涉及的光电转换装置的结构的图。
图2是图1的第1光电转换元件中的ii-ii线端面图。
图3是图1的第2光电转换元件中的iii-iii线端面图。
图4是从受光面侧示出图1和图3的第2光电转换元件的半导体基板的背面侧的层的图。
图5是表示入射光入射至图4的第2光电转换元件的情形的图。
图6是用于对第2光电转换元件的受光面中的入射光的照射区域与高灵敏度部分的重合度的近似计算进行说明的图。
图7a是表示第2光电转换元件的相对于入射光的照射区域的半径的入射光的检测强度的特性的一个例子的图。
图7b是将图7a中的入射光的照射区域的中心位置的偏移量为(0.05,0.05)时的特性的部分z放大示出的图。
图8a是表示入射光的照射区域的中心位置相对于受光面的中心位置的偏移量(dmin,dmax)的图。
图8b是表示入射光的照射区域的中心位置相对于受光面的x方向的中心位置的x方向的偏移量dmax的图。
图9是表示从来自光源的入射光的焦点聚焦于第2光电转换元件的受光面的状态(横轴0mm)起到使光源远离第2光电转换元件后的第2光电转换元件的入射光的检测强度(相对值)的一个例子的图。
图10a是表示第2光电转换元件的高灵敏度部分的高灵敏度区域的图案的变形例的图。
图10b是表示第2光电转换元件的高灵敏度部分的高灵敏度区域的图案的变形例的图。
图11是表示第2实施方式所涉及的三维传感器的结构的图。
具体实施方式
以下,参照附图对本发明的实施方式的一个例子进行说明。此外,在各附图中对相同或者相当的部分标注相同的附图标记。另外,为了方便,也存在省略剖面线和部件附图标记等的情况,但在上述情况下,参照其他的附图。
(第1实施方式)
图1是表示第1实施方式所涉及的光电转换装置的结构的图。图1所示的光电转换装置1不仅检测入射光的强度,还检测入射光的光点尺寸和入射方向。光电转换装置1包括配置于光的行进方向的上游侧的第1光电转换元件10、配置于光的行进方向的下游侧的第2光电转换元件20、存储部30以及运算部40。
此外,在图1和后述的附图中示出xyz正交坐标系。xy平面是与第1光电转换元件10和第2光电转换元件20的受光面平行的面,z方向是相对于xy平面正交的方向。
另外,在图1和后述的附图中的俯视图的两条点划线的交点表示xy平面的中心,一条点划线与x方向平行,另一条点划线与y方向平行。另外,俯视图中的两条虚线的交点表示xy平面中的入射光的光点尺寸的中心,一条虚线与x方向平行,另一条虚线与y方向平行。
第1光电转换元件10生成与向受光面入射的入射光的强度(总量)相应的电流。第1光电转换元件10根据受光面(xy平面)中的入射光的中心位置(坐标)(以下,也称为xy位置。),将生成的电流向配置于四边的4个电极层123(和后述的背面侧的电极层133)分配并输出。另外,第1光电转换元件10透射入射光。对第1光电转换元件10的结构的详细内容进行后述。
第2光电转换元件20生成与向高灵敏度部分(详细内容进行后述)入射的入射光的强度相应的电流。由此,第2光电转换元件20生成与入射光的密度相应的电流,换言之,生成与入射光的光点尺寸相应的电流(详细内容进行后述)。
第2光电转换元件20根据受光面(xy平面)中的入射光的中心位置(坐标)(以下,也称为xy位置。),将生成的电流向配置于四边的4个电极层223(和后述的背面侧的电极层233)分配并输出。对第2光电转换元件20的结构的详细内容进行后述。
存储部30预先存储按照第2光电转换元件20的受光面中的每个入射光的xy位置(坐标)而使第1光电转换元件10的输出电流(总量)(即,第1光电转换元件10的入射光的强度(总量))及第2光电转换元件20的输出电流(总量)(即,向第2光电转换元件20的高灵敏度部分的入射光的强度)、与第2光电转换元件20的受光面中的入射光的光点尺寸相关联的表格。存储部30例如是eeprom等能够改写的存储器。
运算部40根据从第1光电转换元件10的4个电极层123(133)输出的电流的总量,运算并检测入射光的强度(总量)。
另外,运算部40基于分别从第1光电转换元件10的4个电极层123(133)输出的电流的比例,运算并检测第1光电转换元件10的受光面中的入射光的xy位置(坐标)。同样,运算部40基于分别从第2光电转换元件20的4个电极层223(233)输出的电流的比例,运算并检测第2光电转换元件20的受光面中的入射光的xy位置(坐标)。运算部40根据这些第1光电转换元件10的受光面中的入射光的xy位置(坐标)、和第2光电转换元件20的受光面中的入射光的xy位置(坐标),运算并检测入射光的入射方向。
另外,运算部40参照存储于存储部30的表格,求出并检测在第2光电转换元件20的受光面中的入射光的xy位置(坐标),与从第1光电转换元件10的4个电极层123(133)输出的电流的总量(即,第1光电转换元件10的入射光的强度(总量))、和从第2光电转换元件20的4个电极层223(233)输出的电流的总量(即,向第2光电转换元件20的高灵敏度部分的入射光的强度)对应的第2光电转换元件20的受光面中的入射光的光点尺寸。
运算部40例如由dsp(digitalsignalprocessor-数字信号处理器)、fpga(field-programmablegatearray-现场可编程逻辑门阵列)等运算处理器构成。运算部40的各种功能例如通过执行在存储部30储存的规定的软件(程序、应用程序)而实现。运算部40的各种功能可以通过硬件与软件的配合来实现,也可以仅通过硬件(电子电路)来实现。
以下,对第1光电转换元件10和第2光电转换元件20的结构详细地进行说明。
<第1光电转换元件>
图2是图1的第1光电转换元件10中的ii-ii线端面图。第1光电转换元件10具备:n型(第2导电型)半导体基板(光电转换基板)110,具备两个主面;和钝化层120、p型(第1导电型)半导体层121、透明电极层122以及电极层123,按顺序层叠于半导体基板110的主面中的作为受光的一侧的一个主面的受光面侧。另外,第1光电转换元件10具备按顺序层叠于半导体基板110的主面中的作为受光面的相反侧的另一主面的背面侧的一部分的钝化层130、n型(第2导电型)半导体层131、透明电极层132以及电极层133。
半导体基板(光电转换基板)110由单晶硅或者多晶硅等结晶硅材料形成。半导体基板110例如是在结晶硅材料中掺杂了n型掺杂剂的n型的半导体基板。作为n型掺杂剂,例如能够举出磷(p)。
通过使用结晶硅作为半导体基板110的材料,即使是暗电流比较小、入射光的强度较低的情况,s/n比也比较高,并且是高灵敏度(不受照度影响的稳定的响应)。
钝化层120形成于半导体基板110的受光面侧,钝化层130形成于半导体基板110的背面侧。钝化层120、130例如由本征(i型)非晶体硅材料形成。
钝化层120、130抑制在半导体基板210中生成的载流子的再结合,从而提高载流子的回收效率。
p型半导体层121形成于钝化层120上。p型半导体层121例如由非晶体硅材料形成。p型半导体层121例如是在非晶体硅材料中掺杂了p型掺杂剂的p型的半导体层。作为p型掺杂剂,例如能够举出硼(b)。
n型半导体层131形成于钝化层130上。n型半导体层131例如由非晶体硅材料形成。n型半导体层131例如是在非晶体硅材料中掺杂了n型掺杂剂(例如,上述的磷(p))的n型半导体层。
上述的钝化层120、130、p型半导体层121以及n型半导体层131例如使用cvd法而形成。
透明电极层122形成于p型半导体层121上,透明电极层132形成于n型半导体层131上。透明电极层122、132由透明的导电性材料形成。作为透明导电性材料,能够举出ito(indiumtinoxide:氧化铟与氧化锡的复合氧化物)等。透明电极层122、132例如使用溅射法而形成。
电极层123分别在透明电极层122上的4个边部独立地形成有4个,电极层133分别在透明电极层132上的4个边部独立地形成有4个。电极层123、133由含有银等金属粉末的导电性膏材料形成。电极层123、133例如使用印刷法而形成。
<第2光电转换元件>
图3是图1的第2光电转换元件20中的iii-iii线端面图。第2光电转换元件20具备:n型(第2导电型)半导体基板(光电转换基板)210,具备两个主面;和钝化层220、p型(第1导电型)半导体层221、透明电极层222以及电极层223,按顺序层叠于半导体基板210的主面中的作为受光的一侧的一个主面的受光面侧。另外,第2光电转换元件20具备按顺序层叠于半导体基板210的主面中的作为受光面的相反侧的另一个主面的背面侧的特定区域的钝化层230、n型(第2导电型)半导体层231以及透明电极层232,并且具备层叠于背面的特定区域外(详细内容进行后述)的电极层233。
此外,将由该特定区域中的层叠部分即透明电极层232、n型半导体层231、钝化层230、半导体基板210、钝化层220、p型半导体层221、以及透明电极层222形成的层叠部分作为高灵敏度部分21,将特定区域以外的层叠部分作为低灵敏度部分22。
与上述的第1光电转换元件10的半导体基板110相同,半导体基板(光电转换基板)210由单晶硅或者多晶硅等的结晶硅材料形成。半导体基板210例如是在结晶硅材料中掺杂了n型掺杂剂(例如,上述的磷(p))的n型的半导体基板。
通过使用结晶硅作为半导体基板210的材料,即使是暗电流比较小、入射光的强度较低的情况,s/n比也比较高,并且是高灵敏度(不受照度影响的稳定的响应)。
钝化层220形成于半导体基板210的受光面侧中的高灵敏度部分21和低灵敏度部分22双方,钝化层230仅形成于半导体基板210的背面侧中的高灵敏度部分21。与上述的第1光电转换元件10的钝化层120、130相同,钝化层220、230例如由本征(i型)非晶体硅材料形成。
钝化层220、230抑制在半导体基板210的高灵敏度部分21中生成的载流子的再结合,从而提高载流子的回收效率。
p型半导体层221形成于钝化层220上,即形成于半导体基板210的受光面侧中的高灵敏度部分21和低灵敏度部分22双方。与上述的第1光电转换元件10的p型半导体层121相同,p型半导体层221例如由非晶体硅材料形成。p型半导体层221例如是在非晶体硅材料中掺杂了p型掺杂剂(例如,上述的硼(b))的p型的半导体层。
n型半导体层231形成于钝化层230上,即仅形成于半导体基板210的背面侧中的高灵敏度部分21。与上述的第1光电转换元件10的n型半导体层131相同,n型半导体层231例如由非晶体硅材料形成。n型半导体层231例如是在非晶体硅材料中掺杂了n型掺杂剂(例如,上述的磷(p))的n型半导体层。
上述的钝化层220、230、p型半导体层221以及n型半导体层231例如使用cvd法而形成。
透明电极层222形成于p型半导体层221上,即形成于半导体基板210的受光面侧中的高灵敏度部分21和低灵敏度部分22双方,透明电极层232形成于n型半导体层231上,即仅形成于半导体基板210的背面侧中的高灵敏度部分21。与上述的第1光电转换元件10的透明电极层122、132相同,透明电极层222、232由透明的导电性材料形成。透明电极层222、232例如使用溅射法而形成。
电极层223分别在透明电极层222上的4个边部独立地形成有4个,电极层233分别在透明电极层232上的4个边部独立地形成有4个。与上述的第1光电转换元件10的电极层123、133相同,电极层223、233由含有银等金属粉末的导电性膏材料形成。电极层223、233例如使用印刷法而形成。
图4是从受光面侧示出图1和图3的第2光电转换元件20的半导体基板210的背面侧的层230、231、232、233的图。如图3和图4所示,第2光电转换元件20具有高灵敏度部分(第1灵敏度部分)21和低灵敏度部分(第2灵敏度部分)22。高灵敏度部分21中的在半导体基板210的两主面(受光面和背面)显露的灵敏度区域是高灵敏度区域(第1灵敏度区域),低灵敏度部分22中的在半导体基板210的两主面显露的灵敏度区域是低灵敏度区域(第2灵敏度区域)。
在高灵敏度部分21中,如在图3中上述的那样,在半导体基板210的受光面侧和背面侧形成钝化层220、230、导电型半导体层221、231以及透明电极层222、232。另一方面,在低灵敏度部分22中,在半导体基板210的背面侧未形成钝化层230、n型半导体层231以及透明电极层232。
换言之,在高灵敏度部分21的受光面侧的高灵敏度区域和低灵敏度部分22的受光面侧的低灵敏度区域形成有钝化层220、导电型半导体层221以及透明电极层222,在高灵敏度部分21的背面侧的高灵敏度区域形成有钝化层230、n型半导体层231以及透明电极层232。另一方面,在低灵敏度部分22的背面侧的低灵敏度区域未形成钝化层230、n型半导体层231以及透明电极层232。
在高灵敏度部分21中,在受光面侧和背面侧形成有钝化层220、230,因此抑制在半导体基板210的高灵敏度部分21中生成的载流子的再结合,从而载流子的使用期限(寿命时间)比较长。由此,在高灵敏度部分21中,载流子的回收效率比较高,光电转换效率比较高。
另一方面,在低灵敏度部分22中,未在背面侧形成钝化层230,因此不抑制在半导体基板210的低灵敏度部分22中生成的载流子的再结合,从而载流子的使用期限比较短。由此,在低灵敏度部分22中,载流子的回收效率比较低,光电转换效率比较低。在本实施方式中,在低灵敏度部分22的背面侧也未形成n型半导体层231和透明电极层232,因此光电转换效率几乎接近零。在本申请中,“低灵敏度”也包括光电转换效率为零的情况。
这样,在高灵敏度部分21和低灵敏度部分22中,载流子的使用期限不同,载流子的回收效率不同,其结果是,光电转换效率(即,灵敏度)不同。
此外,在低灵敏度部分22的受光面侧,分别与高灵敏度部分21的受光面侧的钝化层220、p型半导体层221以及透明电极层222连续地形成有钝化层220、p型半导体层221以及透明电极层222。由此,在受光面侧光学特性(例如,反射特性)一样。
高灵敏度部分21的背面侧的高灵敏度区域从受光面的中心向x方向和y方向放射状地延伸,形成相互正交的带状的图案。高灵敏度部分21的背面侧的高灵敏度区域的带状的图案的宽度是恒定的。由此,如图5所示,随着受光面中的被照射入射光的照射区域r的增大(即,随着入射光的密度变低),照射区域r中的高灵敏度部分21(高灵敏度区域)相对于低灵敏度部分22(低灵敏度区域)的比率变小。因此,随着受光面中的入射光的光点尺寸变大,输出电流降低。
<表格>
接下来,对存储于存储部30的表格的制作方法的一个例子进行说明。表格可以预先实测来制作,也可以如以下那样,使用近似计算来制作。
图6是用于对第2光电转换元件20的受光面中的入射光的照射区域r与高灵敏度部分21(高灵敏度区域)的重合度的近似计算进行说明的图。如图6所示,若将入射光的照射区域r的中心位置相对于第2光电转换元件20的受光面的中心位置的偏移量设为(x,y),将入射光的照射区域r的半径设为r,将高灵敏度部分21(高灵敏度区域)的带状的图案的宽度设为w,并且r>>w,则照射光的照射区域r与高灵敏度部分21(高灵敏度区域)的沿x方向延伸的部分的重合度通过下式求出。
另外,照射光的照射区域r与高灵敏度部分21(高灵敏度区域)的向y方向延伸的部分的重合度通过下式求出。
由此,入射光的照射区域r与高灵敏度部分21(高灵敏度区域)的重合度通过下式求出。
也可以使用该近似计算来制作表格。
图7a是表示第2光电转换元件20的相对于入射光的照射区域r的半径的入射光的检测强度的特性的一个例子的图。在图7a中,示出了入射光的照射区域r的中心位置相对于受光面的中心位置的偏移量(x[cm],y[cm])为(0,0)、(0.01,0.01)、(0.02,0.02)、(0.03,0.03)、(0.04,0.04)、(0.05,0.05)时的特性。图7b是将图7a中的入射光的照射区域r的中心位置的偏移量(x[cm],y[cm])为(0.05,0.05)时的特性的部分(用双点划线包围的部分)放大示出的图。
如图7a和图7b所示,在不是r>>w的情况下,根据入射光的照射区域r的中心位置(光点中心坐标),入射光的检测强度具有极大值。即,相对于一个检测强度产生双重的解(半径)。
因此,如图8a所示,也可以构成为:在入射光的照射区域r的中心位置相对于受光面的中心位置的偏移量(x,y)为(dmin,dmax)时,基于dmin与dmax中的较大的dmax,将入射光的照射区域r的半径r调整为满足下述式。例如,也可以调整光电转换元件10、20的配置、或者与光电转换装置1组合使用的光学透镜的种类(曲率)。
例如,如图7b所示,在入射光的照射区域r的中心位置相对于受光面的中心位置的偏移量dmax=0.05cm的情况下,调整为入射光的照射区域r的半径r=0.71cm以上。
此外,如图8b所示,在第2光电转换元件20的高灵敏度部分21(高灵敏度区域)由通过受光面的中心并沿y方向延伸的一条带状的图案形成的情况下(在图10a中进行后述。),上述式中的dmax为入射光的照射区域r的中心位置相对于受光面的x方向的中心位置的x方向的偏移量即可。
如以上说明的那样,在本实施方式的光电转换装置1中,第1光电转换元件10生成与向受光面入射的入射光的强度(总量)相应的电流。第1光电转换元件10根据受光面(xy平面)中的入射光的中心的xy位置(坐标),将生成的电流向配置于四边的4对电极层123、133分配并输出。
另外,第2光电转换元件20生成与受光面中的向高灵敏度部分21入射的入射光的强度相应的电流。由此,第2光电转换元件20生成与入射光的密度相应的电流,换言之,生成与入射光的光点尺寸相应的电流。第2光电转换元件20根据受光面(xy平面)中的入射光的中心的xy位置(坐标),将生成的电流向配置于四边的4对电极层223、233分配并输出。
运算部40根据从第1光电转换元件10的4对电极层123、133输出的电流的总量,运算并检测入射光的强度(总量)。
另外,运算部40基于分别从第1光电转换元件10的4对电极层123、133输出的电流的比例,运算并检测第1光电转换元件10的受光面中的入射光的xy位置(坐标)。同样,运算部40基于分别从第2光电转换元件20的4对电极层223、233输出的电流的比例,运算并检测第2光电转换元件20的受光面中的入射光的xy位置(坐标)。运算部40根据这些第1光电转换元件10的受光面中的入射光的xy位置(坐标)、和第2光电转换元件20的受光面中的入射光的xy位置(坐标),运算并检测入射光的入射方向。
另外,运算部40参照存储于存储部30的表格,求出并检测在第2光电转换元件20的受光面中的入射光的xy位置(坐标),与从第1光电转换元件10的4对电极层123、133输出的电流的总量(即,第1光电转换元件10的入射光的强度(总量))、和从第2光电转换元件20的4对电极层223、233输出的电流的总量(即,向第2光电转换元件20的高灵敏度部分的入射光的强度)对应的第2光电转换元件20的受光面中的入射光的光点尺寸。
此外,在已知入射光的强度的情况下,即使不使用第1光电转换元件10,而仅通过第2光电转换元件20,也能够检测第2光电转换元件20的受光面中的入射光的光点尺寸。
例如,存储部30在表格中代替第1光电转换元件10的输出电流(总量)而关联入射光的强度。而且,运算部40根据入射光的强度、和从第2光电转换元件20输出的电流的总量(即,向第2光电转换元件20的高灵敏度部分的入射光的强度),求出第2光电转换元件20的受光面中的入射光的光点尺寸即可。
图9是表示从来自光源的入射光(波长940nm)的焦点聚焦于第2光电转换元件20的受光面的状态(横轴0mm)起到使光源远离第2光电转换元件20后的第2光电转换元件20的入射光的检测强度(相对值)的一个例子的图。在图9中示出了特性a、特性b、特性c和特性d,其中,上述特性a、特性b、特性c是高灵敏度部分21的高灵敏度区域如图4所示从受光面的中心向x方向和y方向放射状地延伸,从而形成相互正交的带状的图案,并且其宽度分别为1.5mm、1.0mm、0.5mm时的特性,上述特性d是高灵敏度部分21的高灵敏度区域如图10a所示通过受光面的中心,从而形成向y方向延伸的带状的图案,并且其宽度为0.5mm时的特性。
根据特性a可知,对于高灵敏度部分21的高灵敏度区域的图案的宽度较大的部分而言,即使检测距离较长,也能够获得线形的检测特性。另外,根据特性c和特性d可知,对于高灵敏度部分21的高灵敏度区域的图案的宽度较小的部分而言,在检测距离较短的情况下,能够获得线形的检测特性。根据这些结果可知,高灵敏度部分21的高灵敏度区域的图案的宽度较大的部分适合于长距离的光检测,高灵敏度部分21的高灵敏度区域的图案的宽度较小的部分适合于短距离的光检测。
(变形例)
在本实施方式中,作为第2光电转换元件20,例示了在低灵敏度部分22中的背面侧未形成钝化层230、n型半导体层231以及透明电极层232的方式,但并不限定于此。第2光电转换元件20也可以是在低灵敏度部分22中的受光面侧与背面侧的至少一方未形成钝化层、导电型半导体层以及透明电极层的方式。换言之,也可以是在第2光电转换元件20的受光面侧和背面侧的至少一方形成高灵敏度部分21(高灵敏度区域)的带状的图案的方式。
例如,也可以与上述的本实施方式相反,是在第2光电转换元件20的受光面侧形成高灵敏度部分21(高灵敏度区域)的带状的图案的方式。更具体而言,在高灵敏度部分21的背面侧的高灵敏度区域和低灵敏度部分22的背面侧的低灵敏度区域形成有钝化层230、n型半导体层231以及透明电极层232,在高灵敏度部分21的受光面侧的高灵敏度区域形成有钝化层220、导电型半导体层221以及透明电极层222。另一方面,在低灵敏度部分22的受光面侧的低灵敏度区域未形成钝化层220、导电型半导体层221以及透明电极层222。
在该情况下,在低灵敏度部分22中,在产生大量光吸收的受光面侧载流子的再结合增大,因此特别是相对于入射光的短波长区域的高灵敏度部分21与低灵敏度部分22的灵敏度差变得更明确。此外,在该情况下,另行调整受光面的光学特性(例如,反射特性)即可。
另外,在第2光电转换元件20的低灵敏度部分22,可以形成透明电极层,也可以形成导电型半导体层和透明电极层。特别是当在第2光电转换元件20的低灵敏度部分的受光面侧未形成钝化层的情况下,若形成透明电极层,则改善受光面侧的光学特性(例如,反射特性)。
然而,在光传感器中,存在具备摇摄(水平(左右)方向的摆动)机构或者倾斜(垂直(上下)方向的摆动)机构的情况。例如,在将本实施方式的光电转换装置1应用于具备摇摄机构的光传感器的情况下,如图10a所示,第2光电转换元件20的高灵敏度部分21的高灵敏度区域也可以由通过受光面的中心并沿y方向延伸的一条带状的图案形成。在该情况下,通过摇摄机构,将入射光调整为位于受光面的x方向的中心,因此第1光电转换元件10及运算部40、和第2光电转换元件20及运算部40分别检测入射光的y方向的位置即可。入射光的x方向的位置根据摇摄机构的角度求出。
另一方面,在将本实施方式的光电转换装置1应用于具备倾斜机构的光传感器的情况下,第2光电转换元件20的高灵敏度部分21的高灵敏度区域也可以由通过受光面的中心并沿x方向延伸的一条带状的图案形成。在该情况下,通过倾斜机构,将入射光调整为位于受光面的y方向的中心,因此第1光电转换元件10及运算部40、和第2光电转换元件20及运算部40分别检测入射光的x方向的位置即可。入射光的y方向的位置根据倾斜机构的角度求出。
另外,在将本实施方式的光电转换装置1应用于具备摇摄机构和倾斜机构的光传感器的情况下,通过摇摄机构和倾斜机构,将入射光调整为位于受光面的x方向和y方向的中心,因此第1光电转换元件10及运算部40、和第2光电转换元件20及运算部40分别检测入射光的x方向和y方向的位置即可。入射光的x方向和y方向的位置根据摇摄机构和倾斜机构的角度求出。
并且,在将本实施方式的光电转换装置1应用于具备摇摄机构和倾斜机构的光传感器的情况下,如图10b所示,第2光电转换元件20的高灵敏度部分21的高灵敏度区域也可以由从受光面的中心朝向x方向和y方向宽度逐渐变宽的图案形成。在该情况下,由光点尺寸的变化引起的输出电流的变化变为线形。
与此相对地,如图4所示,在第2光电转换元件20的高灵敏度部分21的高灵敏度区域由从受光面的中心朝向x方向和y方向宽度恒定的图案形成的情况下,运算部40中的运算较为容易。
另外,在本实施方式中,第2光电转换元件20的高灵敏度部分21的高灵敏度区域也可以由从受光面的中心放射状地延伸的3个以上的带状的图案形成。
另外,第2光电转换元件20的高灵敏度部分21的高灵敏度区域也可以由多个岛状(点状)的图案形成。在该情况下,岛状的图案的密度也可以随着从受光面的中心放射状地扩展而变化,岛状的图案的大小也可以随着从受光面的中心放射状地扩展而变化。在该情况下,将从受光面的中心放射状地扩展的岛状的图案电连接,并与电极层连接即可。
另外,第2光电转换元件20的高灵敏度部分21的高灵敏度区域也可以由格子状的图案形成。在该情况下,预料到产生多个交点并且在入射光的中心接近该交点时产生输出电流变大的异常点,因此优选在该异常点处修正输出电流。
另外,在本实施方式中,在第2光电转换元件20中,将第1灵敏度部分21(第1灵敏度区域)作为高灵敏度部分(高灵敏度区域),将第2灵敏度部分22(第2灵敏度区域)作为低灵敏度部分(低灵敏度区域),但也可以相反。即,在第2光电转换元件20中,第1灵敏度部分21(第1灵敏度区域)可以是低灵敏度部分(低灵敏度区域),第2灵敏度部分22(第2灵敏度区域)也可以是高灵敏度部分(高灵敏度区域)。在该情况下,随着入射光的密度变低,即随着入射光的光点尺寸变大,输出电流增加。
(第2实施方式)
作为光传感器,存在三维传感器,该三维传感器供来自被拍摄体的扩散光入射,除了被拍摄体的x方向和y方向的位置(xy位置)之外,也检测z方向(进深)的位置。在这样的三维传感器中,若被拍摄体的z方向(进深)的位置变化,则向内部的光电转换元件入射的入射光的光点尺寸变化(散焦)。
因此,若将上述的光电转换装置1应用于这样的三维传感器,则通过检测向光电转换元件入射的入射光的光点尺寸,能够检测被拍摄体的z方向(进深)的位置。而且,根据入射光的入射方向和z方向(进深)的位置,能够检测被拍摄体的三维的位置。
图11是表示第2实施方式所涉及的三维传感器的结构的图。图11所示的三维传感器2具备例如通过向被拍摄体照射激光从而将从被拍摄体发出的光学像(扩散光)聚光的光学透镜50、和供来自光学透镜50的聚光入射的上述的光电转换装置1即第1光电转换元件10、第2光电转换元件20、存储部30以及运算部40。
在本实施方式中,在光学透镜50的焦点位置配置有第1光电转换元件10。第1光电转换元件10生成与向受光面入射的所聚焦的入射光的强度(总量)相应的电流。第1光电转换元件10根据受光面(xy平面)中的入射光的中心的xy位置(坐标),将生成的电流向配置于四边的4个电极层123(133)分配并输出。另外,第1光电转换元件10透射入射光。
第2光电转换元件20生成与向受光面中的高灵敏度部分入射的所散焦的入射光的强度相应的电流。由此,第2光电转换元件20生成与入射光的密度相应的电流,换言之生成与入射光的光点尺寸相应的电流。第2光电转换元件20根据受光面(xy平面)中的入射光的中心的xy位置(坐标),将生成的电流向配置于四边的4个电极层223(233)分配并输出。
存储部30预先存储表格,上述表格按照第2光电转换元件20的受光面中的每个入射光的xy位置(坐标),将第1光电转换元件10的输出电流(总量)(即,第1光电转换元件10的入射光的强度(总量))及第2光电转换元件20的输出电流(总量)(即,向第2光电转换元件20的高灵敏度部分的入射光的强度)、与第2光电转换元件20的受光面中的入射光的光点尺寸相关联,并且将被拍摄体的z方向(进深)的位置与该光点尺寸相关联。
如上述那样,运算部40根据从第1光电转换元件10的4个电极层123(133)输出的电流的总量,运算并检测入射光的强度(总量)。
另外,如上述那样,运算部40基于分别从第1光电转换元件10的4个电极层123(133)输出的电流的比例,运算并检测第1光电转换元件10的受光面中的入射光的xy位置(坐标)。同样,运算部40基于分别从第2光电转换元件20的4个电极层223(233)输出的电流的比例,运算并检测第2光电转换元件20的受光面中的入射光的xy位置(坐标)。运算部40根据这些第1光电转换元件10的受光面中的入射光的xy位置(坐标)、和第2光电转换元件20的受光面中的入射光的xy位置(坐标),运算并检测入射光的入射方向。
另外,运算部40参照存储于存储部30的表格,求出并检测在第2光电转换元件20的受光面中的入射光的xy位置(坐标),与从第1光电转换元件10输出的电流的总量(即,第1光电转换元件10的入射光的强度(总量))、和从第2光电转换元件20输出的电流的总量(即,向第2光电转换元件20的高灵敏度部分的入射光的强度)对应的第2光电转换元件20的受光面中的入射光的光点尺寸和被拍摄体的z方向(进深)的位置。
而且,运算部40根据如上述那样检测的入射光的入射方向和z方向(进深)的位置,检测被拍摄体的三维的位置。
以上,对本发明的实施方式进行了说明,但本发明并不限定于上述的本实施方式,能够进行各种变形。例如,在本实施方式中,如图2和图3所示,例示了异质结式的光电转换元件10、20,但本发明的特征并不局限于异质结式的光电转换元件,也能够用于同质结式的光电转换元件等各种光电转换元件。
另外,在本实施方式中,例示了p型半导体层作为受光面侧的导电型半导体层121、221,例示了n型半导体层作为背面侧的导电型半导体层131、231。然而,受光面侧的导电型半导体层121、221也可以是在非晶体硅材料中掺杂了n型掺杂剂(例如,上述的磷(p))的n型半导体层,背面侧的导电型半导体层131、231也可以是在非晶体硅材料中掺杂了p型掺杂剂(例如,上述的硼(b))的p型半导体层。
另外,在本实施方式中,例示了n型半导体基板作为半导体基板110、210,但半导体基板110、210也可以是在结晶硅材料中掺杂了p型掺杂剂(例如,上述的硼(b))的p型半导体基板。
另外,在本实施方式中,例示了具有结晶硅基板的光电转换元件,但并不限定于此。例如,光电转换元件也可以具有砷化镓(gaas)基板。
附图标记说明
1…光电转换装置;2…三维传感器;10…第1光电转换元件;20…第
2光电转换元件;21…高灵敏度部分(第1灵敏度部分);22…低灵敏度部分(第2灵敏度部分);30…存储部;40…运算部;50…光学透镜;110…半导体基板(光电转换基板);120、130…钝化层;121…p型半导体层(第1导电型半导体层);122、132…透明电极层;123、133…电极层;131…n型半导体层(第2导电型半导体层);210…半导体基板(光电转换基板);220、230…钝化层;221…p型半导体层(第1导电型半导体层);222、232…透明电极层;223、233…电极层;231…n型半导体层(第2导电型半导体层)。