EPI中的多区域点加热的制作方法

文档序号:21048414发布日期:2020-06-09 21:03阅读:310来源:国知局
本公开内容的实施方式大体涉及用于半导体基板处理的设备和方法,更具体地,涉及用于半导体基板处理的热处理腔室。
背景技术
::处理半导体基板用于各种各样的应用,包括制成集成电路装置和诸如mems之类的微装置。在一种用于在基板上沉积材料层的已知处理设备中,在处理基板期间,将基板定位在处理腔室内的基座上。由支撑轴支撑基座,支撑轴可绕中心轴旋转,以使附接到其一个端部的基座旋转。对热源(诸如设置在基板下方和上方的多个加热灯)进行精确控制允许基板在其处理期间被加热到非常严格的公差范围内。基板的温度可影响沉积在基板上的材料的均匀性。尽管对用于加热基板的热源进行精确控制,但是已经观察到的是,在基板上的某些位置处形成了谷(valley)(较低的沉积层厚度区域)。因此,需要一种用于能够改善对基板温度的均匀性进行控制的半导体处理的热处理腔室。技术实现要素:本公开内容的实施方式大体涉及用于半导体基板处理的设备和方法,更具体地,涉及有助于半导体基板处理的热处理腔室。在一个实施方式中,处理腔室包括:腔室主体;基板支撑件,所述基板支撑件设置在腔室主体中;辐射模块,所述辐射模块设置在腔室主体外部且面向基板支撑件;支撑件,所述支撑件设置在腔室主体外部;安装支架,所述安装支架设置在支撑件上;和点加热模块,所述点加热模块耦接至安装支架。在另一实施方式中,处理腔室包括:腔室主体;基板支撑件,所述基板支撑件设置在腔室主体中;支撑件,所述支撑件设置在腔室主体外部;安装支架,所述安装支架设置在支撑件上;和点加热模块,所述点加热模块耦接至安装支架。点加热模块包括耦接至安装支架的可移动台。在另一实施方式中,处理腔室包括:腔室主体;基板支撑件,所述基板支撑件设置在腔室主体中;支撑件,所述支撑件设置在腔室主体外部;安装支架,所述安装支架设置在支撑件上;和点加热模块,所述点加热模块耦接至安装支架。点加热模块包括至少一个可调整楔(adjustablewedge)。附图说明因此,可详细理解本公开内容的上述特征的方式,可通过参照实施方式来获得上文所简要概述的本公开内容的更具体描述,其中一些实施方式在附图中示出。然而,应注意的是,附图仅示出本公开内容的典型实施方式,而因此不应被视为限制本发明的范围,因为本公开内容可允许其他同等有效的实施方式图1是根据一个实施方式的设备的示意性侧视图。图2是根据一个实施方式的处理腔室的示意性截面侧视图。图3是根据另一实施方式的处理腔室的示意性截面侧视图。图4是根据又一实施方式的处理腔室的示意性截面侧视图。图5是根据又一实施方式的处理腔室的示意性截面侧视图。图6a至图6b是根据实施方式的点加热模块的示意性顶视图。图7a至图7b是根据实施方式的用于安装图6a至图6b的点加热模块的安装支架的透视图。图8是根据一个实施方式的固定至处理腔室的部件的图7a至图7b的安装支架的分解视图。图9是根据一个实施方式的安装至处理腔室的图6a至图6b的点加热模块的示意性顶视图。图10是根据一个实施方式的点加热器的示意性侧视图。图11a至图11b是根据一个实施方式的由图10的一个或多个点加热器所形成的束点(beamspot)的示意图。图12a至图12b是根据一个实施方式的相对于基板的移动具有不同定向的束点的示意图。为了便于理解,已尽可能地使用相同的附图标记来表示图中共有的相同元件。可预期的是,在一个实施方式中所披露的元件可有利地用于其他实施方式中,而无需对其进行具体叙述。具体实施方式本公开内容的实施方式大体涉及用于半导体处理的设备和方法,更具体地,涉及热处理腔室。热处理腔室包括基板支撑件、设置在基板支撑件上方或下方的第一多个加热元件、和设置在基板支撑件上方的点加热模块。点加热模块用于在处理期间提供设置在基板支撑件上的基板的局部加热。本文所描述的局部加热改善了在处理期间设置在基板支撑件上的基板上的热均匀性,这进而改善了沉积均匀性。如本文所描述的“基板”或“基板表面”通常指的是在其上执行处理的任何基板表面。例如,基板表面可包括硅、氧化硅、掺杂硅、硅锗、锗、砷化镓、玻璃、蓝宝石及任何其他材料,诸如金属、金属氮化物、金属合金及取决于应用的其他导电或半导电材料。基板或基板表面还可包括介电材料,诸如二氧化硅、氮化硅、有机硅酸盐及碳掺杂氧化硅或氮化硅材料。基板本身不限于任何特定的尺寸或形状。尽管本文的实施方式通常涉及圆形200mm或300mm的基板,但是可使用其他形状,诸如多边形、正方形、矩形、弯曲或其他非圆形工件。图1是根据一个实施方式的设备100的示意性侧视图。设备100包括处理腔室102和一个或多个高能辐射源106。处理腔室102可以是沉积或热处置腔室,诸如气相外延腔室、快速热处理腔室或热处置腔室。处理腔室102包括点加热模块104,并且点加热模块104通过一个或多个光纤108光学连接至一个或多个高能辐射源。点加热模块104包括一个或多个点加热器110,并且每个点加热器110经由对应的光纤108连接至高能辐射源106。在一个实施方式中,单个辐射源106通过多个光纤108光学耦合至多于一个的点加热器,使得一个激光源对多个点加热器110提供能量。在另一实施方式中,每个点加热器110通过光纤108耦合至对应的辐射源106。一个或多个高能辐射源106是点加热模块104的一部分。例如,每个点加热器110可包括高能辐射源106。一个或多个高能辐射源106可以是聚焦高能辐射源,诸如激光。可使用的激光源的示例包括晶体激光、激光二极管和阵列及vcsel。还可使用高强度led源。发射的辐射能的波长通常可以是紫外光、可见光和/或红外光光谱,从约200nm至约900nm(例如810nm),并且发射的辐射能可以是单色、窄频带、宽频带或超宽频带,诸如白色激光。一个或多个高能辐射源106产生一个或多个高能辐射束,诸如聚焦高能辐射束(例如激光束),以便在其热处理期间对设置在处理腔室102中的基板进行局部或点加热。图2和图3示出了根据一个实施方式的处理腔室200的示意性截面图。处理腔室200可以是图1中所示的处理腔室102。处理腔室200可用于处理其中的一个或多个基板,包括在基板202的装置侧250上沉积材料、加热基板202、蚀刻基板202或其组合的处理。处理腔室200通常包括腔室壁248和辐射加热灯204的阵列,该阵列用于加热设置在处理腔室200内的基座206及其他部件。如图2和图3所示,可将辐射加热灯204的阵列设置在基座206的下方(即,面向基座206的非装置侧)。如图3所示,可将辐射加热灯204的阵列设置在基座206的下方和/或上方。基座206可以是如图所示的盘状基板支撑件,或可包括环状基板支撑件(未示出),其从基板的边缘支撑基板202,以将基板202的背侧直接暴露于来自辐射加热灯204的热。基座206可由碳化硅或涂有碳化硅的石墨制成,以吸收来自灯204的辐射能量,并且将辐射能量传导到基板202,从而加热基板202。基座206位于处理腔室200内且在第一能量传输构件208和第二能量传输构件210之间,第一能量传输构件208可以是拱形结构(dome),第二能量传输构件210也可以是拱形结构。第一能量传输构件208和第二能量传输构件210以及设置在第一能量传输构件208与第二能量传输构件210之间的主体212通常界定了处理腔室200的内部区域211。第一能量传输构件208和/或第二能量传输构件210的每一者可以是凸的和/或凹的。在一些实施方式中,第一能量传输构件208和/或第二能量传输构件210的每一者可对高能辐射能是光学透明的(传输高能辐射能的至少95%辐射能)。在一个实施方式中,第一能量传输构件208和第二能量传输构件210由石英制成。在一些实施方式中,可将辐射加热灯204的阵列设置在第一能量传输构件208上方,例如如图3所示在第一能量传输构件208与反射器254(下文讨论)之间所界定的区域239。在一些实施方式中,可将辐射加热灯204的阵列设置在第二能量传输构件210附近和下方。辐射加热灯204可在区域中被独立地控制,以便在处理气体或蒸汽通过基板202的表面时控制基板202的各个区域的温度,从而促进将材料沉积到基板202的装置侧250上。虽然本文没有详细讨论,但是沉积材料可包括元素半导体材料,诸如硅、掺杂硅、锗及掺杂锗;半导体合金,诸如硅锗和掺杂硅锗;和化合物半导体材料,包括iii-v族材料(其示例包括铝、镓、铟及铊的氮化物、磷化物及砷化物及其混合物)和ii-vi族材料(其示例包括锌、镉的硫化物、硒化物及碲化物及其混合物)。辐射加热灯204可提供约10kw与约60kw之间的总灯功率,并且经配置以加热基板202,例如加热到约200摄氏度至约1600摄氏度范围内的温度。可将每个灯204耦接至配电板(诸如印刷电路板(pcb)252),将功率通过该配电板供给至每个灯204。在一个实施方式中,将辐射加热灯204定位在壳体245内,该壳体245经配置以,通过例如使用引入位于辐射加热灯204之间的通道249中的冷却流体,来在处理期间或之后被冷却。将基板202传送到处理腔室200中,并且通过在主体212中所形成的装载口(未示出)定位在基座206上。在主体212中提供处理气体入口214和气体出口216。基座206包括耦接至运动组件220的轴或杆218。运动组件220包括一个或多个致动器和/或调整装置,其提供对杆218和/或基座206在内部区域211内的位置的移动和/或调整。例如,运动组件220在本文包括旋转致动器222,旋转致动器222使杆218和因此基座206绕垂直于处理腔室200的xy平面的处理腔室200的纵向轴a旋转。运动组件220还包括垂直致动器224,以使杆218和因此基座206在处理腔室200内沿z方向(例如,垂直地)移动。运动组件220可选地包括倾斜调整装置226,其用于调整基座206在内部区域211中的平面定向。运动组件220可选地还包括侧向调整装置228,其用于调整杆218和/或基座206在内部区域211内的处理腔室200的x-y平面中的定位。在一个实施方式中,运动组件220包括枢轴机构230。将基座206示出在升高的处理位置中,但是如上所述由运动组件220来垂直地升高或下降。将基座206下降到传送位置(在处理位置下方),以允许升降销232接触在第二能量传输构件210上或上方的支座(standoff)234。支座提供平行于处理腔室200的xy平面的一个或多个表面,并且有助于防止对升降销232的绑定(binding),如果允许其端部接触第二能量传输构件210的弯曲表面,则可能发生该绑定。支座234由光学透明材料(诸如石英)制成,以允许来自灯204的能量通过。将升降销232悬挂在基座206中的孔207中,并且当基座206下降及升降销232的底部与支座234接合时,基座206的进一步向下移动使得升降销232与基板202接合及在基座206进一步降低时保持基板202静止,并且因此支撑基板从基座206离开以将基板从处理腔室200传送。机械手(未示出)接着进入处理腔室200,以至少接合基板202的下侧及通过装载口从其移除基板202。然后可由机械手将新的基板202装载到升降销232上,并且然后可将基座206致动上升到处理位置,以将基板202放置在其上,使其装置侧250朝上。升降销232包括扩大头部,当在处理位置中时,允许升降销232被悬挂在基座206中的开口中。当基座206位于处理位置时,基座206将处理腔室200的内部容积分成基座206上方的处理气体区域236和基座206下方的净化气体区域238。在处理期间使用旋转致动器222来旋转基座206,以最小化在处理腔室200内的热和处理气流空间异常的影响,并且因此促进基板202的均匀处理。本文的基座206在约5rpm与约100rpm之间旋转,诸如在约10rpm与约50rpm之间旋转,例如约30rpm。由经配置以测量在基座206的底部的温度的传感器测量基板温度。传感器可以是设置在壳体245中所形成的端口中的高温计(未示出)。附加地或替代地,一个或多个传感器253(诸如高温计)用于测量基板202的装置侧250的温度。可将反射器254可选地放置在第一能量传输构件208外部,以反射正从基板202辐射的红外光并将能量重导向回到基板202上。使用夹环256来将本文的反射器254固定到第一能量传输构件208。反射器254可由诸如铝或不锈钢之类的金属制成。可穿过反射器254设置传感器253,以接收来自基板202的装置侧250的辐射能。将从处理气体供应源251供应的处理气体经由在主体212的侧壁中所形成的处理气体入口214引入处理气体区域236。处理气体入口214经配置以在大致径向向内的方向上引导处理气体。因此,在一些实施方式中,处理气体入口214是侧气体喷射器。定位侧气体喷射器以引导处理气体跨越基座206和/或基板202的表面。在用于形成基板202的膜层的膜形成处理期间,基座206位于处理位置中,该处理位置与处理气体入口214相邻和在与处理气体入口214大致相同的高度,因此允许处理气体大致沿着流动路径273跨越基座206和/或基板202的上表面来流动。处理气体经由位于处理腔室200的与处理气体入口214相对的一侧上的气体出口216离开处理气体区域236(沿着流动路径275)。在本文中,由与其耦接的真空泵257促进处理气体经由气体出口216的去除。将从净化气体源262供应的净化气体经由在主体212的侧壁中所形成的净化气体入口264引入净化气体区域238。将净化气体入口264设置在处理气体入口214下方的高度处。净化气体入口264经配置以在大致径向向内的方向上引导净化气体。净化气体入口264可经配置以在向上的方向上引导净化气体。在膜形成处理期间,基座206位于使得净化气体通常沿着流动路径265跨越基座206的后侧来流动的位置处。净化气体离开净化气体区域238(沿着流动路径266),并且经由位于处理腔室200的与净化气体入口264相对的一侧上的气体出口216被排出处理腔室。处理腔室200进一步包括点加热模块271。点加热模块271可以是图1所示的点加热模块104。点加热模块271包括一个或多个点加热器270。点加热器270可以是图1所示的点加热器110。点加热模块271用于在处理期间点加热在基板202上的冷点。可在基板202与升降销232接触的位置处在基板202上形成冷点。可由基于处理器的系统控制器(诸如图2和3所示的控制器247)控制上述处理腔室200。例如,控制器247经配置以在基板处理序列的不同操作期间控制各种前驱物和处理气体及来自气体源的净化气体的流动。作为进一步示例,控制器250经配置以控制对点加热模块271的点火(firing)、预测用于点火点加热模块271的算法、和/或将点加热模块271的操作与基板旋转、气体供给、灯操作或其他处理参数等其他控制器操作编码或同步。控制器247包括可与存储器255和大容量存储装置一起操作的可编程中央处理单元(cpu)252、输入控制单元、和显示单元(未示出)(诸如时钟、高速缓冲存储器(cache)、输入/输出(i/o)电路和类似者),其耦接至处理腔室200的各种部件,以促进对处理腔室200中的基板处理的控制。控制器247进一步包括支持电路258。为了促进对本文所描述的处理腔室200的控制,cpu252可以是任何形式的通用计算机处理器之一(诸如可编程逻辑控制器(plc)),其可在工业环境中用于控制各种腔室和子处理器。存储器255是以包含指令的计算机可读存储介质的形式,当由cpu252执行指令时,促进处理腔室200的操作。存储器255中的指令是以程序产品的形式,诸如实现本公开内容的方法的程序。图4是根据一个实施方式的处理腔室400的示意性截面侧视图。处理腔室400可以是图1中所示的处理腔室102。处理腔室400经配置以处理一个或多个基板,包括在基板410的沉积表面422上沉积材料。处理腔室400包括第一能量传输构件412、第二能量传输构件414、和在第一能量传输构件412与第二能量传输构件414之间所设置的基板支撑件402。第一能量传输构件412和第二能量传输构件414可由与图2中所示的第一能量传输构件208和第二能量传输构件210相同的材料制成。本文的基板支撑件402包括用于支撑基板410的基座424和用于支撑基座424的基座支撑件426。使基板410经由装载口428进入处理腔室400中并且定位在基座424上。基座424可由涂有sic的石墨制成。基座支撑件426在本文中是由马达(未示出)来旋转,这又使基座424和基板410旋转。处理腔室400包括第一多个加热元件406(诸如辐射加热灯),其设置在第二能量传输构件414下方,用于从基板410下方加热基板410。处理腔室400还包括第二多个加热元件404(诸如辐射加热灯),其设置在第一能量传输构件412上方,用于从基板410上方加热基板410。在一个实施方式中,第一多个加热元件404和第二多个加热元件406将红外辐射热分别经由第一能量传输构件412和第二能量传输构件414提供到基板。第一能量传输构件412和第二能量传输构件414对来自加热元件404、406的能量的波长是光学透明的(例如由灯所发射的红外辐射能),本文所界定的透明是传输至少95%的所接收的红外辐射能。在一个实施方式中,处理腔室400还包括一个或多个温度传感器430(诸如光学高温计),其用于测量在处理腔室400内和在基板410的表面422上的温度。将一个或多个温度传感器430设置在支撑构件432上,将支撑构件432设置在盖416上。将反射器418放置在第一能量传输构件412外部,以将从基板410和第一能量传输构件412辐射的红外光反射回到基板410。将点加热模块407设置在支撑构件432上。点加热模块407可以是图1所示的点加热模块104。点加热模块407包括一个或多个点加热器408。点加热器408可以是图1所示的点加热器110。点加热模块407产生一个或多个高能辐射束434(诸如聚焦的高能辐射束,例如激光束),其在基板410的表面422上形成一个或多个束点,以便执行对基板410的局部加热。在点加热模块407位于反射器418上方的情况下,一个或多个高能辐射束434穿过在反射器418的环形部分436中所形成的开口420,并且第一能量传输构件412对高能辐射束的波长是光学透明的(传输至少95%的所接收的高能辐射束434的辐射能)。在诸如外延沉积处理的操作期间,将基板410加热到预定温度,诸如小于约750摄氏度。尽管对加热基板410进行精确控制,但是基板410上的一个或多个区域可能经历温度不均匀性,诸如比基板410的剩余部分低约2至5摄氏度。该温度不均匀性导致沉积膜厚度的不均匀性,诸如在基板上所沉积的膜中的厚度不均匀性为百分之一或更多。为了改善基板的温度均匀性,进而降低膜厚度不均匀性,使用点加热模块407对基板410上的一个或多个区域进行局部加热。因为基板410在操作期间正在旋转,所以由点加热模块407进行的局部加热可发生在基板410的特定半径处的环形区域上方。温度传感器430可用于调制到点加热模块407的功率。例如,控制器(未示出)可从温度传感器430接收温度数据,并且可基于温度数据来增加或减少到点加热模块407的功率。在这种系统中,温度传感器430和点加热模块407的组合可用于闭环或开环控制,以基于来自温度传感器430的读数来调整点加热模块407。图5是根据另一实施方式的处理腔室500的示意性截面侧视图。处理腔室500可以是图1中所示的处理腔室102。处理腔室500通常可具有矩形盒的形状。处理腔室500包括第一能量传输构件502、第二能量传输构件504以及由第一能量传输构件502和第二能量传输构件504所界定的并且位于它们之间的区域503。第一能量传输构件502和第二能量传输构件504可由与图2中所示的第一能量传输构件208和第二能量传输构件210相同的材料制成。在图5的实施方式中,第一能量传输构件502和第二能量传输构件504是平坦的,并且由石英制成,石英对要穿过其以加热基板的能量的波长是透明的。将第一多个辐射热源510设置在第一能量传输构件502上方。本文的第一多个辐射热源510是细长管型辐射加热元件。将辐射热源510以间隔开的平行关系设置,并且还以实质上平行于反应气体流动路径(由箭头512所示)延伸通过处理腔室500。将第二多个辐射热源515定位在第二能量传输构件504下方,并且横向于第一多个辐射热源510定向。多个点热源520将集中的热供应到基板支撑结构的下侧(下文进行描述),以抵消由延伸通过处理腔室500的底部的冷支撑结构所产生的热沉效应。将点加热模块513设置在位于第一多个辐射热源510上方的盖506上。点加热模块513可以是图1中所示的点加热模块104。点加热模块513包括一个或多个点加热器511。点加热器511可以是图1中所示的点加热器110。点加热模块513产生一个或多个高能辐射束,以对设置在处理腔室500中的基板执行局部加热。如在半导体处理设备领域中已知的,可响应于经由温度传感器所测量的基板温度,来独立地或在分组区域中控制各种热源510、511、515、520的功率。将基板525示出为由在区域503中所设置的基板支撑件530来支撑。基板支撑件530包括基板保持器532和支撑托架(supportspider)534,基板525靠置在基板保持器532上。将托架534安装到轴536,轴536向下延伸通过管538,管538延伸通过腔室底部508。管538与可在基板525的处理期间从中流过的净化气体源连通。将多个温度传感器定位在基板525附近。温度传感器可采用各种形式,诸如光学高温计或热电偶。在所示实施方式中,温度传感器包括热电偶,包括以任何合适的方式悬挂在基板保持器532下方的第一或中心热电偶540。中心热电偶540穿过在基板保持器532附近的托架534。处理腔室500进一步包括多个辅助或外围热电偶(也在基板525附近),包括前缘或前热电偶545、后缘或后热电偶550和侧热电偶(未示出)。将外围热电偶的每一者容纳在滑环552内,滑环552围绕基板保持器532和基板525。滑环552靠置在支撑构件554上,支撑构件554从前腔室分隔器556和后腔室分隔器558延伸。分隔器556、558由石英制成。将中心和外围热电偶的每一者连接至温度控制器,其响应于来自热电偶的温度读数来设定各种热源510、515、520的功率。处理腔室500进一步包括用于注入反应物和载气的入口端口560,并且还可通过入口端口560接收基板525。出口端口564是在处理腔室500的相对侧,而将基板支撑件530定位在入口端口560与出口端口564之间。将入口部件565装配到处理腔室500,适于围绕入口端口560,并且包括水平细长槽567,可通过槽567插入基板525。大致垂直的入口568接收来自气体源的气体并且将这些气体与槽567和入口端口560连通。将出口部件570类似地安装到处理腔室500,使得排出开口572与出口端口564对准并且引导到排出导管574。导管574进而可与合适的真空装置(未示出)连通,用于从处理腔室500排出处理气体。处理腔室500还包括位于腔室底部508下方的激发物质源576。激发物质源576可以是沿着气体管线578所设置的远程等离子体产生器。将前驱物气体源580耦接至气体管线578,用于引入到激发物质源576中。还将载气源582耦接至气体管线578。还可提供一个或多个支线584用于附加反应物。激发物质源576还可用于等离子体增强沉积,但是当在处理腔室500中没有基板时,还可用于激发蚀刻剂气体物质,以清洁有过量沉积材料的处理腔室500。图6a至图6b是根据实施方式的点加热模块104的示意性顶视图。如图6a所示,点加热模块104包括一个或多个点加热器110。将一个或多个点加热器110设置在集成到腔室盖602中或腔室盖602上的支撑件610上。腔室盖602可以是图2和图3中所示的处理腔室200的反射器254、图4中所示的处理腔室400的盖416、或图5中所示的处理腔室500的盖506。每个点加热器110包括设置在支撑件610上的台604和设置在台604上的准直器606。将一个或多个准直器606经由图1中所示的一个或多个光纤108连接至一个或多个高能辐射源106。将一个或多个传感器608(诸如高温计)设置在支撑件610上。在一些实施方式中,每个点加热器110包括准直器606和传感器608,并且将准直器606和传感器608都设置在单个台604上(如图6b中所示)。在一些实施方式中,以高能辐射源(诸如激光或激光二极管)代替准直器606,并且每个点加热器110包括设置在台604上的高能辐射源。准直器是一种光学元件,该光学元件例如通过使用适当设计的透镜,来准直来自高能辐射源之一的辐射能。准直器具有第一端,例如通过由将激光源的输出引导到第一端中的开口中,将来自辐射源的辐射能输入到第一端中。准直器可以具有第二端,第二端具有容纳准直透镜的开口。如果需要,可使用不同尺寸的准直器来形成不同尺寸的辐射能束。台604可具有尺寸可调整的安装特征(诸如支架),以容纳不同尺寸的准直器,可将准直器换出以提供不同尺寸的加热点。在其他实施方式中,可通过将激光的束离开部分插入到准直器的第一端中,来将激光直接安装到准直器,使得由激光所发射的辐射能穿过准直器并且经由具有准直透镜的第二端离开。图7a至图7b是根据本发明实施方式的用于安装点加热模块104的安装支架700的透视图。在一些实施方式中,将点加热模块104的点加热器110耦接至安装支架700,而不是支撑件610,因此可将点加热器110方便地加入处理腔室或从处理腔室移除。因为将点加热器110和传感器608耦接至不同的部件,所以点加热器110的加入或移除将不会影响传感器608。在一个实施方式中,如图7a中所示,安装支架700包括围绕中心开口702的环形部分705和从环形部分705延伸的一个或多个板704。每个板704具有在其中所形成的开口706,允许由点加热器110所产生的高能辐射能穿过。从环形部分延伸的板704的数目在本文中对应于点加热器110的数目。在一个实施方式中,存在四个点加热器110,并且将每个点加热器110耦接至对应的板704。中心开口702和/或相邻板704之间的空间可用于在相邻板704之间容纳一个或多个传感器608。由多个固定装置708将安装支架700固定到处理腔室102的一个或多个部件。图7b是根据另一实施方式的安装支架的透视图。在一些实施方式中,图7b的安装支架包括具有内边缘712和外边缘714的主体710。在一个实施方式中,主体710是环形的。在另一实施方式中,主体710是矩形的。内边缘712界定开口716。一个或多个开口718通过主体710形成在其内边缘712和外边缘714之间。将每个点加热器110在围绕开口718的位置处耦接至安装支架700,因此由点加热器110所产生的高能辐射束可穿过开口。在一些实施方式中,存在比点加热器110更多的开口718,并且额外的开口718和/或开口716可用于在开口716和718中容纳一个或多个传感器608。图8是根据一个实施方式的固定到处理腔室的部件的安装支架700的分解视图。在一个实施方式中,处理腔室是处理腔室400。如图8所示,将安装支架700设置在支撑件610上、将支撑件610设置在反射器418上、并且由另一支撑件808围绕反射器418。可将支撑件808固定到处理腔室400。每个板704包括开口801,开口801与在支撑件610中所形成的对应的开口802、在反射器418的凸缘部分804中所形成的对应的开口806、和在支撑件808中所形成的对应的开口810对准。所对准的开口801、802、806、810用于以固定装置708固定安装支架700。支撑件610包括与开口706对准的多个开口803(图7a),以允许由点加热器110所产生的高能辐射能穿过。在一个实施方式中,固定装置708是延伸通过开口801、802、806、810的单个螺钉,并且将单个螺纹紧固件由诸如螺母之类的固定机构固定到安装支架700和支撑件808。在另一实施方式中,如图8所示,固定装置708包括设置在支撑件610与反射器418之间的第一部件812和设置在反射器418的凸缘部分804与支撑件808之间的第二部件814。第一部件812包括第一螺纹杆816和与第一螺纹杆816相对的第二螺纹杆818,并且第二部件814包括第一端820和与第一端820相对的第二端822。第一螺纹杆816延伸通过支撑件610的开口802和安装支架700的开口801,并且将第一螺纹杆816由诸如螺母之类的固定机构固定到安装支架700。第一部件812的第二螺纹杆818延伸通过在反射器418的凸缘部分804中所形成的开口806。第一部件812的第二螺纹杆818经配置以被插入第二部件814的第一端820中及由第二部件814的第一端820来固定。第二部件814的第二端822延伸通过在支撑件808中所形成的开口810,并且被固定到支撑件808。通过将安装支架700固定到支撑件808,安装支架700和点加热器110的物理稳定性得到改善。图9是根据一个实施方式的安装到处理腔室900的点加热模块104的示意性顶视图。处理腔室900可以是图2中所示的处理腔室200。处理腔室900包括基座904,基座904具有多个通孔906,用于通过其延伸的多个升降销(未示出)。基座904可以是图2中所示的处理腔室200的基座206,并且通孔906可以是图2中所示的处理腔室200的通孔207。如图9所示,将点加热模块104的一个或多个点加热器110耦接至安装支架700,并且将安装支架700固定到支撑件808。在对准处理期间,可移除安装支架700与基座904之间的任何部件,因此操作者可观察由点加热器110所产生的引导束落在基座904上。可旋转基座904,使得由点加热器所要加热的区域被引导束指向。可由直接耦合或光纤耦合到点加热器110的较低强度激光来产生引导束。图10是根据一个实施方式的点加热器110的示意性侧视图。如图10所示,点加热器110包括由准直器保持器1002所保持的准直器606。将准直器保持器1002设置在台604上,并且将台604设置在安装支架700上。台604包括滑块1004和楔1006。滑块1004可使用固定螺钉或致动器在安装支架700上线性地移动。楔1006包括与准直器保持器1002接触的表面1008,并且表面1008相对于平面1010形成角度a,平面1010实质上平行于基座的主表面,诸如图2中所示的处理腔室200的基座206。在一个实施方式中,设定楔1006的角度a,并且使用具有不同角度a的多个楔,来调整引导束。角度a的范围可从约1度至约30度。在另一实施方式中,楔1006的角度a可由位于楔1006中的致动器来调整。可通过选择楔1006的角度a和通过调整滑块1004的位置,来实现对点加热器110的瞄准。可激活上述引导束,并且调整滑块1004,以将点加热器110的辐射能带到所选的位置进行处理。如上所述,不同尺寸的准直器可与图10的点加热器一起使用。可选的适配器1012可用于准直器保持器1002,以有效地减小在准直器保持器1002内的开口的尺寸,以适合较小的准直器606。以这种方式,可将不同尺寸的准直器交换到图6的点加热器110中,以允许使用不同尺寸的束点。适配器1012在图10中示为圆柱体,但是适配器1012可以是大致圆柱形或环状构件,其插入准直器保持器1002中,从而减小准直器保持器1002的直径。环状适配器1012可在上端处、在中间区域中、或在下端处装配到准直器保持器1002中,在所述上端处,开口适应准直器606的插入,在所述下端处,准直器保持器1002接触楔1006。使用适配器(诸如适配器1012)使得能够使用较小的准直器,该准直器适合在准直器保持器1002中的适配器1012的内径。本公开内容的优点包括减少与基板相关的冷点的数目。降低在基板内的温度不均匀性进一步产生具有更均匀表面的基板。还实现了成本降低,因为基板品质有所提高。附加的优点包括对基板进行精确的局部加热,用于对温度均匀性的超微调谐。图11a至图11b是根据一个实施方式的由一个或多个点加热器110所形成的束点的示意图。如图11a所示,由一个点加热器110(图10)形成束点1102。束点1102可能太小而不能实现对基板的局部加热。可在不改变点加热器110的光学系统的情况下,修改束点1102。例如,如图11b所示,由两个点加热器110(图10)形成束点1104。将两个点加热器110定位使得由点加热器110所产生的束点重叠。图12a至图12b是根据一个实施方式的相对于基板的移动而具有不同定向的束点的示意图。如图12a中所示,束点1202具有椭圆形状。在一个实施方式中,椭圆形束点1202的长轴实质上垂直于基板移动的方向,如箭头1204所示。当束点1202的长轴实质上垂直于基板移动的方向时,束点1202具有宽的宽度。可在不改变点加热器110的光学系统的情况下,调整束点1202的宽度。在一个实施方式中,可通过旋转准直器606(图10),来改变束点1202的宽度。如图12b所示,准直器606的旋转使得束点1202旋转。因此,椭圆形束点1202的长轴实质上不垂直于基板移动的方向,导致束点1202的宽度变窄。总而言之,本文所描述的实施方式提供了一种外延沉积腔室,其包括用于在处理期间提供对基板的局部加热的点加热模块。在腔室内的基板旋转期间,可将能量聚焦到约10mm的区域,以便以特定的时间间隔来局部地加热和调谐基板的特定位置,诸如与升降销相邻的位置。在一些情况下,可通过测量测试基板的沉积厚度分布、找到将受益于点加热的测试基板的位置、在测试基板上标记这些位置、将测试基板重新插入腔室中、和使用本文所描述的瞄准功能(引导束和定位调整)来将点加热引导到所标记的位置,来将点加热元件瞄准到特定位置。然后可通过所瞄准的点加热元件对随后的基板进行点加热,以解决系统性处理不均匀性。虽然前述内容针对本公开内容的实施方式,但是可在不背离本公开内容的基本范围的情况下,设计出本公开内容的其他和进一步的实施方式,并且本公开内容的范围由以下的权利要求范围来确定。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1