半导体装置的制作方法

文档序号:18173558发布日期:2019-07-13 09:58阅读:143来源:国知局
半导体装置的制作方法

本发明涉及具有沟槽栅极构造的半导体装置。



背景技术:

例如,专利文献1的半导体装置包括:sic基板;形成在sic基板上的n型高电阻层;形成在n型高电阻层上的p井层;形成于p井层的表层部的n+发射极区域;贯通n+发射极区域并到达p井层的p+接触区域;从n+发射极区域的表面起贯通p井层并到达n型高电阻层的沟槽;形成于沟槽的内表面的栅极氧化膜;以及埋入于沟槽的多晶硅栅极电极。

现有技术文献。

专利文献。

专利文献1:特开2008-294210号公报。



技术实现要素:

用于解决课题的方案

本发明的半导体装置包括:半导体层,具有依次层叠有第一导电型的漏极层、第二导电型的沟道层以及第一导电型的源极层的构造,所述源极层在所述半导体层的表面露出;栅极沟槽,从所述半导体层的所述表面起贯通所述源极层和所述沟道层,最深部达到所述漏极层;栅极绝缘膜,模仿所述栅极沟槽的内表面和所述半导体层的所述表面而形成;以及栅极电极,经由所述栅极绝缘膜被埋入于所述栅极沟槽,所述栅极绝缘膜的与所述半导体层的所述表面相接的部分与在所述栅极沟槽的侧面与所述沟道层相接的部分相比被形成得厚。

根据该结构,在将栅极电极的材料埋入到栅极沟槽之后,即使栅极沟槽外的材料被过度蚀刻,也能够使栅极电极确实地对于源极层重叠。由此,由于能够制造能够良好地进行晶体管动作的半导体装置,因此能够提高成品率。另外,通过抑制栅极绝缘膜的与沟道层相接的部分的厚膜化,从而能够抑制在沟道层中的栅极沟槽的侧面附近诱发的载流子的量的减少。其结果,由于能够抑制沟道电阻的增加,因此能够维持性能的可靠性。

优选的是,所述栅极绝缘膜的与所述栅极沟槽的底面相接的部分相比于与所述沟道层相接的部分被形成得厚。

根据该结构,由于能够缓和向栅极沟槽底部的电场集中,因此能够提高性能的可靠性。

所述栅极电极还可以具有延伸到所述半导体层的所述表面的上方的延伸部。在这种情况下,所述栅极电极的所述延伸部的上表面还可以位于所述栅极绝缘膜的与所述半导体层的所述表面相接的部分的厚度方向中途。

另外,在所述栅极沟槽从所述底面直到开口端为止以固定的宽度被形成的情况下,也可以为所述栅极绝缘膜的在所述栅极沟槽的所述侧面与所述沟道层和所述源极层相接的部分具有固定的厚度。

另外,优选的是,所述栅极沟槽包括上部边缘,该上部边缘形成于所述栅极沟槽的开口端,具有与所述半导体层的所述表面相连的倾斜面作为所述侧面的一部分,所述栅极绝缘膜包括在所述上部边缘向所述栅极沟槽的内部伸出的伸出部。

根据该结构,由于在栅极沟槽的上部边缘形成有伸出部,因此能够提高在上部边缘的栅极绝缘膜的耐压。因此,即使在栅极导通时电场集中于上部边缘,也能够防止在上部边缘处的栅极绝缘膜的绝缘击穿。其结果,能够提高对于栅极导通电压的可靠性。另外,使在栅极导通时施加于上部边缘的电场分散在倾斜面内,能够缓和电场集中。

优选的是,所述栅极沟槽包括上部边缘,该上部边缘形成于所述栅极沟槽的开口端,具有与所述半导体层的所述表面相连的圆形面作为所述侧面的一部分,所述栅极绝缘膜包括在所述上部边缘向所述栅极沟槽的内部伸出的伸出部。

根据该结构,由于在栅极沟槽的上部边缘形成有伸出部,因此能够提高在上部边缘处的栅极绝缘膜的耐压。因此,即使在栅极导通时电场集中于上部边缘,也能够防止在上部边缘处的栅极绝缘膜的绝缘击穿。其结果,能够提高对于栅极导通电压的可靠性。另外,使在栅极导通时施加于上部边缘的电场分散在圆形面内,能够缓和电场集中。

优选的是,所述伸出部具有在沿宽度方向横切所述栅极沟槽的切割面中的截面视图中向所述栅极沟槽的内部膨胀的圆形状。在这种情况下,所述栅极电极还可以具有在所述截面视图中沿着所述伸出部选择性地凹入为圆形状的缩颈部。

根据该结构,能够使电场均匀地分散于伸出部的整体。

所述半导体装置也可以还包括以覆盖所述栅极绝缘膜的与所述半导体层的所述表面相接的部分的方式形成在所述半导体层上的层间膜,在所述层间膜形成有使所述源极层选择性地露出的接触孔。

所述源极层也可以具有1μm~10μm的厚度。另外,所述半导体层也可以由碳化硅(sic)构成。

附图说明

图1是本发明的第一实施方式的半导体装置的示意性的截面图。

图2是本发明的第二实施方式的半导体装置的示意性的截面图。

图3是本发明的第三实施方式的半导体装置的示意性的截面图。

图4是本发明的第四实施方式的半导体装置的示意性的截面图。

图5是用于说明所述半导体装置的制造方法的流程图。

图6是用于说明在上部边缘形成倾斜面的工序的图。

图7是用于说明在上部边缘形成圆形面的工序的图。

具体实施方式

以下,参照随附附图详细说明本发明的实施方式。

图1是本发明的第一实施方式的半导体装置1的示意性的截面图。

半导体装置1包括使用sic(碳化硅)的功率mosfet(metal-oxide-semiconductorfieldeffecttransistor,金属氧化物半导体场效应晶体管)元件(个体元件)。半导体装置1具备作为本发明的半导体层的一个例子的sic基板2。

sic基板2具有依次层叠有n-型漏极层3、p型沟道层4以及n+型源极层5的构造,n+型源极层5在sic基板2的表面6露出。作为n型掺杂剂,例如能够使用n(氮)、p(磷)、as(砷)等(以下相同),作为p型掺杂剂,例如能够使用b(硼)、al(铝)等。

n-型漏极层3的厚度为1μm~100μm、掺杂剂浓度为1×1015cm-3~1×1017cm-3。p型沟道层4的厚度为0.1μm~1μm、掺杂剂浓度为1×1016cm-3~1×1020cm-3。n+型源极层5的厚度为0.05μm~0.5μm、掺杂剂浓度为1×1018cm-3~1×1021cm-3

另外,在sic基板2形成有栅极沟槽7。栅极沟槽7从sic基板2的表面6起贯通n+型源极层5和p型沟道层4,最深部到达n-型漏极层3。另外,在该实施方式中,栅极沟槽7从底面8直到开口端为止以固定的宽度被形成。也就是说,在栅极沟槽7中彼此相向的侧面9之间的距离在栅极沟槽7的深度方向上的任一位置处都是固定的。

在栅极沟槽7的内表面(底面8和侧面9)以及sic基板2的表面6配置有栅极绝缘膜10。栅极绝缘膜10例如由氧化硅(sio2)等绝缘材料构成。在该实施方式中,栅极绝缘膜10的一个表面和另一表面以模仿栅极沟槽7的内表面(底面8和侧面9)以及sic基板2的表面6的方式形成。

栅极绝缘膜10一体地包括栅极沟槽7的底面8上的底面绝缘膜11、侧面9上的侧面绝缘膜12以及sic基板2的表面6上的平面绝缘膜13。栅极绝缘膜10在各部位的绝缘膜11~13处厚度互不相同。平面绝缘膜13和底面绝缘膜11与侧面绝缘膜12相比被形成得厚。具体地,相对于侧面绝缘膜12的厚度t1为0.010μm~0.200μm,底面绝缘膜11和平面绝缘膜13的厚度t2、t3分别为0.05μm~0.5μm和0.05μm~0.5μm。各绝缘膜11~13在上述的范围内对于各自所相接的面具有固定的厚度。

而且,在栅极沟槽7经由栅极绝缘膜10埋入有栅极电极14。栅极电极14例如由多晶硅等导电材料构成。在该实施方式中,栅极电极14一体地具有延伸到sic基板2的表面6的上方的延伸部15。延伸部15以其上表面16位于平面绝缘膜13的厚度方向中途的方式形成。特别是,在延伸部15在栅极沟槽7的侧面9附近的外周部17相比于其内部区域向上方上翘。

图2~图4是本发明的第二~第四实施方式的半导体装置21、31、41的示意性的截面图。在图2~图4中,对与在各图之前记述的图中所示出的各部分对应的部分附加相同的参照标记。

如图2所示,第二实施方式的半导体装置21还包括在栅极沟槽7的开口端具有与sic基板2的表面6相连的倾斜面22作为侧面9的一部分的上部边缘23。而且,侧面绝缘膜12包括以在该上部边缘23处向栅极沟槽7的内部突出的方式与该侧面绝缘膜12的其它部分相比选择性地变厚的伸出部24。

伸出部24具有在沿宽度方向横切栅极沟槽7的切割面的截面视图中向栅极沟槽7的内部膨胀的圆形状。由此,栅极电极14具有在从上表面16在栅极沟槽7的深度方向上从栅极沟槽7的宽度方向两侧沿着伸出部24选择性地凹入为圆形状的缩颈部25。

在图3所示的第三实施方式的半导体装置31中,代替具有半导体装置21的倾斜面22的上部边缘23,在栅极沟槽7的开口端包括具有与sic基板2的表面6相连的圆形面32作为侧面9的一部分的上部边缘33。也就是说,上部边缘33并不变得尖锐而通过圆形面32而带有圆状。

图4所示的第四实施方式的半导体装置41除了半导体装置31的结构以外,还包括以覆盖栅极电极14的上表面16的方式形成在平面绝缘膜13上的层间膜42。层间膜42例如由氧化硅(sio2)构成。另外,在层间膜42和平面绝缘膜13形成有将它们连续贯通而使n+型源极层5选择性地露出的接触孔43。在该接触孔43例如埋入有由铝(al)等导电材料构成的源极电极(未图示)。

图5是用于说明半导体装置1的制造方法的流程图。

为了制造半导体装置1,例如对sic基板2的表面6选择性地注入杂质,进行退火处理(步骤s1)。由此,形成p型沟道层4、n+型源极层5等杂质区域。另外,sic基板2的剩余的n-型区域被形成为n-型漏极层3。

接着,通过从表面6起以规定图案蚀刻sic基板2,来在sic基板2形成栅极沟槽7(步骤s2)。

接下来的工序是栅极绝缘膜10的形成。栅极绝缘膜10的形成以与堆积在栅极沟槽7的侧面9的部分相比堆积在sic基板2的表面6和栅极沟槽7的底面8的部分选择性地变厚的方式,使用规定的条件(气体流量、气体种类、气体比率、气体供给时间等)下的cvd法使氧化硅(sio2)堆积在栅极沟槽7内(步骤s3)。此时,如果是制造第二~第四实施方式的半导体装置21、31、41,则还考虑伸出部24的形状来设定cvd的条件。由此,形成一体地具有底面绝缘膜11、侧面绝缘膜12以及平面绝缘膜13的栅极绝缘膜10。

在此,在如图2所示那样在上部边缘23形成倾斜面22的情况下,在栅极沟槽7形成之后栅极绝缘膜10形成之前,对sic基板2进行热氧化。具体地,如图6所示,通过对sic基板2进行热氧化来形成牺牲氧化膜44。在牺牲氧化膜44形成时,在栅极沟槽7附近,从sic基板2的表面6和栅极沟槽7的侧面9两方一样地开始氧化。因此,在上部边缘23处从sic基板2的表面6行进的氧化膜和从栅极沟槽7的侧面9行进的氧化膜相比于其它的区域首先一体化。由此,成为在一体化的氧化膜的下方形成倾斜面22。之后,只要去除牺牲氧化膜44并模仿所述记载形成栅极绝缘膜10即可(步骤s3)。

在采用该图6的方法的情况下,由于如图2那样在sic基板2的表面6侧形成有p型沟道层4、n+型源极层5,因此在该部分中与n-型漏极层3相比热氧化率变快,因此能够更简单地形成倾斜面22。

另一方面,在如图3和图4所示那样在上部边缘33形成圆形面32的情况下,在栅极沟槽7形成之后栅极绝缘膜10形成之前,对sic基板2进行氢气(h2)退火处理。具体地,如图7所示,通过对sic基板2以1400℃以上实施氢气退火(h2蚀刻),来在上部边缘33形成圆形面32。

再次返回图5,在栅极绝缘膜10形成之后,回填栅极沟槽7,堆积多晶硅直到栅极沟槽7整体被遮住为止(步骤s4)。然后,通过对堆积的多晶硅进行回蚀刻,来形成栅极电极14(步骤s5)。此外,在图2~图4的半导体装置21、31、41中,由于在栅极绝缘膜10形成有伸出部24,因此通过在伸出部24的内侧堆积多晶硅,来在栅极电极14自动地形成缩颈部25。

接着,关于图4的半导体装置41,利用cvd法在sic基板2上形成层间膜42(步骤s6)。接着,通过对层间膜42图案化,来形成接触孔43(步骤s7)。

接着,通过溅射法、蒸镀法在层间膜42上堆积铝等金属材料(步骤s8)。由此,形成源极电极(未图示)。经过以上的工序等,能够获得图1~图4所示的半导体装置1、21、31、41。

根据以上的半导体装置1、21、31、41,由于平面绝缘膜13比侧面绝缘膜12厚(t1<t3),因此能够比较大地取得在对多晶硅进行回蚀刻时(步骤s5)的蚀刻余量。因此,在采用0.05μm~0.5μm厚的n+型源极层5的情况下,即使对多晶硅过度地回蚀刻,也能够使栅极电极14确实地对于n+型源极层5重叠。由此,能够制造能够良好地进行晶体管动作的半导体装置,能够提高成品率。

例如,在n+型源极层5为0.2μm左右的薄厚的情况下,为了使多晶硅的回蚀刻面(上表面16)止于n+型源极层5的中途,需要在该回蚀刻面到达sic基板2的表面6之后以在60秒以内的程度停止回蚀刻。因而,在计算上只要在确认回蚀刻面到达表面6之后在60秒以内停止回蚀刻即可。然而,由于在晶片面内在回蚀刻面存在高低差(面内偏差),因此即使能够在晶片存在的区域中使回蚀刻面止于n+型源极层5的中途,在其它区域中也成为过度蚀刻,存在回蚀刻面甚至到达p型沟道层4的情况。于是,根据该实施方式,通过由于平面绝缘膜13而变大的蚀刻余量,从而能够解决这样的课题。

另外,通过抑制侧面绝缘膜12的厚膜化,能够抑制在p型沟道层4中的栅极沟槽7的侧面9附近诱发的载流子的量的减少。其结果,由于能够抑制沟道电阻的增加,因此能够维持性能的可靠性。

而且,由于底面绝缘膜11也比侧面绝缘膜12厚(t1<t2),因此能够缓和向栅极沟槽7底部的电场集中。其结果,能够提高性能的可靠性。

进一步地,根据第二~第四实施方式的半导体装置21、31、41,由于在栅极沟槽7的上部边缘23、33形成有伸出部24,因此能够提高上部边缘23、33中的栅极绝缘膜10的耐压。因此,即使在栅极导通时电场集中于上部边缘23、33,也能够防止在上部边缘23、33处的栅极绝缘膜10的绝缘击穿。特别地,由于伸出部24是向栅极沟槽7的内部膨胀的圆形状,因此能够使电场均匀地分散于伸出部24的整体。其结果,能够提高对于栅极导通电压的可靠性。另外,使在栅极导通时施加于上部边缘23、33的电场分散在倾斜面22或圆形面32内,能够缓和电场集中。

以上虽然说明了本发明的实施方式,但是本发明也能够以其它的方式实施。

例如也可以采用将前述的各半导体装置的各半导体部分的导电型反转的结构。例如,在半导体装置1中,p型的部分也可以是n型,n型的部分也可以是p型。

另外,在半导体装置1等采用的半导体不限于sic,例如也可以是si、gan、金刚石等。

本发明的半导体装置例如能够装入于构成用于对作为电动汽车(包括混合动力车)、电车、产业用机器人等的动力源而被利用的电动马达进行驱动的驱动电路的逆变器电路所使用的功率模块。另外,还能够装入于以将太阳能电池、风力发电机及其它发电装置(特别是自身发电装置)所发生的电力整合为商用电源的电力的方式进行变换的逆变器电路所使用的功率模块。

另外,从前述的实施方式的公开所掌握的特征在不同的实施方式之间也能够相互组合。另外,在各实施方式中表示的结构要素能够在本发明的范围内进行组合。

本发明的实施方式只不过是为了使本发明的技术内容明确而使用的具体例子,本发明不应被解释为限定于这些具体例子,本发明的精神和范围仅通过随附的权利要求进行限定。

本申请对应于2012年8月17日在日本专利局提交的特愿2012-181159号,该申请的所有公开设为被通过引用而并入于此的公开。

附图标记说明

1:半导体装置;2:sic基板;3:n-漏极层;4:p型沟道层;5:n+型源极层;6:表面;7:栅极沟槽;8:底面;9:侧面;10:栅极绝缘膜;11:底面绝缘膜;12:侧面绝缘膜;13:平面绝缘膜;14:栅极电极;15:延伸部;16:上表面;17:外周部;21:半导体装置;22:倾斜面;23:上部边缘;24:伸出部;25:缩颈部;31:半导体装置;32:圆形面;33:上部边缘;41:半导体装置;42:层间膜;43:接触孔。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1