背景
本公开涉及半导体器件制造,具体而言,涉及将适形(conformable)材料放置在发光二极管(led)管芯(die)上,以促进显示器制造中的粘合附接。
在led显示器制造中,led可以从一个衬底移动到另一个衬底。也就是说,不同颜色的微led(micro-led)可以从制造微led的源衬底转移到载体衬底上,然后从载体衬底转移到包括用于控制微led的控制电路的显示器衬底上。将微led从载体衬底转移到显示器衬底上可涉及将led拾取并放置到显示器衬底上的期望位置上。随着led的形状因数(formfactor)的降低,将led拾取并放置成期望的布置且不损坏led管芯变得越来越困难。
概述
实施例涉及通过跨多个发光二极管(led)管芯沉积光致抗蚀剂(photoresist)材料并且使用led管芯作为光刻掩模以促进在每个led管芯上形成弹性体界面层(elayer),来在多个led管芯上形成elayer。在电子显示器的制造期间,elayer促进与用于拾取和放置操作的拾取头的粘附。
在一些实施例中,在载体衬底上的发光二极管(led)管芯上及其之间沉积光致抗蚀剂材料。光致抗蚀剂材料可以是负性光致抗蚀剂材料,其在暴露于光时变成不可溶的。在沉积光致抗蚀剂材料之后,穿过载体衬底朝向led管芯和沉积的光致抗蚀剂材料施加光。入射到led管芯上的光的一部分被led管芯吸收,以在led管芯上保留可溶性第一部分光致抗蚀剂材料。在led管芯之间的其他部分的光致抗蚀剂材料暴露于光,导致在led管芯之间的第二部分光致抗蚀剂材料变成不可溶的。在施加该光之后,例如通过溶解在光致抗蚀剂显影剂中来去除在led管芯上的可溶性第一部分光致抗蚀剂材料。在去除led管芯上的第一部分光致抗蚀剂材料之后,在每个led管芯上以及在第二部分光致抗蚀剂之间沉积弹性体材料。在沉积弹性体材料之后,去除第二部分光致抗蚀剂材料。留在led管芯上的弹性体材料在led管芯上形成弹性体界面层,以便于与拾取和放置头(pph)(或“拾取头”)的粘附。
在一些实施例中,可以通过将非适形拾取头附接到led管芯上方的弹性体界面层来拾取在载体衬底上的led管芯的至少一部分。附接到非适形拾取头的led管芯的至少一部分被放置在限定电子显示器的像素控制电路的显示器衬底上。
在一些实施例中,通过用第一溶剂溶解第一部分光致抗蚀剂材料来去除该第一部分。第一溶剂可以是光致抗蚀剂显影剂。第二部分光致抗蚀剂材料用作形成弹性体层的模具,然后例如通过用不同于第一溶剂的第二溶剂(例如去除不溶性光致抗蚀剂材料的光致抗蚀剂剥离材料)溶解第二部分光致抗蚀剂材料来去除。第一溶剂对第二部分光致抗蚀剂材料是良性的,第二溶剂对在led管芯上形成弹性体界面层的弹性体材料是良性的。在一些实施例中,通过施加光以使第二部分变成可溶性的,然后使用与在溶解第一部分光致抗蚀剂材料中使用的相同溶剂溶解第二部分,来去除第二部分光致抗蚀剂材料。
在一些实施例中,led管芯是微led(mled)管芯。在一些实施例中,在多个垂直腔表面发射激光器(vcsel)或其他类型的led上方形成弹性体界面层。在一些实施例中,led管芯包括氮化镓(gan)、砷化镓(gaas)或磷化镓(gap)。在一些实施例中,led管芯吸收穿过载体衬底入射到led管芯上的紫外(uv)光。
在一些实施例中,制造电子显示面板。光致抗蚀剂材料沉积在载体衬底上的发光二极管(led)管芯上及其之间。响应于沉积光致抗蚀剂材料,穿过载体衬底朝向led管芯和沉积的光致抗蚀剂材料施加光。入射到led管芯上的光的一部分被led管芯吸收,以在led管芯上保留可溶性第一部分光致抗蚀剂材料。led管芯之间的其他部分光致抗蚀剂材料暴露于光,以使在led之间的第二部分光致抗蚀剂材料变得不可溶。响应于施加光,例如通过用光致抗蚀剂显影剂进行溶解,来去除第一部分光致抗蚀剂材料。响应于去除第一部分,在每个led管芯上以及在第二部分光致抗蚀剂之间沉积弹性体材料。响应于沉积弹性体材料,去除第二部分光致抗蚀剂材料,弹性体材料在led管芯上形成弹性体界面层。通过将非适形拾取头附接到led管芯上方的弹性体界面层,来拾取在载体衬底上的led管芯的至少一部分。附接到非适形拾取头的led管芯的该至少一部分被放置在限定电子显示器的像素控制电路的显示器衬底上。
一些实施例包括使用正性光致抗蚀剂材料(其也是一种弹性体材料)来在led管芯上形成弹性体界面层。光致抗蚀剂材料沉积在载体衬底上的led管芯上及其之间。穿过载体衬底朝向led管芯和光致抗蚀剂材料施加光。入射到led管芯上的光的一部分被吸收,以保留led管芯上的不溶性第一部分光致抗蚀剂材料为不可溶的。led管芯之间的第二部分光致抗蚀剂材料暴露于该光的另一部分,以使第二部分变成可溶的。此处,光致抗蚀剂材料可以是正性光致抗蚀剂,其在暴露于光时变成可溶性的。去除可溶性第二部分光致抗蚀剂材料,并且保留第一部分光致抗蚀剂材料,以在led管芯上形成弹性体界面层。在一些实施例中,通过用溶剂溶解第二部分来去除第二部分光致抗蚀剂材料。
在一些实施例中,制造电子显示面板。光致抗蚀剂材料沉积在载体衬底上的发光二极管(led)管芯上及其之间。响应于沉积光致抗蚀剂材料,穿过载体衬底朝向led管芯和光致抗蚀剂材料施加光。入射到led管芯上的光的一部分被吸收,以在led管芯上保留不溶性第一部分光致抗蚀剂材料。在led管芯之间的第二部分光致抗蚀剂材料暴露于该光的另一部分,以使第二部分变成可溶性的。去除第二部分光致抗蚀剂材料,但是保留第一部分光致抗蚀剂材料,以在led管芯上形成弹性体界面层。通过将非适形拾取头附接到led管芯上方的弹性体界面层来拾取在载体衬底上的至少一部分led管芯。附接到非适形拾取头的该至少一部分led管芯被放置在限定电子显示器的像素控制电路的显示器衬底上。
根据本发明的实施例在针对方法和电子显示面板的所附权利要求中被具体公开,其中在一个权利要求类别(例如方法)中提到的任何特征也可以在另一个权利要求类别(例如电子显示面板、系统、存储介质和计算机程序产品系统)中被要求保护。所附权利要求中的从属性或往回引用仅出于形式原因被选择。然而,也可以要求保护由对任何前面权利要求的有意往回引用(特别是多项引用)导致的任何主题,使得权利要求及其特征的任何组合被公开并且可以被要求保护,而不考虑在所附的权利要求中选择的从属性。可以被要求保护的主题不仅包括如在所附的权利要求中阐述的特征的组合,而且还包括在权利要求中的特征的任何其他组合,其中,在权利要求中提到的每个特征可以与权利要求中的任何其他特征或其他特征的组合相结合。此外,本文描述或描绘的任何实施例和特征可以在单独的权利要求中和/或以与本文描述或描绘的任何实施例或特征的任何组合或以与所附权利要求的任何特征的任何组合被要求保护。
在根据本发明的实施例中,一种方法可以包括:
在载体衬底上的发光二极管(led)管芯上及其之间沉积光致抗蚀剂材料;
响应于沉积光致抗蚀剂材料,穿过载体衬底朝向led管芯和沉积的光致抗蚀剂材料施加光;
吸收入射到led管芯上的光的一部分,以在led管芯上保留可溶性第一部分光致抗蚀剂材料;
将led管芯之间的光致抗蚀剂材料部分暴露于该光的另一部分,以使led之间的第二部分光致抗蚀剂材料变成不溶性的;
响应于施加光,去除第一部分光致抗蚀剂材料;
响应于去除第一部分,在每个led管芯上以及在第二部分光致抗蚀剂之间沉积弹性体材料;和
响应于沉积弹性体材料,去除第二部分光致抗蚀剂材料,弹性体材料在led管芯上形成弹性体界面层。
在根据本发明的实施例中,一种方法可以包括:
通过将非适形拾取头附接到led管芯上方的弹性体界面层,来拾取在载体衬底上的led管芯的至少一部分;以及
将附接到非适形拾取头的led管芯的该至少一部分放置在限定电子显示器的像素控制电路的显示器衬底上。
在根据本发明的实施例中,一种方法可以包括:
在原生衬底(nativesubstrate)上制造led管芯;
将能够膨胀的载体膜附接到原生衬底上的led管芯的第一侧;
将原生衬底与led管芯拆离(detach);
将附接到载体膜的led管芯单个化(singulated);
通过使载体膜膨胀以限定在led管芯之间的开放区域来分离led管芯;
将载体衬底带到led管芯的第二侧,载体衬底包括衬底层和粘合剂层,led管芯附接到载体衬底的粘合剂层,其中在led管芯之间限定开放区域;和
将载体膜与led管芯的第一侧分离,以暴露led管芯的第一侧,从而沉积弹性体材料。
载体衬底可以包括粘合剂层和玻璃衬底层,led管芯可以通过粘合剂层附接到载体衬底。
去除第一部分光致抗蚀剂材料可以包括用第一溶剂溶解第一部分;和响应于沉积弹性体材料而去除第二部分光致抗蚀剂材料可以包括用不同于第一溶剂的第二溶剂溶解第二部分光致抗蚀剂材料。
第一溶剂对不溶性第二部分光致抗蚀剂材料可以是良性的;以及,第二溶剂对在led管芯上形成弹性体界面层的弹性体材料可以是良性的。
led管芯可以是微led,并且可以包括氮化镓(gan)、砷化镓(gaas)或磷化镓(gap)。
led管芯可以吸收穿过载体衬底入射到led管芯上的紫外(uv)光。
在根据本发明的实施例中,一种方法可以包括:
在载体衬底上的发光二极管(led)管芯上及其侧部表面处沉积光致抗蚀剂材料;
响应于沉积光致抗蚀剂材料,穿过载体衬底朝向led管芯和沉积的光致抗蚀剂材料施加光;
吸收入射到led管芯上的光的一部分,以在led管芯上保留可溶性第一部分光致抗蚀剂材料;
将在led管芯的侧部表面处的光致抗蚀剂材料部分暴露于该光的另一部分,以使led的侧部表面处的第二部分光致抗蚀剂材料变成不溶性的;
响应于施加光,去除第一部分光致抗蚀剂材料;
响应于去除第一部分,在led管芯上以及在第二部分光致抗蚀剂之间沉积弹性体材料;和
响应于沉积弹性体材料,去除第二部分光致抗蚀剂材料,弹性体材料在led管芯上形成弹性体界面层。
在根据本发明的实施例中,一种方法可以包括:
通过将非适形拾取头附接到led管芯上方的弹性体界面层,来拾取在载体衬底上的led管芯;和
将附接到非适形拾取头的led管芯放置在限定电子显示器的像素控制电路的显示器衬底上。
载体衬底可以包括粘合剂层和玻璃衬底层,led管芯可以通过粘合剂层附接到载体衬底。
去除第一部分光致抗蚀剂材料可以包括用第一溶剂溶解第一部分;和响应于沉积弹性体材料而去除第二部分光致抗蚀剂材料可以包括用不同于第一溶剂的第二溶剂溶解第二部分光致抗蚀剂材料。
第一溶剂对不溶性第二部分光致抗蚀剂材料可以是良性的;以及第二溶剂对在led管芯上形成弹性体界面层的弹性体材料可以是良性的。
led管芯可以包括氮化镓(gan)、砷化镓(gaas)或磷化镓(gap)。
led管芯可以是微led或垂直腔表面发射激光器(vcsel)。
led管芯可以吸收穿过载体衬底入射到led管芯上的紫外(uv)光。
在根据本发明的实施例中,通过一种方法特别是根据本发明或任何上述实施例的方法来制造电子显示面板,可以包括:
在载体衬底上的发光二极管(led)管芯上及其之间沉积光致抗蚀剂材料;
响应于沉积光致抗蚀剂材料,穿过载体衬底朝向led管芯和沉积的光致抗蚀剂材料施加光;
吸收入射到led管芯上的光的一部分,以在led管芯上保留可溶性第一部分光致抗蚀剂材料;
将在led管芯之间的光致抗蚀剂材料部分暴露于该光的另一部分,以使在led之间的第二部分光致抗蚀剂材料变成不溶性的;
响应于施加光,去除第一部分光致抗蚀剂材料;
响应于去除第一部分,在每个led管芯上以及在第二部分光致抗蚀剂之间沉积弹性体材料;
响应于沉积弹性体材料,去除第二部分光致抗蚀剂材料,弹性体材料在led管芯上形成弹性体界面层;
通过将非适形拾取头附接到led管芯上方的弹性体界面层,来拾取在载体衬底上的至少一部分led管芯;以及
将附接到非适形拾取头的至少一部分led管芯放置在限定电子显示器的像素控制电路的显示器衬底上。
去除第一部分光致抗蚀剂材料可以包括用第一溶剂溶解第一部分;和响应于沉积弹性体材料而去除第二部分光致抗蚀剂材料可以包括用不同于第一溶剂的第二溶剂溶解第二部分光致抗蚀剂材料。
第一溶剂对不溶性第二部分光致抗蚀剂材料可以是良性的;以及第二溶剂对在led管芯上形成弹性体界面层的弹性体材料可以是良性的。
led管芯可以是微led,并且可以包括氮化镓(gan)、砷化镓(gaas)或磷化镓(gap)。
在根据本发明的实施例中,一个或更多个计算机可读非暂时性存储介质可以体现软件,该软件在被执行时可操作来执行根据本发明或任何上面提到的实施例的方法。
在根据本发明的实施例中,一种系统可以包括:一个或更多个处理器;以及耦合到处理器并包括可由处理器执行的指令的至少一个存储器,处理器当执行指令时可操作来执行根据本发明或任何上面提到的实施例的方法。
在根据本发明的实施例中,优选地包括计算机可读非暂时性存储介质的计算机程序产品当在数据处理系统上被执行时可以可操作来执行根据本发明或任何上面提到的实施例的方法。
附图简述
图(fig.)1是根据一个实施例的在载体衬底上的led管芯的横截面视图,其中在每个led管芯上方具有弹性体界面层(elayer)。
图2是根据一个实施例的用于用负性光致抗蚀剂材料在载体衬底上的led管芯上方形成elayer的方法的流程图。
图3是根据一个实施例的在载体衬底上的led管芯的横截面视图。
图4是根据一个实施例的在载体衬底上的led管芯的横截面视图,其中在led管芯上及其之间具有负性光致抗蚀剂材料。
图5是根据一个实施例的led管芯的横截面视图,其中添加了施加的光。
图6是根据一个实施例的在载体衬底上的led管芯的横截面视图,其具有由所施加的光导致的可溶性光致抗蚀剂材料部分和不溶性光致抗蚀剂材料部分。
图7是根据一个实施例的去除了可溶性光致抗蚀剂材料部分的led管芯的横截面视图。
图8是根据一个实施例的包括弹性体材料的led管芯的横截面视图。
图9是根据一个实施例的用于用正性光致抗蚀剂材料在载体衬底上的led管芯上方形成elayer的方法的流程图。
图10是根据一个实施例的在载体衬底上的led管芯的横截面视图,其中在led管芯上及其之间具有正性光致抗蚀剂材料。
图11是根据一个实施例的具有施加的光的led管芯的横截面视图。
图12是根据一个实施例的在载体衬底上的led管芯的横截面视图,其具有可溶性光致抗蚀剂材料部分和其他的在led管芯上形成elayer的不溶性光致抗蚀剂材料部分。
图13是根据一个实施例的在从载体衬底拾取led管芯期间的显示器制造系统。
图14是根据一个实施例的在显示器衬底上放置led管芯期间的显示器制造系统。
图15是根据一个实施例的微led的横截面的示意图。
附图仅为了说明的目的而描绘本公开的各种实施例。本领域中的技术人员从下面的讨论中将容易认识到,本文所示的结构和方法的替代实施例可以被采用而不偏离本文所述的本公开的原理。
详细描述
在实施例的以下描述中,阐述了许多具体细节,以便提供更透彻理解。然而,注意,实施例可以在没有这些具体细节中的一个或更多个的情况下被实践。在其他实例中,没有详细描述众所周知的特征,以避免不必要地使描述复杂化。
本文参考附图描述实施例,在附图中相同的参考数字指示相同或功能相似的元件。另外,在附图中,每个参考数字的最左边的数字对应于第一次使用该参考数字的附图。
实施例涉及通过使用光致抗蚀剂材料而不是可能损坏弹性体界面层(elayer)或发光二极管(led)管芯的物理模具或工艺来在多个led管芯上方沉积elayer。沉积的elayer允许每个led被拾取头(或拾取和放置头(pph))拾取并被放置到包括用于电子显示器的子像素的控制电路的显示器衬底上。在一些实施例中,led管芯是微led(mled)管芯。
图1是根据一个实施例的在载体衬底104上的led管芯102的横截面视图,其中在每个led管芯102上方具有弹性体界面层(elayer)110。led管芯102可以在源衬底上制造并放置到载体衬底104上,以便于拾取和放置到电子显示器的显示器衬底上。载体衬底104可以包括衬底106和粘合剂层108,led管芯102放置在衬底106上,粘合剂层108将led管芯102保持在衬底106上。
elayer110形成在每个led管芯102的发光侧112。elayer110是适形层,其允许每个led管芯102附接到拾取和放置头(pph)并被该pph拾取(例如,如参照图13更详细讨论的)。具体地,elayer110促进与pph1302的非适形拾取表面1304的附接,或者在另一个示例中,促进与pph1302的适形拾取表面1304的附接。由于粘附力(例如范德华力(vanderwaal)),elayer110可以附接到拾取表面1304。elayer110可以包括提供与拾取表面1304的足够粘附的任何材料。例如,elayer110包括弹性体,例如聚二甲基硅氧烷(pdms)或聚氨酯(pu)。在一些实施例中,在led管芯102的发光侧112上的界面层不包含弹性体材料。例如,elayer110包括经由共价化学键提供粘附的凝胶。elayer110可以是具有粘弹性(具有粘性和弹性)的聚合物。elayer110还可以包括一种与其他材料相比具有弱分子间力、低杨氏模量和/或高破坏应变的材料。
每个led管芯102的面向载体衬底104的一侧包括触点焊盘114。如果在电触点焊盘114之间施加电势,则每个led管芯102从发光侧112射出光。电触点焊盘114与(例如,如图14所示的)显示器衬底中的控制电路连接,当led管芯102安装到显示器衬底时,该控制电路驱动led管芯102。
如下面结合图15更详细讨论的,led管芯102可以是包括具有镓的外延结构(例如氮化镓(gan)、砷化镓(gaas)或磷化镓(gap))的mled管芯。led管芯的镓材料可以阻挡某些波长的光,以用作在形成elayer110中使用的光致抗蚀剂材料的掩模。在一些实施例中,参考led管芯102描述的方法和原理可以应用于其他半导体或微电子器件。例如,可以在垂直腔表面发射激光器(vcsel)上形成elayer,以便于拾取和放置vcsel。
载体衬底104具有安装有led管芯102的平坦表面,在每个led管芯102上方形成elayer110的过程期间,该平坦表面支撑led管芯102。载体衬底104对于至少一些波长的光是透明的。例如,载体衬底104可以包括玻璃或蓝宝石衬底,其对于改变光致抗蚀剂材料状态并被led管芯102吸收的光是透明的。这允许光穿过载体衬底104被施加到led管芯102的底侧和在led管芯102之间的区域,导致led管芯102上方的光致抗蚀剂材料被阻挡而不暴露于光,并且将在led管芯102之间的光致抗蚀剂材料暴露于光。载体衬底104可以附接有任何数量的led管芯102,例如一个或更多个led管芯阵列。载体衬底104可以具有坚硬平坦的表面,其刚性足以在载体衬底104移动时支撑led管芯102。在一些实施例中,通过(例如,用溶剂、湿法或干法蚀刻等)去除粘合剂108或者弱化粘合剂108,来将led管芯102从载体衬底104上释放。在其他实施例中,粘合剂108足够弱,使得可以用力(例如,通过pph1302)去除led管芯102,而不会损坏led管芯102。
图2是根据一个实施例的用于在载体衬底104上的led管芯102上方形成elayer110的方法200的流程图。具体而言,负性光致抗蚀剂材料为形成elayer110而提供临时模板,该临时模板可以被轻轻地(gently)去除而不会损坏elayer110或led管芯102。除了其他优点之外,方法200还提供在多个led管芯102上elayer110的同时形成,而不会干扰led管芯102的定位或损坏led管芯102或elayer110。这些步骤可以以不同的顺序执行,并且方法200可以包括不同的、附加的或更少的步骤。参照图3至图8来讨论方法200,图3至图8示出了led管芯102上的elayer110的形成。
负性光致抗蚀剂材料沉积402在载体衬底104上的led管芯102之间的区域中和led管芯102上方。参照图3,图3示出了在载体衬底104上的led管芯102的横截面视图,led管芯102可以在载体衬底104上均匀地间隔开,并经由粘合剂层108附接到载体衬底104。参照图4,图4示出了具有负性光致抗蚀剂材料402的led管芯的横截面视图,负性光致抗蚀剂材料402是光敏材料,其最初是可溶的,而当暴露于光时变成不可溶的。例如,在不暴露于光的情况下,负性光致抗蚀剂材料402可以用溶剂(例如光致抗蚀剂显影剂)去除。负性光致抗蚀剂材料402可以与溶剂混合使得负性光致抗蚀剂材料402是粘性的以(例如,经由旋涂)放置在led管芯102和载体衬底104上,然后在led管芯102上被烘烤(例如,软烘烤)。
载体衬底104可以是中间衬底,以便于在原生衬底和显示器衬底1402之间转移led管芯102。led管芯102之间的空间可以是单个化工艺(其中单组led管芯102被分离成单独的led管芯102)的结果或在led管芯102之间产生开放区域的另一种工艺的结果。
例如,led管芯102之间的开放区域可以通过使用膨胀的载体膜来形成。载体膜附接到原生衬底上的led管芯102的第一侧。led管芯102可以在载体膜附接到led管芯102之前或之后被单个化。在led管芯102被从原生衬底拆离之后,通过使载体膜膨胀以加宽led管芯102之间的开放区域来分离led管芯102。载体衬底104被施加到led管芯102的第二侧。led管芯102附接到载体衬底104的粘合剂108层,在led管芯102之间限定了开放区域。载体膜与led管芯102的第一侧分离,以暴露led管芯102的第一管芯,用于形成elayer110。
在沉积负性光致抗蚀剂材料402之后,穿过载体衬底104朝向led管芯102和沉积的负性光致抗蚀剂材料402施加204光。参照图5,图5示出了具有施加的光502的led管芯102的横截面视图,载体衬底104对于施加的光502是至少部分透明的。透明的载体衬底104允许光502照射在led管芯102之间的未被led管芯102阻挡的负性光致抗蚀剂材料402部分上。通过施加光穿过载体衬底104并使用led管芯102阻挡部分光502,不需要单独的光掩模或掩模工艺来选择性地阻挡光使其不能到达部分负性光致抗蚀剂材料402。在一些实施例中,光502是准直的紫外(uv)光,且载体衬底104包括对于uv光502透明的玻璃或蓝宝石,同时led管芯102包括吸收uv光502的镓或其他材料。然而,可以使用其他波长的光和材料,使得衬底对于此光是透明的,led管芯吸收此光,并且此光改变光致抗蚀剂的状态。
入射到led管芯上的光502被吸收206,以在led管芯102上保留可溶性第一部分负性光致抗蚀剂材料402。参照图6,图6示出了具有可溶性光致抗蚀剂材料602和不溶性光致抗蚀剂材料604的led管芯102的横截面视图,被引导到led管芯102处的光502被led管芯102吸收,使得在led管芯102顶部上的负性光致抗蚀剂材料402不暴露于施加的光502并保持为可溶性光致抗蚀剂材料602。
led管芯102之间的负性光致抗蚀剂材料402的部分暴露208于光502,以使led管芯102之间的第二部分负性光致抗蚀剂材料402变成不溶性的。参照图6,不溶性光致抗蚀剂材料604形成在led管芯102之间。因为负性光致抗蚀剂材料402是负性抗蚀剂,所以光502使光致抗蚀剂材料变成不溶性的,在led管芯102之间产生不溶性光致抗蚀剂材料604。在一些实施例中,不溶性光致抗蚀剂材料604可不溶于第一溶剂(例如光致抗蚀剂显影剂),但可溶于第二溶剂(例如光致抗蚀剂剥离剂)。
在施加光502之后,去除210在led管芯102上方的第一部分负性光致抗蚀剂材料402。参照图7,图7示出了去除了led管芯102上方的可溶性光致抗蚀剂材料602的led管芯102的横截面视图,可溶性光致抗蚀剂材料602被去除以暴露led管芯102的发光侧112。由于led管芯102上方的第一部分负性光致抗蚀剂材料402没有暴露于光502,所以第一部分是可溶性光致抗蚀剂材料602。可溶性光致抗蚀剂材料602可溶于溶剂,例如像碳酸钠或碳酸钾溶液那样的光致抗蚀剂显影剂。溶剂是一种物质,其进行反应以去除可溶性光致抗蚀剂材料602,同时对于不溶性光致抗蚀剂材料604是良性的。例如,溶剂是溶解可溶性光致抗蚀剂材料602的液体。
在去除第一部分可溶性光致抗蚀剂材料602之后,在每个led管芯102上和在第二部分不溶性光致抗蚀剂材料604之间沉积212弹性体材料802。参照图8,图8示出了具有弹性体材料802的led管芯102的横截面视图,可溶性光致抗蚀剂材料602被去除,导致不溶性光致抗蚀剂材料604形成用于弹性体材料802的模具。弹性体材料802形成在不溶性光致抗蚀剂材料604的模具壁之间的led管芯102的发光侧112上。弹性体材料802在led管芯上方形成elayer110。如参照图1所讨论的,形成elayer110的弹性体材料802可以包括提供与拾取表面1304足够粘附的任何材料。在一些实施例中,弹性体材料802被固化。固化可以硬化弹性体材料802,并将弹性体材料802附接在led管芯102上的弹性体材料802。弹性体材料802可以以各种方式固化,例如通过施加光、热、化学添加剂和/或硫化。
在沉积弹性体材料802之后,第二部分光致抗蚀剂材料(不溶性光致抗蚀剂材料604)被去除214,导致弹性体材料802在每个led管芯102上形成elayer110。参照图1,分离的elayer110在每个led管芯102上,并且在形成elayer110中使用的光致抗蚀剂材料被去除。第二部分不溶性光致抗蚀剂材料604形成模具,该模具可以以对弹性体材料802良性的方式去除。在一些实施例中,在弹性体材料802被固化之后,去除第二部分不溶性光致抗蚀剂材料604。在其他实施例中,在去除不溶性光致抗蚀剂材料604之后固化弹性体材料802。在一些实施例中,不溶性光致抗蚀剂材料604可以用不同于用于去除可溶性光致抗蚀剂材料602的溶剂的溶剂去除。例如,不溶性光致抗蚀剂材料604可以使用用于不溶性光致抗蚀剂的光致抗蚀剂剥离材料(例如丙酮)来去除。在其他实施例中,负性光致抗蚀剂材料402是可逆转的光致抗蚀剂,使得不溶性光致抗蚀剂材料604被逆转(例如,通过施加光)成为可溶性光致抗蚀剂材料,然后被用溶剂显影剂(例如,与用于去除第一部分光致抗蚀剂材料相同的溶剂)去除。例如,入射到不溶性光致抗蚀剂材料604上的激光可用于使该材料变成可溶性的。在其他实施例中,不溶性光致抗蚀剂材料604通过干法蚀刻(例如用氧气或空气射频(rf)等离子体)来去除。在不溶性光致抗蚀剂材料604被去除之后,弹性体材料802形成elayer110。elayer110是适形层,其允许每个led管芯102附接到拾取和放置头(pph)1302的拾取表面1304并被拾取表面1304拾取。
图9是根据一个实施例的用于在载体衬底104上的led管芯102上方形成elayer110的方法900的流程图。方法900包括在led管芯102上方形成elayer110的正性材料。除了其他优点之外,方法900还提供在多个led管芯102上elayer110的同时形成,而不会干扰led管芯102的定位或损坏led管芯102或elayer110。在形成elayer110之后,方法900允许每个led管芯102被pph1302拾取并移动到显示器衬底1402(例如,如下面参照图13和图14更详细讨论的)。这些步骤可以以不同的顺序执行,并且方法900可以包括不同的、附加的或更少的步骤。参照图10至图12来讨论方法900,图10至图12示出了led管芯102上的elayer110的形成。
正性光致抗蚀剂材料沉积902在载体衬底104上的led管芯102之间的区域中和led管芯102上方。载体衬底104上的led管芯102可以均匀地间隔开,并通过粘合剂层108安装到衬底106(例如,如图3所示)。参照图10,图10示出了具有正性光致抗蚀剂材料1002的led管芯102的横截面视图,正性光致抗蚀剂材料1002是光敏材料,其最初是不溶性的,而当暴露于光时变成可溶性的。例如,在暴露于光之后,正性光致抗蚀剂材料1002可以用溶剂(例如光致抗蚀剂显影剂)去除。正性光致抗蚀剂材料1002可以与溶剂混合使得该材料是粘性的以进行放置(例如,经由旋涂),然后在led管芯102上被烘烤(例如,软烘烤)。
正性光致抗蚀剂材料1002最终在led管芯102上方形成elayer110。在一些实施例中,正性光致抗蚀剂材料1002包括用于增加与拾取表面1304的粘附的材料。例如,正性光致抗蚀剂材料1002与能够结合(例如,共价结合)到非适形拾取表面1304的官能团材料混合。在一些实施例中,结合烘烤正性光致抗蚀剂材料1002来固化弹性体材料。在其他实施例中,使用单独的固化工艺来固化弹性体材料。
在沉积正性光致抗蚀剂材料1002之后,穿过载体衬底104向led管芯102和正性光致抗蚀剂材料1002施加904光。参照图11,图11示出了具有施加的光502的led管芯102的横截面视图,载体衬底104对于施加的光502是至少部分透明的。透明的载体衬底104允许光502照射在未被led管芯102阻挡的正性光致抗蚀剂材料1002部分上。方法900的一个优点是不需要光掩模和掩模工艺来选择性地阻挡光使其不能到达在led管芯102上方的正性光致抗蚀剂材料1002部分。在一些实施例中,光502是准直的紫外(uv)光,使得载体衬底104对于uv光502是透明的,同时led管芯102吸收uv光502。
入射到led管芯102上的光502的一部分被吸收906,以在led管芯102上保留不溶性第一部分正性光致抗蚀剂材料1002。参照图12,图12示出了包括不溶性光致抗蚀剂材料1202和可溶性光致抗蚀剂材料1204的led管芯102的横截面视图,光502被led管芯102吸收,使得在led管芯102顶部上的正性光致抗蚀剂材料1002不暴露于施加的光502并保持为不溶性光致抗蚀剂材料1202。
将在led管芯102之间的第二部分光致抗蚀剂材料暴露908于光502的另一部分,以使该第二部分变成可溶性的。光502使得该部分正性光致抗蚀剂材料1002变成可溶性的,在led管芯102之间形成可溶性光致抗蚀剂材料1204。
去除910第二部分光致抗蚀剂材料(可溶性光致抗蚀剂材料1204),以从第一部分不溶性光致抗蚀剂材料1202形成在每个led管芯102上的elayer110。可溶性光致抗蚀剂材料1204可以用溶剂去除。溶剂可以是光致抗蚀剂显影剂,其溶解可溶性光致抗蚀剂材料1204,但对不溶性光致抗蚀剂材料1202是良性的。留下的不溶性光致抗蚀剂材料1202在led管芯102上形成elayer110。elayer110是适形层,其允许每个led管芯102附接到拾取和放置头(pph)1302的拾取表面1304并被拾取表面1304拾取。在一些实施例中,在去除可溶性光致抗蚀剂材料1204之后,不溶性光致抗蚀剂材料1202被固化以形成elayer110。
图13是根据一个实施例的在从载体衬底104拾取led管芯102期间的显示器制造系统1300。系统1300包括用于从载体衬底104拾取led管芯102的pph1302。系统1300包括led管芯102、载体衬底104、微操作器1306、限定轴1308的pph1302,以及拾取表面1304。led管芯102安装到载体衬底104。微操作器1306例如以6个自由度移动pph1302。pph1302包括拾取表面1304,拾取表面1304与led管芯102的elayer110粘合,用于拾取和放置操作。
微操作器1306连接到pph1302并控制pph1302的移动。微操作器1306将pph1302与载体衬底104对准,以允许pph1302拾取一个或更多个led管芯102。在一些实施例中,微操作器1306可以是多自由度微操作器,例如被配置为上下、左右、前后移动pph1302或者(例如,沿着旋转轴1308)旋转pph1302的四自由度微操作器。在一些实施例中,系统1300包括多个微操作器1306和/或pph1302,以并行执行拾取和放置任务,从而增加系统的吞吐量。
pph1302具有多边形横截面。多边形横截面的边缘限定了pph1302的多个拾取表面1304。每个led管芯102的elayer110被配置为(例如,由于粘附力而)安装到拾取表面1304,以便于将led管芯102从载体衬底104转移到显示器衬底1402。pph1302可以沿着旋转轴1308旋转,以在一个或更多个拾取表面1304处拾取led管芯102的阵列。尽管pph1302具有八边形横截面和八个拾取表面1304,但是在各种实施例中,pph1302可以具有不同形状的横截面(例如,三角形、正方形、六边形等)和不同数量的拾取表面。尽管本文讨论的拾取和放置工具是pph1302,但是也可以使用利用与elayer110的粘合附接的其他类型的拾取头。
拾取表面1304可以是非适形的拾取头,其允许具有elayer110的led管芯102附接到pph1302。例如,拾取表面1304可以是玻璃或熔融石英。拾取表面1304利用粘附力(例如范德华力)与led管芯102的elayer110相接。在拾取表面1304附接到每个led管芯102的elayer110之前,可以从载体衬底104去除粘合剂108。尽管本文讨论的elayer110特别适用于非适形拾取头,但是在一些实施例中,拾取表面1304是适形的,例如具有弹性体涂层。
在pph1302用第一拾取表面1304a拾取一个或更多个第一led管芯102a之后,pph1302绕轴1308旋转,以用pph1302的第二拾取表面1304b拾取一个或更多个第二led管芯102b。如图13所示,第二拾取表面1304b可以与第一拾取表面1304a相邻,或者可以是与第一拾取表面1304a不相邻的拾取表面1304。
图14是根据一个实施例的在将led管芯102放置在显示器衬底1402上期间的显示器制造系统1300的横截面视图。经由elayer110附接到pph1302的led管芯102被放置在电子显示器的显示器衬底1402上。
在pph1302已经填充(populate)有led管芯102之后,pph1302从载体衬底104移开并与显示器衬底1402对准。例如,可以通过微操作器1306将pph1302从载体衬底104提起,用于随后将led管芯102放置在显示器衬底1402上。微操作器1306通过将pph1302与显示器衬底1402对准并跨显示器衬底1402滚动pph1302来将led管芯102放置在显示器衬底1402上。显示器衬底1402可以是电子显示器的一部分,其中led管芯102放置在子像素位置处,以与显示器衬底1402中驱动led管芯102的控制电路连接。例如,显示器衬底1402可以是印刷电路板,其包括用于每个子像素处的控制电路的栅极线和数据线,该控制电路根据栅极线和数据线上的信号驱动led管芯102。在放置之后,可以将led管芯102结合到显示器衬底1402,例如使用热压(tc)结合。
图15是根据一个实施例的mled1500的横截面的示意图。mled1500是具有发光侧112的led管芯102的示例,在发光侧112上形成有elayer110,以便于与拾取头的粘合附接。mled1500可以包括在生长衬底(未示出)上形成的外延结构1502以及其他组件。外延结构1502包括多量子阱(“mqw”)1504。mled1500还包括在外延结构1502上的电介质层1506、在电介质层1506上的p触点1508以及在外延结构1502上的n触点1510。外延结构1502例如经由蚀刻工艺被成形为台面结构(mesa)1512和台面结构1512的基底1514。多量子阱1504限定了被包括在台面结构1512的结构中的有源发光区域。台面结构1512可以包括限定在与mled1500的发光侧112相对的一侧上的截顶。
如图15所示,如果mled1500的半导体结构生长在生长衬底(例如不透明衬底)上,则可以去除生长衬底以露出发光侧112。在另一个示例中,例如当生长衬底对于由mled1500所发射的光是透明的时,不去除生长衬底。
台面结构1512可以包括各种形状(例如具有截顶的抛物线形状),以对在mled1500内产生的光1516形成反射外壳。在其他实施例中,台面结构1512可以包括具有截顶的圆柱形形状或者具有截顶的圆锥形形状。箭头示出了从mqw1504发射的光1516如何以足以使光逸出mled器件1500的角度(即,在全内反射的临界角内),从p触点1508和台面结构1512的内壁朝向发光侧112反射。p触点1508和n触点1510将mled1500连接到例如包括用于mled1500的控制电路的显示器衬底。n触点1510形成在基底1514处与发光侧112相对的一侧上。
mled1500可以包括由mqw1504限定的有源发光区域。mled1500引导来自mqw1504的光1516,并增加光输出的亮度水平。具体地,台面结构1512和p触点1508导致来自mwq1504的光1516进行反射,以形成从发光侧112射出的准直或类准直光束。
为了说明的目的提出了实施例的前述描述;它并不旨在是无遗漏的或将专利权利限制到所公开的精确形式。例如,沉积的层可以由其他材料制成,并且相同的方法可以应用于除led之外的微电子器件。相关领域中的技术人员可以认识到,按照上面的公开,许多修改和变化是可能的。
在说明书中使用的语言主要出于可读性和指导性的目的而被选择,并且它可以不被选择来描绘或限制创造性主题。因此,意图是本专利权的范围不受该详细描述限制,而是受在基于此的申请上所发布的任何权利要求限制。因此,实施例的公开内容意图对本专利权的范围是说明性的,而不是限制性的,本专利权的范围在所附的权利要求中阐述。