负电容场效应晶体管及其制备方法与流程

文档序号:18174846发布日期:2019-07-13 10:01阅读:486来源:国知局
负电容场效应晶体管及其制备方法与流程

本发明涉及半导体集成技术领域,具体而言,涉及一种负电容场效应晶体管及其制备方法。



背景技术:

未来集成电路将持续发展,除了集成密度继续提升,电路的功耗越来越重要。持续降低工作电压vdd,并降低器件漏电成为技术关键。采用gaa等新结构可以部分实现上述目标,但需要vdd持续缩减到0.5v以下时,晶体管亚阈值摆幅的玻尔兹曼限制(ss≥60mv/dec)成为关键技术挑战。发展突破ss限制的新技术成为未来新技术关键方向。

除了基于量子隧穿的tfet,在栅极结构中集成基于铁电材料的铁电电容,使之与栅电容串联,在铁电电畴翻转时形成负电容,并在合适工作条件下,可形成内部电势放大,从而改变晶体管开关时的表面电势,从而突破ss的玻尔兹曼限制,获得较大的电流收益,实现vdd降低。该器件成为负电容场效应晶体管(ncfet)。

ncfet中铁电电容cfe和其关键材料具有重要作用,该材料需要实现良好的铁电效应,并保持良好稳定性、可靠性,而且需要工艺简单,和传统工艺兼容。现有技术中的铁电材料包括锆钛酸铅(pzt)、钛酸铅(pbtio3)、钽钪酸铅(pst)、钛酸锶钡(bst)、聚氟乙烯(pvf)以及聚偏二氟乙烯(pvdf)等。上述材料需要特殊工艺,并要一定厚度产生铁电性,导致在cmos极度微缩过程中应用受限。

除上述铁电材料之外,正交相hfo2晶体也能够产生铁电性,其简单结构,与传统hkmg工艺兼容,从而工艺简单,比pzt等材料相比可靠更高,在相同的铁电性条件下所需要的膜层厚度更小。并且,通过si、y、zr、al等元素掺杂,能够极大提升hfo2的铁电极性,形成hfzrox(hzo)、hfsiox和hfalox等更强极性材料。

以pmos为例,将铁电hzo材料集成于晶体管结构中的工艺通常是:在后栅工艺中在形成传统界面氧化层/hfo2层(il/hk)之上再生长一层hzo材料,其余与传统工艺相同,在之后的工艺中通过退火形成多晶晶粒,晶粒中形成正交相,然后产生强铁电极性。

然而,随着半导体器件的持续发展,上述铁电材料极性已逐渐无法得到满足,因此,现有技术中亟需提供一种在有限的栅极空间内继续提升铁电材料极性的方法。



技术实现要素:

本发明的主要目的在于提供一种负电容场效应晶体管及其制备方法,以在有限的栅极空间内继续提升铁电材料的极性。

为了实现上述目的,根据本发明的一个方面,提供了一种负电容场效应晶体管,包括:衬底结构,衬底结构包括mos区域;栅绝缘介质层结构,覆盖于mos区域上,包括沿远离衬底结构的方向顺序层叠的界面氧化层、hfo2层、掺杂材料薄层和铁电材料层,其中,铁电材料层中铁电材料为hfxa1-xo2,a为掺杂元素,0.1≤x≤0.9,形成掺杂材料薄层的材料为ayoz或a,y/z为1/2、2/3、2/5和1/1中的任一比值;金属栅叠层,覆盖于栅绝缘介质层结构上。

进一步地,a选自si、zr、al、la和y中的任一种。

进一步地,掺杂材料薄层的厚度为0.1~5nm。

进一步地,mos区域包括nmos区域和pmos区域。

进一步地,衬底结构为平面结构、鳍结构和环栅纳米线结构中的任一种。

根据本发明的另一方面,提供了一种负电容场效应晶体管的制备方法,包括以下步骤:s1,提供衬底结构,衬底结构包括mos区域;s2,在衬底结构上顺序形成界面氧化层、hfo2层、掺杂材料薄层和铁电材料层,得到覆盖在mos区域上的栅绝缘介质层结构,其中,铁电材料层中铁电材料为hfxa1-xo2,a为掺杂元素,0.1≤x≤0.9,形成掺杂材料薄层的材料为ayoz或a,y/z为1/2、2/3、2/5和1/1中的任一比值;s3,在衬底结构上形成覆盖在栅绝缘介质层结构上的金属栅叠层。

进一步地,a选自si、zr、al、la和y中的任一种。

进一步地,掺杂材料薄层的厚度为0.1~5nm。

进一步地,步骤s2包括以下步骤:s21,在衬底结构表面形成界面氧化层,优选界面氧化层为sio2层,更优选采用臭氧处理工艺将衬底结构表面形成界面氧化层;s22,在界面氧化层表面顺序沉积hfo2、掺杂材料和铁电材料并退火,以形成hfo2层、掺杂材料薄层和铁电材料层,掺杂材料为ayoz或a,优选沉积的工艺选自原子层沉积工艺、化学气相沉积工艺、真空物理溅射沉积和回流焊工艺中的任一种。

进一步地,mos区域包括nmos区域和pmos区域,步骤s3包括以下步骤:s31,在栅绝缘介质层结构上顺序沉积形成第一阻挡层和第一功函数层;s32,去除第一功函数层中位于nmos区域上的部分,减薄第一阻挡层中位于nmos区域上的部分,并减薄第一功函数层中位于pmos区域上的部分;s33,在剩余的第一阻挡层和第一功函数层上顺序沉积形成第二功函数层、第二阻挡层和导电填充层,以形成金属栅叠层。

应用本发明的技术方案,提供了一种负电容场效应晶体管,ncfet中的栅绝缘介质层结构包括hfo2层/ayoz(或a)层/hfxa1-xo2层,由于hfo2层与其表面的ayoz(或a)具有不同的晶格,通过晶格应变或者金属元素诱导改变其上hfxa1-xo2的晶格与晶粒大小,从而通过提升铁电材料的电畴极性,提高了ncfet的铁电特性、材料稳定性和可靠性。

附图说明

构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1示出了本发明实施方式所提供的一种负电容场效应晶体管的结构示意图;

图2示出了在本申请实施方式所提供的负电容场效应晶体管的制备方法中,提供衬底结构后的基体剖面结构示意图;

图3示出了在图2所示的衬底结构上顺序形成界面氧化层、hfo2层、掺杂材料薄层和铁电材料层后的基体剖面结构示意图;

图4示出了在图3所示的栅绝缘介质层结构上顺序沉积形成第一阻挡层和第一功函数层后的基体剖面结构示意图;

图5示出了去除图4所示的第一功函数层中位于nmos区域上的部分,减薄第一阻挡层中位于nmos区域上的部分,并减薄第一功函数层中位于pmos区域上的部分后的基体剖面结构示意图;

图6示出了在图5所示的剩余的第一阻挡层和第一功函数层上顺序沉积形成第二功函数层、第二阻挡层和导电填充层后的基体剖面结构示意图。

其中,上述附图包括以下附图标记:

100、衬底结构;101、第一鳍片;102、第二鳍片;103、第三鳍片;104、第四鳍片;10、界面氧化层;20、hfo2层;30、掺杂材料薄层;40、铁电材料层;50、第一阻挡层;60、第一功函数层;70、第二功函数层;80、第二阻挡层;90、导电填充层。

具体实施方式

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

正如背景技术中所介绍的,现有技术中亟需提供一种在有限的栅极空间内继续提升铁电材料极性的方法。本申请的发明人针对上述问题进行研究,提出了一种负电容场效应晶体管,如图1所示,包括衬底结构100、栅绝缘介质层结构和金属栅叠层,衬底结构100包括mos区域;栅绝缘介质层结构覆盖于mos区域上,包括沿远离衬底结构100的方向顺序层叠的界面氧化层10、hfo2层20、掺杂材料薄层30和铁电材料层40,其中,铁电材料层40中铁电材料为hfxa1-xo2,a为掺杂元素,0.1≤x≤0.9,形成掺杂材料薄层30的材料为ayoz或a,y/z为1/2、2/3、2/5和1/1中的任一比值;金属栅叠层覆盖于栅绝缘介质层结构上。

上述负电容场效应晶体管(ncfet)中的栅绝缘介质层结构包括hfo2层/ayoz(或a)层/hfxa1-xo2层,由于hfo2层与其表面的ayoz(或a)具有不同的晶格,通过晶格应变或者金属元素诱导改变其上hfxa1-xo2的晶格与晶粒大小,从而通过提升铁电材料的电畴极性,提高了ncfet的铁电特性、材料稳定性和可靠性。

在本发明的上述负电容场效应晶体管中,铁电材料层40中铁电材料为hfxa1-xo2,形成掺杂材料薄层30的材料为ayoz或a,优选地,a选自si、zr、al、la和y中的任一种。如上述铁电材料层40为hfzro4(hzo)层时,形成上述掺杂材料薄层30的材料可以为zro2或zr;当上述铁电材料层40为hfsio4层时,形成上述掺杂材料薄层30的材料可以为sio2或si。

在本发明的上述负电容场效应晶体管中,优选地,上述掺杂材料薄层30的厚度为0.1~5nm。具有上述优选范围的掺杂材料薄层30不仅能够具有较薄的厚度,还能够通过晶格应变或者金属元素诱导有效地改变其上hfxa1-xo2的晶格与晶粒大小,从而提升材料的电畴极性。

在本发明的上述负电容场效应晶体管中,上述衬底结构100可以为平面结构、鳍结构和环栅纳米线结构中的任一种;衬底结构100中的衬底可以为现有技术中常规的半导体衬底,如si衬底、ge衬底、sige衬底、soi(绝缘体上硅)或goi(绝缘体上锗)等;衬底结构100中的mos区域可以包括nmos区域和pmos区域。

以上述衬底结构100为鳍结构为例,如图1所示,nmos区域可以至少具有第一鳍片101和第二鳍片102,pmos区域可以至少具有第三鳍片103和第四鳍片104。此时,在一种优选的实施方式中,第一阻挡层50位于nmos区域和pmos区域上,第一功函数层60位于与pmos区域对应的部分第一阻挡层50上,第二功函数层70位于第一功函数层60上以及与nmos区域对应的部分第一阻挡层50上,第二阻挡层80位于第二功函数层70上。

根据本发明的另一方面,还提供了一种负电容场效应晶体管的制备方法,包括以下步骤:s1,提供衬底结构,衬底结构包括mos区域;s2,在衬底结构上顺序形成界面氧化层、hfo2层、掺杂材料薄层和铁电材料层,得到覆盖在mos区域上的栅绝缘介质层结构,其中,铁电材料层中铁电材料为hfxa1-xo2,a为掺杂元素,0.1≤x≤0.9,形成掺杂材料薄层的材料为ayoz或a,y/z为1/2、2/3、2/5和1/1中的任一比值;s3,在衬底结构上形成覆盖在栅绝缘介质层结构上的金属栅叠层。

上述负电容场效应晶体管(ncfet)的制备方法中,形成的栅绝缘介质层结构包括hfo2层/ayoz(或a)层/hfxa1-xo2层,由于hfo2层与其表面的ayoz(或a)具有不同的晶格,通过晶格应变或者金属元素诱导改变其上hfxa1-xo2的晶格与晶粒大小,从而通过提升铁电材料的电畴极性,提高了ncfet的铁电特性、材料稳定性和可靠性。

下面将更详细地描述根据本发明提供的负电容场效应晶体管的制备方法的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。

首先,执行步骤s1:提供衬底结构,衬底结构包括mos区域,如图2所示。上述衬底结构100中的衬底可以为现有技术中常规的半导体衬底,如si衬底、ge衬底、sige衬底、soi(绝缘体上硅)或goi(绝缘体上锗)等。

上述mos区域可以包括nmos区域和pmos区域,上述nmos区域和pmos区域可以为多个,具有上述nmos区域和上述pmos区域的衬底结构100可以为鳍片结构,此时,衬底上具有与nmos区域和pmos区域一一对应的多个鳍片。形成上述衬底结构100的工艺可以包括以下步骤:首先,在衬底上形成鳍片(fet),并形成器件隔离区(finsti);然后,通过掺杂形成nmos和pmos的阱区和沟道区,形成跨各鳍片的假栅堆叠,在假栅堆叠的两侧形成跨鳍片的间隔物(spacer);进行nmos和pmos的ldd掺杂,并在分别外延si和sige后进行源/漏区的掺杂并退火;再形成第一层间介质层(ild0),并将第一层间介质层叠封装(pop);去除假栅堆叠,以在第一层间介质层中形成多个nmos栅极沟槽和多个pmos栅极沟槽,以得到分别含有鳍片的nmos区域和pmos区域。

在上述步骤s1之后,执行步骤s2:在衬底结构100上顺序形成界面氧化层10、hfo2层20、掺杂材料薄层30和铁电材料层40,得到覆盖在mos区域上的栅绝缘介质层结构,如图3所示,其中,铁电材料层40中铁电材料为hfxa1-xo2,a为掺杂元素,0.1≤x≤0.9,形成掺杂材料薄层30的材料为ayoz或a,y/z选自1/2、2/3、2/5和1/1中的任一项。

在上述步骤s2中,铁电材料层40中的铁电材料为hfxa1-xo2,形成掺杂材料薄层30的材料为ayoz或a,优选地,a选自si、zr、al、la和y中的任一种。如上述铁电材料层40为hfzro4(hzo)层时,形成上述掺杂材料薄层30的材料可以为zro2或zr;当上述铁电材料层40为hfsio4层时,形成上述掺杂材料薄层30的材料可以为sio2或si。

在上述步骤s2中,优选地,上述掺杂材料薄层30的厚度为0.1~5nm。具有上述优选范围的掺杂材料薄层30不仅能够具有较薄的厚度,还能够通过晶格应变或者金属元素诱导有效地改变其上hfxa1-xo2的晶格与晶粒大小,从而提升材料的电畴极性。

上述步骤s2可以包括以下步骤:s21,在衬底结构100的表面形成界面氧化层10;s22,在界面氧化层10的表面顺序沉积hfo2、掺杂材料和铁电材料并退火,以形成所述hfo2层、所述掺杂材料薄层和所述铁电材料层,所述掺杂材料为ayoz或a。

在上述步骤s21中,界面氧化层10可以为sio2层,此时,可以通过臭氧处理工艺在衬底结构100中mos区域的表面形成上述界面氧化层10。

在上述步骤s22中,通过在hfo2与铁电hfxa1-xo2之间沉积或溅射形成ayoz(或a)薄层并在退火后,通过晶格应变或者元素诱导形成强铁极性hfxa1-xo2晶粒;形成上述hfo2层20、掺杂材料薄层30和铁电材料层40的工艺可以为原子层沉积工艺(ald)、化学气相沉积(cvd)、真空物理溅射沉积(pvd)或回流焊工艺(reflow)。本领域技术人员可以根据现有技术对形成上述各层的工艺条件进行合理选取。

在完成上述步骤s2之后,执行步骤s3:在衬底结构100上形成覆盖在栅绝缘介质层结构上的金属栅叠层,如图4至图6所示。

上述衬底结构100中的mos区域可以包括nmos区域和pmos区域,在一种优选的实施方式中,上述步骤s3包括以下步骤:s31,在栅绝缘介质层结构上顺序沉积形成第一阻挡层50和第一功函数层60,如图4所示;s32,去除第一功函数层60中位于nmos区域上的部分,减薄第一阻挡层50中位于nmos区域上的部分,并减薄第一功函数层60中位于pmos区域上的部分,如图5所示;s33,在剩余的第一阻挡层50和第一功函数层60上顺序沉积形成第二功函数层70、第二阻挡层80和导电填充层90,以形成金属栅叠层,如图6所示。

在上述优选的实施方式中,形成上述第一阻挡层50和第二阻挡层80的材料可以独立地选自tin、tan、tinx、tanx和tinsi中的任一种或多种,0.1≤x≤0.9;形成上述第一功函数层60的材料选自al、tial、tialx、tialcx、ticx和tacx中的任一种或多种,0.1≤x≤0.9;形成上述第二功函数层70的材料选自tin、tan、tinx、tanx和tinsi中的任一种或多种,0.1≤x≤0.9。本领域技术人员可以根据现有技术对形成上述各层的沉积工艺及其工艺条件进行合理选取,在此不再赘述。

在上述优选的实施方式中,形成上述导电填充层90的材料可以选自w、ni、ti和co中的任一种或多种;并且,形成上述导电填充层90的沉积工艺可以选自原子层沉积、化学气相沉积和物理气相沉积中的任一种。

在上述优选的实施方式中,去除第一阻挡层50、第一功函数层60以及第二功函数层70的工艺可以独立地选自干法腐蚀、湿法腐蚀、灰化和剥离中的任一种。本领域技术人员可以根据现有技术对去除工艺及其工艺条件进行合理选取,在此不再赘述。

在上述步骤s33之后,还可以通过对上述金属栅叠层进行化学机械抛光(cmp),以使金属栅极结构的顶部齐平。

在步骤s3之后,本发明的上述制备方法还可以包括实现器件互连的步骤。上述实现器件互连的具体步骤可以包括:沉积形成第二层间介质层(ild1),形成金属层(ct)和硅化物层,并形成钨塞(wplug),并进行化学机械抛光,然后多层互连,并形成钝化层管脚(pad)。

从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:

上述负电容场效应晶体管(ncfet)中的栅绝缘介质层结构包括hfo2层/ayoz(或a)层/hfxa1-xo2层,由于hfo2层与其表面的ayoz(或a)具有不同的晶格,通过晶格应变或者金属元素诱导改变其上hfxa1-xo2的晶格与晶粒大小,从而通过提升铁电材料的电畴极性,提高了ncfet的铁电特性、材料稳定性和可靠性。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1