本发明涉及铝离子电池技术领域,更具体的是涉及一种铝离子电池正极及其制造方法。
背景技术:
铝离子电池(aibs)质量轻、价格低、资源丰富、稳定性好以及理论容量高等优点而备受国际关注。铝电极在中性及酸性介质中电位为-1.68v(vsshe),碱性介质中电位为-2.35v(vsshe),铝的相对原子质量为26.98,化合价为+3价。铝的体积比容量为8050mahcm-3,几乎为锂离子电池的4倍(2062mahcm-3),为目前所有电池金属电极材料中最高。近五年,aibs研究得到了广泛的研究和发展。其插层反应机理为可移动客体离子(含al的阳离子或阴离子)的可逆脱嵌宿主晶格。由于铝酸盐离子液体的特殊性,al3+与alcl4-均可以成为客体离子。根据报道,多种材料化合物可作为宿主材料,如碳、氧化钒、chevrel相(mo6s8)、一些层状二硫化合物、导电聚合物、卤素(i2)和普鲁士蓝(cuhcf)等。
由于多电子还原氧化反应,al3+电池在传统的机制中应该具有高容量。但是,低导电性、结构塌陷和体积急剧膨胀阻碍了金属氯化物或硫化物的应用。而且截止到目前为止,发现的可逆脱嵌al3+的潜在正极材料数量有限。理论上,由于al3+半径
技术实现要素:
本发明的目的在于:为了解决现有的铝离子电池中的正极材料导电性差、铝离子脱嵌难度大的技术问题,本发明提供一种铝离子电池正极及其制造方法。
本发明为了实现上述目的具体采用以下技术方案:
一种铝离子电池正极及其制造方法,包括铝离子电池的正极基体,正极基体外包覆有含有碳纳米尖的覆碳层,所述覆碳层的碳纳米尖上包覆有外包覆层,所述外包覆层为晶体硫化物。
覆碳层与外包覆层共同构成核壳结构,本发明正是利用多空位、大层间距、廉价的晶体硫化物与碳纳米尖共同形成厚度可控的核壳结构,提高正极材料导电性并为铝离子迁移提供宽阔的传输通道。同时碳纳米尖为石墨结构,具有良好的导电性,而且密度较金属小,是良好的尖端效应基底材料。碳纳米尖曾作为电子元件和场发射元件使用,证明了其具有良好的尖端效应。从交叉学科出发,利用电磁学中的尖端效应,即碳纳米尖(cntps)局域电场增强,提升金属离子反应动力,从而实现金属离子的快速脱嵌,提高铝离子电池电池的倍率性能和循环稳定性。最终提高了铝离子电池中的正极材料的导电,让铝离子脱嵌更加容易。
同时将外包覆层设置为晶体硫化物,主要是晶体硫化物里面的硫能和al结合,从而提高正极材料中al离子的容量,而普通的单质硫容易溶解在电解液,单质硫溶解在电解液之后会发生穿梭效应,穿梭效应会让铝电池在实际应用中的循环使用寿命降低。
优选地,所述外包覆层的厚度小于150纳米。
根据有限元计算,碳纳米尖电场增强4倍,并随着距离增大快速递减,150纳米外基本不受尖端电场影响,因此,当外包覆层的厚度须小于150纳米时,根据第一性原理计算,al3+最小脱嵌电压为2v,最高的脱嵌电压为4v,碳纳米尖电场强度完全能够满足其脱嵌电压需求。
一种铝离子电池正极制造方法,包括覆碳层的碳纳米尖制作方法、在覆碳层的碳纳米尖上包覆晶体硫化物的外包覆层的方法、将覆碳层包覆在铝离子电池的正极基体表面的方法。
优选地,所述覆碳层的碳纳米尖制作方法为:挑选硅基,采用磁共溅射的方式在硅基镀上碳膜,然后利用气相沉积法在碳膜上制备碳纳米尖(cntps),在碳纳米尖(cntps)的制备过程中,同时通以甲烷、氮气和氢气,将基底加热至850℃,释放等离子,生成碳纳米尖(cntps),最后用碱液洗去硅基。
优选地,在覆碳层的碳纳米尖上包覆晶体硫化物的外包覆层的方法为:以覆碳层的碳纳米尖(cntps)作为为基底,利用电化学沉积法制备在覆碳层的碳纳米尖(cntps)上包覆具有核壳结构的晶体硫化物的复合碳纳米尖(ms@cntps),其具体方法是以覆碳层的碳纳米尖(cntps)作为工作电极,用pt电极作为对比电极,饱和ag或者agcl作为参比电极,将锑盐和硫脲溶于二甲基亚砜并放入沉积池,采用恒电流模式,进行电化学沉积,最后将制备的复合碳纳米尖(ms@cntps)进行去离子清洗,并放入真空干燥箱烘干。
优选地,在覆碳层的碳纳米尖上包覆晶体硫化物的外包覆层的方法为:覆碳层的碳纳米尖(cntps)作为基底,利用水热法制备在覆碳层的碳纳米尖(cntps)上包覆具有核壳结构的晶体硫化物的复合碳纳米尖(ms@cntps);将碳纳米尖(cntps)分散于去离子水中,将na2s2o3或者硫代乙酰胺和盐在纯水(diw)下剧烈磁搅拌之后,倒入含有碳纳米尖(cntps)的去离子水中溶液中,搅拌后得到均匀的混合溶液;最后,将混合溶液转移到聚四氟乙烯内衬高压釜中,然后让高压釜在180-220℃的烘箱加热16-24小时,冷却至室温后,后将制备的复合碳纳米尖(ms@cntps)用纯水(diw)和乙醇离心洗涤,然后在真空烘箱中烘干。
优选地,将覆碳层包覆在铝离子电池的正极基体表面的方法:利用气相沉淀法将含有碳纳米尖(cntps)上包覆有晶体硫化物的复合碳纳米尖(ms@cntps)的覆碳层包覆在铝离子电池的正极基体表面。
本发明的有益效果如下:
1、利用多空位、大层间距、廉价的晶体硫化物与碳纳米尖共同形成厚度可控的核壳结构,提高正极材料导电性并为铝离子迁移提供宽阔的传输通道,同时碳纳米尖为石墨结构,具有良好的导电性,而且密度较金属小,是良好的尖端效应基底材料。
2、碳纳米尖曾作为电子元件和场发射元件使用,证明了其具有良好的尖端效应。从交叉学科出发,利用电磁学中的尖端效应,即碳纳米尖(cntps)局域电场增强,提升金属离子反应动力,从而实现金属离子的快速脱嵌,提高铝离子电池的倍率性能和循环稳定性,最终提高了铝离子电池中的正极材料的导电,让铝离子脱嵌更加容易。
3、据有限元计算,碳纳米尖电场增强4倍,并随着距离增大快速递减,150纳米外基本不受尖端电场影响,因此,当外包覆层的厚度须小于150纳米时,根据第一性原理计算,al3+最小脱嵌电压为2v,最高的脱嵌电压为4v,碳纳米尖电场强度完全能够满足其脱嵌电压需求。
4、通过尖端效应提高铝离子电池电池倍率性能和循环稳定性。其研究结果将为高性能铝离子电池电池的研发提供新的思路并对铝离子电池电池的产业化进程产生重要推动作用。
附图说明
图1是铝离子电池正极的结构示意图;
图2是尖端效应的尖端电场分布图。
附图标记:1-电极基体,2-覆碳层,3-外包覆层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明实施方式的描述中,需要说明的是,术语“内”、“外”、“上”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1
如图1到2所示,本实施例提供一种铝离子电池正极,包括铝离子电池的正极基体1,正极基体1外包覆有含有碳纳米尖的覆碳层2,所述覆碳层2的碳纳米尖上包覆有外包覆层3,所述外包覆层3为晶体硫化物,外包覆层3为材料为晶体mos2。
利用多空位、大层间距、廉价的晶体硫化物形成厚度可控的核壳结构,提高正极材料导电性并为铝离子迁移提供宽阔的传输通道。同时碳纳米尖为石墨结构,具有良好的导电性,而且密度较金属小,是良好的尖端效应基底材料。碳纳米尖曾作为电子元件和场发射元件使用,证明了其具有良好的尖端效应。从交叉学科出发,利用电磁学中的尖端效应,即碳纳米尖(cntps)局域电场增强,提升金属离子反应动力,从而实现金属离子的快速脱嵌,提高铝离子电池电池的倍率性能和循环稳定性。最终提高了铝离子电池中的正极材料的导电,让铝离子脱嵌更加容易。
尖端效应是指静电场中,电荷面密度与各处表面曲率半径成反比,在导体的尖端部分所带电荷强于其它部分,即曲率越大的部分电荷密度越大,电场强度也越强,如下式所示:
σ为电荷面密度,r为曲率半径,如图2所示。由于尖端电场强度大于其它部分,因此尖端部分对离子作用力更强,即金属离子获得更大的反应动力。如果在尖端部分负载涂层材料,不但能避免尖端对隔膜的损害,还能减弱电压对电解液的副作用。这样可以实现金属离子在尖端效应下的快速脱嵌。采用碳纳米尖(cntps)实现这一过程。在碳纳米尖(cntps)上沉积硫化物,从而在碳纳米尖(cntps)部分实现高电势,为金属离子脱嵌提供更高的反应动力,提高其倍率性能和循环稳定性。
实施例2
如图1到2所示,本实施例提供一种铝离子电池正极制造方法,包括铝离子电池的正极基体1,正极基体1外包覆有含有碳纳米尖的覆碳层2,所述覆碳层2的碳纳米尖上包覆有外包覆层3,所述外包覆层3为晶体硫化物。
优选地,所述外包覆层3的厚度为100纳米。
根据有限元计算,碳纳米尖电场增强4倍,并随着距离增大快速递减,150纳米外基本不受尖端电场影响,因此,当外包覆层(3)的厚度须小于150纳米时,根据第一性原理计算,al3+最小脱嵌电压为2v,最高的脱嵌电压为4v,碳纳米尖电场强度完全能够满足其脱嵌电压需求。
实施例3
一种铝离子电池正极制造方法,包括覆碳层2的碳纳米尖制作方法、在覆碳层2的碳纳米尖上包覆晶体硫化物的外包覆层3的方法、将覆碳层2包覆在铝离子电池的正极基体1表面的方法。
本发明包括铝离子电池的正极基体1,正极基体1外包覆有含有碳纳米尖的覆碳层2,所述覆碳层2的碳纳米尖上包覆有外包覆层3,所述外包覆层3为晶体硫化物;制作完覆碳层2的碳纳米尖后,在覆碳层2的碳纳米尖上包覆晶体硫化物,包覆了晶体硫化物的复合碳纳米尖形成核壳结构,最后将核壳结构层包覆在铝离子电池的正极基体1表面;本发明能够有效地提高了铝离子电池中的正极材料的导电,让铝离子脱嵌更加容易。
优选地,所述覆碳层2的碳纳米尖制作方法为:挑选硅基,采用磁共溅射的方式在硅基镀上碳膜,然后利用气相沉积法在碳膜上制备碳纳米尖(cntps),在碳纳米尖(cntps)的制备过程中,同时通以甲烷、氮气和氢气,将基底加热至850℃,释放等离子,生成碳纳米尖(cntps),最后用碱液洗去硅基。
优选地,在覆碳层2的碳纳米尖上包覆晶体硫化物的外包覆层3的方法为:以覆碳层2的碳纳米尖(cntps)作为为基底,利用电化学沉积法制备在覆碳层2的碳纳米尖(cntps)上包覆具有核壳结构的晶体硫化物的复合碳纳米尖(ms@cntps),其具体方法是以覆碳层(2)的碳纳米尖(cntps)作为工作电极,用pt电极作为对比电极,饱和ag或者agcl作为参比电极,将锑盐和硫脲溶于二甲基亚砜并放入沉积池,采用恒电流模式,进行电化学沉积,最后将制备的复合碳纳米尖(ms@cntps)进行去离子清洗,并放入真空干燥箱烘干。
优选地,在覆碳层2的碳纳米尖上包覆晶体硫化物的外包覆层3的方法为:覆碳层2的碳纳米尖(cntps)作为基底,利用水热法制备在覆碳层2的碳纳米尖(cntps)上包覆具有核壳结构的晶体硫化物的复合碳纳米尖(ms@cntps);将碳纳米尖(cntps)分散于去离子水中,将na2s2o3或者硫代乙酰胺和盐在纯水(diw)下剧烈磁搅拌之后,倒入含有碳纳米尖(cntps)的去离子水中溶液中,搅拌后得到均匀的混合溶液;最后,将混合溶液转移到聚四氟乙烯内衬高压釜中,然后让高压釜在200℃的烘箱加热20小时,冷却至室温后,后将制备的复合碳纳米尖(ms@cntps)用纯水(diw)和乙醇离心洗涤几次,在真空烘箱中烘干。
优选地,将覆碳层2包覆在铝离子电池的正极基体1表面的方法:利用气相沉淀法将含有碳纳米尖(cntps)上包覆有晶体硫化物的复合碳纳米尖(ms@cntps)的覆碳层2包覆在铝离子电池的正极基体1表面。
实施例4
如图1到2所示,本实施例提供一种铝离子电池正极,包括铝离子电池的正极基体1,正极基体1外包覆有含有碳纳米尖的覆碳层2,所述覆碳层2的碳纳米尖上包覆有外包覆层3,所述外包覆层3为晶体硫化物,外包覆层3材料为晶体cus。
实施例5
如图1到2所示,本实施例提供一种铝离子电池正极,包括铝离子电池的正极基体1,正极基体1外包覆有含有碳纳米尖的覆碳层2,所述覆碳层2的碳纳米尖上包覆有外包覆层3,所述外包覆层3为晶体硫化物,外包覆层3为材料为晶体ni3s2。
实施例6
如图1到2所示,本实施例提供一种铝离子电池正极,包括铝离子电池的正极基体1,正极基体1外包覆有含有碳纳米尖的覆碳层2,所述覆碳层2的碳纳米尖上包覆有外包覆层3,所述外包覆层3为晶体硫化物,外包覆层3为材料为晶体nis。