一种多波长非相干光谱合束板条激光振荡器的制作方法

文档序号:17753040发布日期:2019-05-24 21:06阅读:254来源:国知局
一种多波长非相干光谱合束板条激光振荡器的制作方法

本发明涉及激光技术领域,尤其是涉及一种多波长非相干光谱合束板条激光振荡器。



背景技术:

光谱合成技术作为典型的非相干合成技术,是利用衍射光学器件(如:光栅、棱镜等)实现空间上分布排列的不同波长的子激光束进行共线合成,该合成技术不需对各子激光的相位、偏振、以及振幅进行严格控制就能实现合成光束在远场和近场较好的重叠,而且光束质量不随合成单元数目增多而恶化,该技术相比于单束激光,能够实现更高功率,并且同时保持高光束质量,被广泛应用于光纤放大器和半导体激光器。

虽然,光栅-外腔光谱合束方法解决了常规堆叠式半导体激光合束光束质量差的问题,有效提升了半导体激光器的输出功率和光束质量,已成为半导体激光器实现高亮度激光输出最为有效的合束技术之一,但其输出功率还是受到半导体激光单元本身输出功率以及合成路数的局限,有待进一步突破。



技术实现要素:

本发明的目的是提供一种多波长非相干光谱合束板条激光振荡器,通过板条激光增益模块为多束激光功率放大,并将放大后的多束激光合束,能够输出高功率的激光。

为解决上述技术问题,本发明提供了一种多波长非相干光谱合束板条激光振荡器,包括:依次沿光路设置的高反射腔镜阵列、板条激光增益模块、光学变换系统、衍射光学元件和输出耦合镜;高反射腔镜阵列,由成阵列排布的n个高反射腔镜构成,n个高反腔镜与输出耦合镜构成n个激光谐振腔;其中,n≥3;板条激光增益模块,受激辐射形成n束分孔径平行的激光,n束激光的波长各不相同且分别在n个激光谐振腔内振荡;光学变换系统,将从条激光增益模块射出的n束激光传输至衍射光学元件表面;衍射光学元件,位于光学变换系统的焦平面处,将其表面的n束激光合束成一束激光后出射至所述输出耦合镜表面;输出耦合镜,将合束后的激光输出。

进一步地,高反射腔镜阵列为一维阵列,且n个高反射腔镜之间排布密集。

进一步地,n个所述高反射腔镜之间排布密集为:相邻的高反射腔镜的间距不超过5mm。

进一步地,每个高反射腔镜的直径不超过3mm。

进一步地,n个所述高反射腔镜的表面分别镀有对于不同波长反射率高的膜。

进一步地,还包括光路变换元件;所述光路变换元件位于所述高反射腔镜阵列和板条激光增益模块之间,以分别调节n个高反射腔镜表面的n束光的指向,以使n束光的光轴相互平行,且能够将其射入所述板条激光增益模块中。

进一步地,还包括冷却模块,设置在板条激光增益模块的表面,对板条激光增益模块冷却。

进一步地,还包括泵浦源,为板条激光增益模块高亮度泵浦激励。

进一步地,还包括n个调节单元,与n个所述高反射腔镜一一对应连接,以调节所述每个高反射腔镜的位置,以减小每束激光经过板条激光增益模块后产生的倾斜相差。

进一步地,光学变换系统包括:变换透镜和主变换透镜;变换透镜将从板条激光增益模块射出的n束激光传输至主变换透镜;主变换透镜将n束激光发射至衍射光学元件表面;衍射光学元件,位于主变换透镜的焦平面处。

进一步地,板条激光增益模块的增益介质为yb:yag晶体、yb:yag透明陶瓷、掺杂有稀土离子的晶体或掺杂有稀土离子的透明陶瓷。

进一步地,衍射光学元件为刻线密度高于200线/mm的多层电介质光栅或体布拉格光栅。

本发明实施例提供的激光振荡器,采用固体板条激光增益模块,产生多束板条激光,并对多束板条激光实行外腔光谱合束,能够同时实现光束的增益放大与非相干光谱合成。与光谱合束放大装置相比,本发明实施例提供的激光振荡器,一方面无需种子激光源,结构简单。另一方面,多束板条激光,每个都在一个独立的激光谐振腔内振荡,使得合束的输出激光的光束质量可达到单个子激光的光束质量,能够在提高功率的同时,保证光束质量。

附图说明

图1是根据本发明实施例1的多波长光谱合束板条激光振荡器的结构示意图;

图2(a)示意性地示出第一实施方式的板条增益模块与冷却模块和泵浦源的结构关系示意图;

图2(b)为图2(a)的局部放大图和板条增益模块中的“之”字形光路;

图3是根据本发明实施例2的多波长光谱合束板条激光振荡器的结构示意图。

附图标记:

1:高反射腔镜阵列;2:板条激光增益模块;3:光学变换系统;31:变换透镜;32:衍射光学元件;4:输出耦合镜;5:冷却模块;6:光路变换元件,7:冷却模块,8:泵浦源。

具体实施例

为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施例并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。

图1是根据本发明实施例1的多波长光谱合束板条激光振荡器的结构示意图。

需要说明的是,在附图中示出了根据本发明实施例的层结构示意图。这些图并非是按比例绘制的,其中为了清楚的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。

如图1所示,该多波长光谱合束板条激光振荡器包括:依次沿光路设置的高反射腔镜阵列1、板条激光增益模块2、光学变换系统3、衍射光学元件4和输出耦合镜5。

具体地,高反射腔镜阵列1由成阵列排布的n个高反射腔镜构成,n个高反腔镜与输出耦合镜5构成n个激光谐振腔;其中,n≥3。n个激光谐振腔优选为稳定腔。

优选的,高反射腔镜阵列1为一维阵列,且n个高反射腔镜之间排布密集。

优选的,n个高反射腔镜之间排布密集为:相邻的高反射腔镜的间距不超过5mm。

优选的,每个高反射腔镜的直径不超过3mm,以使得该激光振荡器能够设置有更多的高反射腔镜以实现更多束激光的光谱合束,以提高合束后激光的功率。

在一个优选的实施例中,还包括n个调节单元,与n个高反射腔镜一一对应连接,以调节每个高反射腔镜的位置,以减小每束激光经过板条激光增益模块后产生的倾斜相差。

可选的,该调节单元为角度转动装置,高反射腔镜位于该角度转动装置上,通过调整角度转动装置的角度,调节高反射腔镜,以调节从高反射腔镜反射的激光的指向。

需要说明的是,由于激光在经过板条激光增益模块2后,容易产生多个方向的倾斜相差,由于多个方向的倾斜相差,容易导致光束质量变差。现有的采用板条激光增益放大的技术方案,大部分都是通过复杂的自适应光学系统(ao系统),来时时补偿波前畸变导致的光束质量恶化。而本发明采用高反射腔镜密排布,进一步使得通过高反射腔镜反射的激光也排布密集,能够使得在多束激光在经过板条激光增益模块后仅在板条的宽度方向产生相差,在板条宽度方向的倾斜相差,可以通过改变每个高反射腔镜对激光的反射角度,来减小该倾斜相差。而相比于使用自适应光学系统的装置,本发明实施例提供的激光振荡器,结构简单,系统可靠性较高,其实用性更强,制作成本更低。

板条激光增益模块2,受激辐射形成n束激光,n束激光的波长各不相同且分别在n个激光谐振腔内振荡。相应的,n个高反射腔镜的表面分别镀有对于不同波长反射率高的膜。即一个高反射腔镜的表面,镀有对于一种波长反射率高的膜。

图2(a)示意性地示出第一实施方式的板条增益模块与冷却模块和泵浦源的结构关系示意图;图2(b)为图2(a)的局部放大图和板条增益模块中的“之”字形光路。

如图2(a)和图2(b)所示,板条激光增益模块2中板条激光增益模块2为长条状,其上底面和下底面为矩形,左端面和右端面为矩形,其前面和后面为平行四边形结构。从高反射腔镜阵列表面射出至板条激光增益模块2的每一束子激光束从左端面以满足在板条底面全内反射条件的角度进入板条激光增益模块2中,在板条激光增益模块2内的光路为“之”形状,经过多次反射后,从右端面输出。一方面,这种光路会使得光路的光程较大,激光放大的倍数较大。另一方面,这种光路对板条激光增益介质冷却的热梯度不敏感,有助于板条激光增益模块2在高平均功率下运转。

进一步具体地,上述激光振荡器还包括冷却模块7,该冷却模块分别设置在板条激光增益模块2的上底面和下底面,为板条激光增益模块2冷却。

可选的,该冷却模块为金属热沉。

具体地,上述激光振荡器还包括泵浦源8,为板条激光增益模块2提供高亮度的泵浦,以使得板条激光增益模块2受到泵浦的激发,根据谐振腔的数量,产生相应数量的激光。

进一步具体地,泵浦源8为半导体泵浦,其运转模式可以是连续运转(cw),或者是准连续运转(qcw)。

在一个优选的实施例中,板条激光增益模块2的增益介质为发射谱线宽高于5nm的增益介质,例如yb:yag晶体、yb:yag透明陶瓷、掺杂有稀土离子的晶体或掺杂有稀土离子的透明陶瓷中的一种。

需要说明的是,板条增益介质发射谱线宽越高,通过板条激光增益模块2增益的激光数量就越多,能够合束的激光就越多,合束后的激光功率越高,因此,采用发射谱线宽高于5nm的增益介质。

还需要说明的是,上述实施例中,采用板条激光增益介质产生的激光束通光的尺寸相比于半导体激光和光纤的通光尺寸大(板条激光增益介质产生的光束通光的直径为毫米量级,半导体激光和光纤的通光直径均为百微米量级),因此,上述实施例采用板条激光增益介质相比于半导体激光和光纤激光,能够大幅降低激光功率密度,从而降低了非线性效应的影响,因此本实施例采用的激光振荡器的合束后的激光输出峰值功率比已有半导体光谱合成激光至少高一个数量级,突破了单一子激光器功率限制,提高了光谱合束激光振荡器的输出功率。

光学变换系统3,将从板条激光增益模块2射出的n束激光传输至衍射光学元件4表面。

在一个具体的实施例中,该光学变换系统3包括:变换透镜31和主变换透镜32;变换透镜31将从板条激光增益模块2射出的n束激光传输至主变换透镜32;主变换透镜32将n束激光发射至衍射光学元件32表面。

具体地,该变换透镜31可以是由n个微透镜构成的一维阵列,或者是一个体积较大的透镜。

需要说明的是,光学变换系统主要是用于对从板条激光增益模块2出射的激光束进行光学变换,以使得n束激光能够交叠在衍射光学元件上5上,能够实现降低到达衍射光学元件5的激光束的光功率密度,不损伤衍射光学元件5的作用。

可选的,该光学变换系统3还可以包括球面透镜、柱面透镜、反射镜等光学元件,具体配置可根据光束的变换和光路设计的需要选用。

衍射光学元件4位于主变换透镜32的焦平面处,将其表面的n束激光光谱合束成一束激光后出射至输出耦合镜5表面。该衍射光学元件4的合束过程需通过光学变换系统对衍射光学元件4上的光斑尺寸进行控制,一方面,控制光束功率密度防止衍射光学元件4被高功率激光损伤,另一方面,以抑制色散对子束光束质量的影响。

优选的,衍射光学元件4需同时具备高衍射效率和大角色散,可采用刻线密度高于200线/mm的多层电介质光栅或体布拉格光栅。

需要说明的是,在本领域中,一般双光栅光谱合束是指多束激光束同时射入第一个光栅上进行光谱合成后,再将合束后的激光射入第二个光栅上,经过第二光栅合束后输出,通常双光栅合束光路光程长,且合束过程复杂。本发明上述实施例采用单光栅进行非相干光谱合成。板条激光增益介质的增益窄化效应可在激光放大过程中压缩激光光谱线宽,进而抑制合束后光束质量退化。而且,子激光束的窄线宽可以采用单光栅光谱合成,避免了双光栅合束会带来的合成光路长、需要偏振无关光栅、双光栅平行度要求高、第二块光栅上的高功率密度对光栅损伤阈值高要求等诸多技术困难,使系统易于实现轻小型化。

输出耦合镜5,将合束后的激光输出。

下面将结合图1来详细说明上述实施例1中激光在激光振荡器内的振荡过程,在图1所示的例子中,变换透镜31由n个微透镜构成。

首先,板条激光增益模块2受到泵浦源8的激发,在高反射腔镜阵列1和输出耦合镜5形成的n个独立子谐振腔中形成n束激光振荡,这n束激光在板条激光增益模块中不断的增益放大后,输出至光学变换系统3中的n个微透镜上,微透镜将该n束激光传输至主变换透镜32,使n束激光交叠照射在衍射光学元件4上。衍射光学元件4将n束激光进行非相干光谱合束成一束激光,合束后的激光作为激光振荡器的输出激光,通过输出耦合镜5射出。

下面给出实施例1的一些具体实验参数。

板条激光增益模块2选择yb:yag晶体板条,该板条的增益谱线范围是1027~1032nm(光谱宽度5nm)。拟定在激光振荡器内能够合束12束激光,也就是这12束激光的波长不同,但是范围是在1027~1032nm内。则相应的选用12个高反射腔镜,这12个高反射腔镜分别镀对这12束激光反射率高的膜。

主变换透镜32的焦距f为1000mm,各子激光束间距h为1.8mm,合成光束阵列光轴在mld上的入射角为68.5°,出射角为59.5°,相邻的子激光束的波长差约为0.38nm,则这12束子激光束波长偏离1030nm依次为:{-1.95nm,-1.57nm,-1.21nm,-0.83nm,-0.46nm,-0.07nm,0.31nm,0.69nm,1.07nm,1.45nm,1.81nm,2.20nm},整体光谱区间约为4.15nm。

泵浦源8为12个输出功率4.3kw的半导体bar条组成的阵列,端面泵浦,连续运转模式,实验最终得到每一个子谐振腔单元输出功率约为1.5kw,单路板条激光输出的光光效率约为35%。12束子激光通过光栅非相干光谱合束得到17kw的激光输出,光谱合成效率约为95%,光束质量β≤2。

通过实施例1所述一种多波长光谱合束板条激光振荡器,对板条激光增益介质产生的12束子激光进行外腔光谱合束输出,能够得到17kw高功率、高光束质量(β≤2)的激光输出。

本发明实施例1提供的多波长光谱合束板条激光振荡器,具有如下的优点:

1、实施例1提供的多波长光谱合束板条激光振荡器,对固体板条激光阵列实行外腔光谱合束,实现增益放大与非相干光谱合束一体化,使得该激光振荡器的结构紧凑、输出的光束具有高功率、高光束质量的优点,该激光振荡器与光谱合束放大器相比,无需种子激光源模块,系统简单;振荡器本身从子激光器内部激光振荡、增益竞争及外部光学元件的相互作用出发,实现单个合束单元的光谱锁定和合束输出,因此光谱合束振荡器输出激光的光束质量可达到单个子激光单元的光束质量,而且整个装置调节对每束子激光束的光路准直度要求也没有光谱合束放大器的要求高,更易实现;而且,实施例1提供的激光振荡器本身可以作为光谱合束放大器的一个种子激光单元,在未来应用中能够实现更大的合成输出功率。

2、在不采用自适应光学系统的前提下,自动预补偿板条激光增益模块2产生的光束像差。通常意义上的板条激光增益放大技术是需要复杂的自适应光学系统(ao)来配合时时补偿波前畸变导致的光束质量恶化的,因此限制了板条激光增益放大技术在激光振荡器件中的应用。本发明由高反射腔镜阵列1和输出耦合镜4形成多个独立谐振腔产生的多束子激光束,密集排布通过板条激光增益模块2,能够基本消除一束大尺寸光束通过板条增益介质容易产生的高阶空间像差,每个子激光束主要存在板条宽度方向一个倾斜像差;再通过调整高反射腔镜阵列1来校正沿着板条宽度方向的热畸变,补偿该一维像差。这样板条激光增益放大,无需再配合复杂的自适应光学器件,即可获得无像差高光束质量激光输出,从而大幅度提高了系统的可靠性。

3、实施例1采用单光栅非相干光谱合成,固体介质的增益窄化效应可在激光放大过程中压缩激光光谱线宽,进而抑制合束后光束质量退化。此外,窄线宽可以只使用单光栅进行合成,避免了使用双光栅合束会带来的合成光路长、需要偏振无关光栅、双光栅平行度要求高、第二块光栅上的高功率密度对光栅损伤阈值高要求等诸多技术困难,使系统易于实现轻小型化。

4、实施例1提供的激光振荡器,无非线性光学效应影响。固体增益介质中光束通光尺寸(直径为毫米量级)较半导体和光纤(直径为百微米量级)都要大很多,因此大幅降低了激光功率密度,从而降低了非线性效应的影响,因此固体板条中的激光放大输出峰值功率可比已有半导体光谱合成激光至少高一个数量级,突破了单一子激光器功率限制,提高了光谱合束激光振荡器的输出功率。

图3是根据本发明实施例2的激光振荡器的结构示意图。

如图3所示,在本实施例2中,仅论述与实施例1不同之处,相同之处不在赘述。

在实施例2中,相比于实施例1中,还增设有光路变换元件6;该光路变换元件6位于高反射腔镜阵列1和板条激光增益模块2之间,以分别调节n个高反射腔镜表面的n束光的指向,以使n束光的光轴相互平行,且能够将其射入板条激光增益模块2中。

可选的,该光路变换元件6为变形镜或半主动光学镜,可通过该变形镜或半主动光学镜调节n个高反射腔镜表面的n束光的指向,以使n束光指向满足要求平行入射到板条激光增益模块2中。

具体地,可将光路变换元件6的表面镀有对于一个波段的全反射的膜,这个波段可以根据板条激光增益模块中,增益介质发射的波长范围决定,例如,当增益介质选用yb:yag晶体板条,该板条的增益谱线范围是1027~1032(光谱宽度5nm),则将光路变换元件6表面镀有对于波长范围为1027~1032nm反射率高的膜。

应当理解的是,本发明的上述具体实施例仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1