一体化定向天线的制作方法

文档序号:22884530发布日期:2020-11-10 17:55阅读:128来源:国知局
一体化定向天线的制作方法

本申请涉及无线通信技术领域,具体而言,涉及一种一体化定向天线。



背景技术:

无线通信系统中,存在着许多双向辐射的天线,例如孔径天线、等角螺旋天线、缝隙天线、偶极子天线、阿基米德螺旋天线等,为了实现天线的定向辐射,现有技术中,通常在天线的背面加载金属反射板,对辐射的电磁波进行反射,以确保天线辐射的方向性。

上述方案虽然可以在一定程度上得到所需要的定向辐射天线,但是,当天线距离金属反射板太近时,由于反射电磁波相位的不同会抵消掉一部分能量,导致天线整体效率很低,反射系数很大。为了提高定向天线的辐射效率,天线与金属板之间的距离应设置约为1/4个工作波长,但是,这又使得天线与微波通信发展中所要求的低剖面、小型化不相适应。



技术实现要素:

有鉴于此,本申请提供一种一体化定向天线,能够实现高增益、高辐射效率、低剖面、小型化。

具体地,本申请是通过如下技术方案实现的:

一种一体化定向天线,包括:

第一介质基板,包括设于上表面的天线辐射体,所述天线辐射体与信号发射源馈接以及与地点连接;及

第二介质基板,包括设于上表面的ebg金属贴片和设于下表面的地板层,所述ebg金属贴片通过金属过孔与所述地板层连接;所述第一介质基板的下表面与所述第二介质基板的上表面接合形成一体式的层叠结构,在沿着垂直于所述第一介质基板和所述第二介质基板方向的投影中,所述ebg金属贴片的外轮廓包围所述天线辐射体的外轮廓。

根据一个示例性的实施例,辐射体的中心与所述ebg金属贴片的中心重合。

根据一个示例性的实施例,金属贴片开设有用于增加天线电长度的槽。

根据一个示例性的实施例,所述ebg金属贴片包括多个金属贴片单元,所述第二介质基板对应每个所述金属贴片单元所在的位置开设有所述金属过孔,每个所述金属贴片单元通过所述金属过孔与所述地板层连接,每个金属贴片单元开设有所述槽,所述槽环绕所述金属过孔设置。

根据一个示例性的实施例,每个所述金属贴片单元开设有一个所述槽,所述槽环绕所述金属过孔延伸。

根据一个示例性的实施例,所述槽包括垂直贯通的横向延伸部分和纵向延伸部分。

根据一个示例性的实施例,每个所述金属贴片单元开设有多个所述槽,多个所述槽环绕所述金属过孔分布。

根据一个示例性的实施例,每个所述金属贴片单元开设有多个所述槽,多个所述槽分两层环绕所述金属过孔分布。

根据一个示例性的实施例,所述多个槽均为矩形槽,相邻的两个所述矩形槽的长度方向相互垂直。

根据一个示例性的实施例,所述多个槽均为圆弧形条状槽,多个所述圆弧形条状槽的圆心重合。

根据一个示例性的实施例,所述圆弧形条状槽的圆心与所述金属过孔的中心重合。

根据一个示例性的实施例,多个所述槽分别为第一槽和第二槽,所述第一槽的形状与所述第二槽的形状不同,所述第一槽环绕所述金属过孔分布,所述第二槽环绕所述金属过孔分布,所述第一槽环绕于所述第二槽的外侧。

根据一个示例性的实施例,所述第一槽包括矩形槽,所述第二槽包括圆弧形条状槽。

根据一个示例性的实施例,所述第一槽包括由多条首尾依次连接的线段和弧线段所界定的槽,所述第二槽包括多个依次相接的条状槽。

根据一个示例性的实施例,所述egb金属贴片为柔性金属贴片。

根据一个示例性的实施例,所述天线辐射体为偶极子辐射体,包括第一金属辐射臂和第二金属辐射臂,所述第一金属辐射臂与所述信号发射源馈接,所述第二金属辐射臂与所述地点连接。

根据一个示例性的实施例,所述天线为wifi天线。

本申请提供的技术方案可以达到以下有益效果:

本申请提供了一种一体化定向天线,第一介质基板的下表面与第二介质基板的上表面接合形成一体式的层叠结构,沿着垂直于第一介质基板和第二介质基板方向的投影中,ebg金属贴片的外轮廓包围天线辐射体的外轮廓。该方案中,天线辐射体朝向第二介质基板所辐射出的电磁波中更多的部分电磁波能够通过ebg金属贴片的同相反射作用与相反侧的电磁波的能量相叠加,从而实现了天线的高增益、高辐射效率的定向辐射。并且,一体化层叠设置的第一介质基板与第二介质基板同时实现了该天线的低剖面和小型化,同时省略了保持第一介质基板与第二介质基板相对固定的固定结构,使得天线的结构得到简化。

附图说明

图1是本申请一示例性实施例示出的天线的剖视图;

图2是本申请一示例性实施例示出的第一介质基板的俯视图;

图3是本申请一示例性实施例示出的第二介质基板的俯视图;

图4是本申请一示例性实施例示出的金属贴片单元设置多个矩形槽的示意图;

图5是本申请一示例性实施例示出的金属贴片单元设置多个圆弧形条状槽的示意图;

图6是本申请一示例性实施例示出的金属贴片单元设置多个圆弧形条状槽的又一示意图;

图7是本申请一示例性实施例示出的金属贴片单元设置多个槽且多个槽分层设置的示意图;

图8是本申请一示例性实施例示出的金属贴片单元设置多个槽且多个槽分层设置的又一示意图;

图9是本申请一示例性实施例示出的金属贴片单元设置一个槽的示意图;

图10是本申请一示例性实施例示出的wifi天线的天线系数图;

图11是本申请一示例性实施例示出的wifi天线在xoz平面的辐射方向图;

图12是本申请一示例性实施例示出的wifi天线在yoz平面的辐射方向图;

图13是设置有ebg金属贴片的天线和未设置ebg金属贴片的天线放置在金属反射板上方相同的距离s=0.5mm处时,天线系数s11的对比曲线图;

图14是设置有ebg金属贴片的天线、设置金属反射板的天线以及偶极子源天线三种天线的增益的对比曲线图。

具体实施方式

这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。

在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。除非另作定义,本申请使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“多个”或者“若干”表示两个及两个以上。除非另行指出,“前部”、“后部”、“下部”和/或“上部”、“顶部”、“底部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。

本申请提供了一种一体化定向天线(以下简称天线),该天线可以实现高增益、高辐射效率的定向辐射,且可以满足低剖面、小型化的设计需求。

具体地,请参考图1,该天线10包括第一介质基板101和第二介质基板102,第一介质基板101的下表面与第二介质基板102的上表面接合形成一体式的层叠结构。例如,可以通过压接的方式使得第一介质基板101与第二介质基板102接合成一体式结构。

请参考图2,第一介质基板101包括天线辐射体20,天线辐射体20设置于第一介质基板101的上表面。天线辐射体20与信号发射源馈接,并且,天线辐射体20还与地点连接。本申请对天线辐射体的具体结构不做限定,根据所要设计的天线的工作频段的不同,天线辐射体的具体结构可以有所不同。

在一实际应用场景中,如果所要设计的天线为单频wifi天线时,则根据wifi天线的工作频段为2.4ghz-2.485ghz,天线辐射体可以采用单极子天线辐射体。

在另一实际应用场景中,如图2所示,如果所要设计的天线为双频wifi天线时,则根据wifi天线的工作频段分别为2.4ghz-2.485ghz以及5.15ghz-5.825ghz,则天线辐射体可以采用偶极子天线辐射体。其中,偶极子天线辐射体包括第一金属辐射臂202和第二金属辐射臂203,馈电端口204与第一金属辐射臂202馈接,在馈电端口204处还设置有枝节匹配器205,以匹配天线阻抗。

请参考图1和图3,第二介质基板102包括设于上表面的ebg金属贴片30和设于下表面的地板层40,其中,第二介质基板102的上表面与下表面绝缘,中间为介质层。ebg金属贴片30通过金属过孔304与地板层连接(请参考图1)。

具体而言,ebg金属贴片30包括多个金属贴片单元302,金属贴片单元302呈阵列式排布,彼此之间留有间隙301。穿过第二介质基板102的金属过孔304设置有多个,分别设置在每个金属贴片单元302所在的位置处,每个金属贴片单元302通过金属过孔304与地板层40连接。通过以上设置,可以在天线中形成与天线辐射体20的辐射频率相匹配的lc谐振电路。

作为一种示例,ebg金属贴片30可以设置为柔性金属贴片,例如,由fpc(flexibleprintedcircuit)制成。

在一实际应用场景中,如图3所示,ebg金属贴片可以包括六个金属贴片单元302,按两行三列排布,其中,横向为行,纵向为列。金属贴片单元302的形状为正方形,每个金属贴片单元302的中心处设置一个金属过孔304。

特别地,当第一介质基板101的下表面与第二介质基板102的上表面接合时,可以在沿着垂直于第一介质基板101和第二介质基板102方向的投影中,使得ebg金属贴片30的外轮廓包围天线辐射体20的外轮廓。

在上述的天线10的结构中,天线辐射体20用于辐射和接收电磁波,该天线辐射体20朝向第二介质基板102的一侧所辐射出的一部分电磁波可以通过ebg金属贴片30的同相反射作用与向远离第二介质基板102的一侧所辐射出的电磁波的能量相叠加。由于沿着垂直于第一介质基板101和第二介质基板102方向的投影中的ebg金属贴片30的外轮廓包围天线辐射体20的外轮廓,可以使得天线辐射体20朝第二介质基板102所辐射出的电磁波中更多部分的电磁波能够通过ebg金属贴片30的同相反射作用与相反侧的电磁波的能量相叠加,从而实现了天线10的高增益、高辐射效率的定向辐射。

另一方面,由于第一介质基板101与第二介质基板102的一体化层叠设置,消除了第一介质基板101与第二介质基板102之间的间隙,使得该天线10满足了低剖面、小型化的设计需求。此外,一体式结构还省略了保持第一介质基板101与第二介质基板102相对固定的固定结构,使得该天线的结构得到简化。

作为一个示例性的实施例,可以设置天线辐射体20的中心与ebg金属贴片30的中心重合。这样一来,天线辐射体20可以更加集中的位于ebg金属贴片30的中心位置处,则天线辐射体20朝向第二介质基板102一侧所辐射出的电磁波也更加集中于ebg金属贴片30的中心位置处,由此可以使得通过ebg金属贴片30的同相反射作用使得更多的电磁波的能量定向叠加,进一步实现天线10的高增益、高辐射效率。

请继续参考图3,作为一个示例性的实施例,ebg金属贴片30可以开设有槽303,槽303可以在不增加天线10的尺寸的情况下,实现天线10的电长度的增加,由此可以使得天线10更加趋于小型化。

每个金属贴片单元302可以分别开设有槽303,槽303可以环绕金属过孔304设置。本申请对槽303的数量、形状以及尺寸等不做具体限定,可以根据天线10在实际应用场景中的情况选择设置,以下通过多个实施例对槽303的设置方式进行描述。

实施例一

如图4所示,在每个金属贴片单元302上,槽303的数量为多个,多个槽303环绕金属过孔304分布。

多个槽303均为矩形槽,每个金属贴片单元302上分别设有四个矩形槽,四个矩形槽环绕金属过孔304设置,在各金属贴片单元302上,相邻的两个矩形槽的长度方向垂直。

需要说明,各金属贴片单元302上的矩形槽的姿态可以有所不同,例如,矩形槽可以相对于水平方向或竖直方向倾斜预设角度等等。

实施例二

如图5所示,在每个金属贴片单元302上,槽303的数量为多个,多个槽303环绕金属过孔304分布。

多个槽303均为圆弧形条状槽,每个金属贴片单元302上分别设有四个圆弧形条状槽,四个圆弧形条状槽环绕金属过孔304设置,且各圆弧形条状槽的圆心重合。

实施例三

如图6所示,在每个金属贴片单元302上,槽303的数量为多个,多个槽303环绕金属过孔304分布。

多个槽303均为圆弧形条状槽,每个金属贴片单元302上分别设有四个圆弧形条状槽,四个圆弧形条状槽环绕金属过孔304设置,且各圆弧形条状槽的圆心与金属过孔304的中心重合。

实施例四

如图7所示,在每个金属贴片单元302上,槽303的数量为多个,多个槽303可以分两层环绕金属过孔304分布。

多个槽303分别为第一槽303’和第二槽303”,第一槽303’的形状与第二槽303”的形状不同。其中,第一槽303’设置为矩形槽,第二槽303”可以是圆弧形条状槽,第一槽303’环绕金属过孔304分布,第二槽303”环绕金属过孔304分布,第一槽303’环绕于第二槽303”的外侧。

实施例五

如图8所示,在每个金属贴片单元302上,槽303的数量可以是多个,多个槽303可以分两层环绕金属过孔304分布。

多个槽303分别为第一槽303’和第二槽303”,第一槽303’包括由多条首尾依次连接的线段和弧线段所界定的不规则形状的槽,第二槽303”包括多个依次相接的条状槽,第一槽303’环绕金属过孔304分布,第二槽303”环绕金属过孔304分布,第一槽303’环绕于第二槽303”的外侧。

实施例六

如图9所示,在每个金属贴片单元302上,槽303的数量为一个,槽303可以环绕金属过孔304延伸。槽303可以包括两部分,横向延伸部分和纵向延伸部分,两部分垂直相接,呈大致的l形结构。槽303也可以设置为c形槽或u形槽等。

需要说明的是,槽303不仅限于图3至图9中所示出的示例,在其它一些应用场景中,还有其它多种方案可供选择。

本申请以wifi天线的实际应用场景为例,详细说明该天线10各方面的性能,wifi天线的工作频段为2.4ghz-2.485ghz。

请结合图1至图3所示,在wifi天线的应用场景中,该一体化定向天线10的长、宽、高的尺寸分别设计为73.5mm、49mm、2mm,其中,第一介质基板101为双面板,厚度为0.5mm,第一介质基板101包括天线辐射体20,天线辐射体20为对称偶极子辐射体,对称偶极子辐射体包括两条等长等截面的第一金属辐射臂202和第二金属辐射臂203,两个金属辐射臂的长度均为21mm,约为四分之一波长。

第二介质基板102为双面板,厚度为1.5mm,上表面为周期性排布的金属贴片单元302,下表面为地板层40。第一介质基板101和第二介质基板102均采用fr-4玻璃纤维环氧树脂微波材料。

该场景中,天线辐射体20通过同轴线馈电,同轴线的内导体分别与信号发射源和第一金属辐射臂202馈接,同轴线的外导体分别与地点和第二金属辐射臂203连接。同轴线与第一金属辐射臂202馈接的路径中可以设置枝节匹配器205,以实现天线的10阻抗匹配。

该场景中,ebg金属贴片30中的金属贴片单元302以两排三列的方式排布,金属贴片单元302的形状为正方形,边长为24mm。每个金属贴片单元302的中心位置处开设一个金属过孔304,直径为1mm,每个金属贴片单元302通过该金属过孔304与地板层连接。

该场景中,每个金属贴片单元302开设有四个矩形槽303,其中,长度为10mm,宽度为3mm,相邻的两个矩形槽303的长度方向相互垂直。

请参考图10至图12,图10示出了该天线10的反射系数图;图11示出了该天线在xoz平面的辐射方向图;图12示出了该天线在yoz平面的辐射方向图。根据图10可知,在频率2.45ghz处,该天线10的反射系数s11在-5db以下,且-5db的阻抗带宽可达到165mhz。根据图11和图12可知,在频率2.45ghz处,xoz面和yoz面的方向图表现出了很明显的方向性,且最大增益可达7.1db。

请参考图13和图14,图13是设置有ebg金属贴片30和未设置ebg金属贴片30时的天线系数s11对比曲线图;图14是设置有ebg金属贴片的天线、设置金属反射板的天线以及偶极子源天线三种天线的增益的对比曲线图。

从图13和图14观察可知,在频率2.4ghz处,未设置ebg金属贴片30仅设置金属反射板结构的天线系数s11几乎为0,在频率2.45ghz处的增益最大值为-6.47db;设置有ebg金属贴片30的天线在频率2.45ghz处的增益最大值为7.1db,比偶极子源天线的增益提高了4.92db,因此,本申请提供的天线10在极大的提升天线辐射性能的同时,也表现出了很好的抗金属环境的能力。

以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请防护的范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1