利用浆料通过增材制造进行的磁体制造的制作方法

文档序号:19725727发布日期:2020-01-18 03:22阅读:149来源:国知局
利用浆料通过增材制造进行的磁体制造的制作方法

本发明总体涉及永磁体和形成各向异性永磁体的方法,永磁体可以用于电动马达、风车、电动自行车和器具中。

引言

永磁体已广泛用于各种装置,包括用于混合动力车辆和电动车辆以及风车、空调和其他机械化设备的牵引电动马达。这种永磁体可以是铁氧体、nd-fe-b、cmco、cmfen、alnico等。

对于nd-fe-b磁体,制造工艺通常从初始制备开始,包括检查和称量期望材料组合物的起始材料。然后将材料进行真空感应熔炼和带连铸以形成若干厘米大小的薄片(小于1mm)。然后进行氢爆碎,其中薄片在约25℃至约300℃下吸收氢气约5至约20小时,在约200℃至约400℃下脱氢约3至约25小时,然后进行锤磨和研磨和/或机械粉碎或氮气研磨(如果需要)以形成适合于进一步粉末冶金加工的细粉末。通常筛分该粉末进行尺寸分类,然后与其它合金粉末混合,以得到最终期望的磁性材料组合物。

在一种工艺中,通过在模具中合适的压制操作将磁性粉末与粘合剂混合以制备生坯部件(通常为立方体的形式)。可以在粉末形成立方体块或其他形状之前对粉末进行称重。然后将成形部件真空袋装并进行等静压,之后将其烧结(例如,在约800℃至约1100℃下在真空中持续约1至约30小时)并且如果需要,进行时效处理(例如,在约300℃至约700℃下在真空中持续约5至约20小时)。通常,总共约100kg至约800kg的许多块同时进行批量烧结。

然后,基于期望的磁体最终形状,将磁体片从较大的块切割并机加工成最终形状。具有许多薄刀片的切割机用于从磁体块切割出期望的形状。在切割操作中失去大部分材料,并且薄刀片需要维护。产生具有期望形状的磁体的切割和机加工过程通常导致相对大量的材料损失,其中产量通常为约55%至75%(即,材料损失约25%至45%)。

在制造和机加工操作期间的高材料损失极大地增加成品稀土元素磁体的成本。在过去几年中,原始稀土金属的价格上涨加剧了这一成本。因此,存在与生产含有稀土材料的具有成本效益的磁体相关的重要问题。



技术实现要素:

本发明提供了一种生产磁体的新方法,所述方法包括通过将浆料中的一系列磁性粉末材料薄层打印成三维形状而将磁性粉末材料打印成期望的最终形状的磁体,而不要求将所述磁体机加工成另一种最终形状。这使得节省了通过所述磁体的切割和机加工过程通常损失的材料。此外,通过打印浆料中的所述磁性材料,可以在固化之前和期间向所述浆料施加磁场以使所述磁性材料沿期望的方向定向,并且所述浆料湿润的粘度有助于在固化之前和期间将所述材料保持为各向异性取向。

因此,为了将所述磁性粉末材料沿期望的方向定向,可以施加磁场。在磁场下产生干燥松散的磁性粉末材料的层可能使得磁性材料由于所述磁场而基本上移动。然而,本发明提供了包括磁性粉末材料和粘合剂材料的湿浆料,其中浆料形式的所述材料保持所述磁性粉末完整。然后可以通过任何合适的方法(比如激光)固化所述浆料,以逐层硬化所述磁体的层。

在可以与本文公开的其他形式组合或分开的一种形式中,提供了一种形成磁体的方法。所述方法包括形成包括磁性粉末材料和粘合剂材料的浆料。所述方法包括由所述浆料产生原始第一层。所述方法进一步包括向所述原始第一层施加磁场,以使所述原始第一层中包含的磁性粉末材料基本上沿期望方向定向,并固化所述原始第一层以形成固化的第一层。在固化所述原始第一层之后,所述方法包括由所述固化的第一层的顶部上并与所述固化的第一层接触的所述浆料产生原始第二层。所述方法包括向所述原始第二层施加磁场,以使所述原始第二层中包含的磁性粉末材料基本上沿期望方向定向,固化所述原始第二层以形成固化的第二层,所述固化的第二层附连到所述固化的第一层。

可以提供附加特征,包括但不限于以下各项:在固化所述每个原始层的同时执行向所述每个原始层施加所述磁场的步骤;在固化所述每个原始层之前进一步执行向所述每个原始层施加磁场的步骤持续预定时间段,以使所述相应原始层中包含的磁性粉末材料基本上沿期望方向定向;将多个附加层逐层设置到所述固化的第二层上,每个附加层由所述浆料形成;在设置每个附加层之间,固化最近设置的附加层以形成多个附连的固化层;提供具有0.5特斯拉至4特斯拉范围内的磁性的磁场;提供基部;由所述浆料产生所述原始第一层的步骤包括将所述原始第一层打印到所述基部上;由所述浆料产生所述原始第二层的步骤包括将所述原始第二层打印到所述第一层上;将所述多个附加层逐层设置在所述第二固化层上的步骤包括打印每个附加层;并且在设置每个附加层之前去除残留的浆料。

可以提供其他附加特征,包括但不限于以下各项:所述浆料进一步包括有机类溶剂;使用激光完成所述固化步骤;所述粘合剂材料包括聚酰胺;所述浆料具有至少1.5∶1的磁性材料与粘合剂材料的比率;粘合剂材料是有机的并且包括聚乙烯醇(pva)、硬脂酸、巴西棕榈蜡、酚醛树脂、环氧树脂、尼龙、聚丙烯、聚苯乙烯和聚甲基丙烯酸甲酯(pmma)中的至少一种;烧结所述固化的第一层和所述固化的第二层以及所述多个附连的固化层;使所述固化的第一层和所述固化的第二层以及所述多个附连的固化层经受烧结和热等静压(hip)工艺;所述浆料的粘度小于10帕斯卡秒;均匀混合所述磁性材料和所述粘合剂材料以产生所述浆料;所述磁性粉末材料包括至少一种稀土金属;所述磁性粉末材料包括钕、铁和硼;所述磁性粉末材料包括镝和/或铽;和/或每层的厚度在5至500微米的范围中。hip工艺可以用金属箔或容器封装或解除封装,这取决于孔是否相互连接。

此外,本发明提供了通过本文公开的方法的任何版本形成的磁体。

结合附图和所附权利要求,通过以下对本发明的许多方面的详细描述,本发明的上述特征和优点以及其他特征和优点将是显而易见的。

附图说明

提供附图仅用于说明目的,并不旨在限制本发明或所附权利要求。

图1a是根据本发明原理的示例性磁体的平面图。

图1b是根据本发明原理的图1a的磁体的透视图。

图1c是根据本发明原理的沿图1b中的线1c-1c截取的图1a至图1b的磁体的一部分的截面侧视图。

图2是示出根据本发明原理的形成磁体的方法的框图。

图3a是根据本发明原理的用于在形成图1a至图1c的磁体的过程的初始步骤中形成图1a至图1c的磁体的设备的示意性截面图。

图3b是根据本发明原理的在图3a所示的步骤之后在形成图1a至图1c的磁体的过程的步骤中图3a的设备的示意性截面图。

图3c是根据本发明原理的在图3b所示的步骤之后在形成图1a至图1c的磁体的过程的步骤中图3a至图3b的设备的示意性截面图。

图3d是根据本发明原理的在图3c所示的步骤之后在形成图1a至图1c的磁体的过程的步骤中图3a至图3c的设备的示意性截面图。

具体实施方式

本发明提供一种永磁体和一种用于制造永磁体的工艺,使得材料损失减少并且生产具有各向异性特性的磁体。该工艺大大减少或消除对后续机加工操作的需要,并且允许磁性材料在期望方向(各向异性取向)上取向而不会导致磁性粉末材料的损失。

现在参照图1a至图1b,示出了永磁体并且总体以10表示。在该变型中,永磁体10具有厚度为t的三维半环形状;然而,在不超出本发明的精神和范围的情况下,永磁体10可以具有任何其他期望的形状。永磁体10可用于电动马达等,或用于任何其他期望的应用中。

磁体10可以是具有铁基组合物的铁磁体,并且磁体10可以包含任何数量的稀土金属。例如,磁体10可以具有nd-fe-b(钕、铁和硼)构造。如果需要,磁体10还可以含有dy(镝)和/或tb(铽)。在不超出本发明的精神和范围的情况下,还预期磁体10可包括另外的或替代的材料。

现在参照图1c,永磁体10由多个层12形成,每个层12包含磁性材料。多个层12中的层14a、14b、14c、14d、14e、14f、14g、14h中的每一个可以通过3d打印来产生或以其他方式连续地逐层设置层14a、14b、14c、14d、14e、14f、14g、14h以形成永磁体10的形状。因此,一次一层14a、14b、14c、14d、14e、14f、14g、14h地将磁体10产生为基本上期望的最终净形状。尽管图1c中示出了八个层14a、14b、14c、14d、14e、14f、14g、14h,但是可以提供任何期望数量的层14a、14b、14c、14d、14e、14f、14g、14h。例如,可以提供比如300的许多层14a、14b、14c、14d、14e、14f、14g、14h。

在一些变型中,每个层14a、14b、14c、14d、14e、14f、14g、14h的高度或厚度可以在约5至500微米的范围内;例如,每个层14a、14b、14c、14d、14e、14f、14g、14h的高度可以在3至100微米的范围内。这样,如果磁体10可以具有很多层,比如300层,则磁体可以具有例如约3mm的所得厚度t。对于电动马达,其他厚度t可以在约1至约10mm的范围内,或者任何其他期望的磁体厚度t。风车中使用的磁体要大得多。

现在参照图2,本发明提供了一种形成磁体比如磁体10的近净形状的方法100。方法100包括形成包括磁性粉末材料和粘合剂材料的浆料的步骤102。磁性粉末材料可包括任何期望的磁性粉末,比如上述材料的粉末(铁、钕、铁、硼、镝、铽等)。浆料还可包含用于使浆料粘性和流动的溶剂。溶剂可以是水基的,但是在优选的形式中,溶剂是有机类溶剂,比如煤油或醇(例如乙醇或甲醇),以避免氧化磁性粉末材料。粘合剂材料可以是有机的或无机的,也混合入浆料中。粘合剂材料可以帮助将磁体粉末材料保持在一起直到被热处理和/或烧结。粘合剂材料可以包含聚酰胺和/或粘合剂材料可以是配置为能够将磁性粉末材料的粉末颗粒粘附在一起的聚合物基非磁性材料。例如,粘合剂材料可以是有机的并且可以包括以下各项中的一种或多种:聚乙烯醇(pva)、硬脂酸、巴西棕榈蜡、酚醛树脂、环氧树脂、尼龙、聚丙烯、聚苯乙烯和聚甲基丙烯酸甲酯(pmma)。在一些形式中,还可以(可选地)包括光聚合材料以允许通过光或其他电磁辐射固化;例如,也可以使用紫外(uv)光固化的有机粘合剂(具有光聚合反应),比如丙烯酸2-羟乙酯和聚乙二醇200二丙烯酸酯等。两种市售的uv可固化树脂可用作粘合剂:xc11122(dsm)和uv-a2137(sadechaf)。

在一些形式中,浆料可以是粘性的,比如粘度为2或3帕斯卡秒,但优选不超过10帕斯卡秒。可以通过均匀混合磁性材料和粘合剂材料以及溶剂来形成浆料。可以努力降低浆料的粘度。例如,使用稀释剂和加热系统可以在一定程度上降低浆料的粘度。

由于成本或其他副作用,粘合剂材料通常是不期望。应将这种粘合剂保持在最低限度,以避免污染或降低磁性。因此,在一些变型中,浆料具有至少1.5∶1的磁性材料与粘合剂材料的比率,并且在一些情况下,磁性材料与粘合剂材料的比率可以是至少2∶1。

一旦产生浆料,方法100包括从浆料产生原始(未固化的)第一层14a′的步骤104。原始第一层14a′可以例如通过3d打印产生,或者原始第一层14a′可以以任何其他合适的方式由浆料产生。

在一种形式中,参照图3a,提供基部16,并且可以用刀23将浆料20的原始第一层14a′沉积到基部16上,可以使用刀23去除残留的浆料,然后可以移开刀23,可以使原始第一层14a′干燥。

参照图2和图3b,方法100包括步骤106:将磁场(在图24中的箭头24处指示)施加到原始第一层14a′,以基本上将包含在原始第一层14a′中的磁性粉末材料沿期望的方向定向。方法100包括固化原始第一层14a′以形成固化的第一层14a(图1c和图3c至图3d中所示)的步骤108。可以使用激光设备26来完成固化108,该激光设备26将激光束28聚焦到将形成磁体10的一部分的原始第一层14a′的部分上。将磁场24施加到原始第一层14a′的步骤108在固化原始第一层14a′的同时进行。在固化原始第一层14a′之前,还可以执行将磁场24施加到原始第一层14a′的步骤106持续第一预定时间段,以便在固化原始第一层14a的浆料20之前,使原始第一层14a′中包含的磁性粉末材料沿期望方向定向,这是因为固化过程开始会将磁性粉末材料的取向锁定就位。因此,磁场24优选地在固化之前施加至少一段短时间,并且在固化发生时施加磁场24。作为示例,磁场24优选地被提供有0.5至4特斯拉或1至3特斯拉或约2特斯拉的磁性。在一些形式中,如果需要,可以在将原始第一层14a′打印或设置在基部16上的同时施加磁场24和/或可以在打印和固化磁体10的每个层的整个过程中连续地施加磁场24。在层14a′固化的同时,提供磁场使原始第一层14a′的浆料中待定向的磁性粉末材料沿期望的方向定向,然后在固化之后将磁性材料锁定就位。当在每层固化步骤期间施加磁场24时,磁体10具有各向异性取向,例如,在特定方向上的磁性可比其他类似的各向同性磁体强30%。

如上所述,固化步骤108可以使用激光束28完成,但是在替代方案中,固化可以以任何其他期望的方式完成,比如例如通过电子束、紫外线、可见光或其他电磁辐射的形式。固化的第一层14a可以是基于通过用于磁体10的计算机辅助设计(cad)输入形成的激光束28的路径的固化形状。

参照图2和图3c,在固化原始第一层14a′之后,原始第一层14a′变成固化的第一层14a。然后,方法100包括步骤110:从与先前层(在这种情况下是固化的第一层14a)接触的浆料20产生原始第二层14b′,并且刀23可用于从原始第二层14b′去除残留的浆料20。应该注意的是,每个原始层14a′、14b′用锋利的刀23均匀地施加(优选地具有在几微米到一毫米的范围内的厚度)。在施加原始第二层14b′之后,然后可以移开刀23,并使原始第二层14b′干燥。

参照图2和图3d,方法100包括步骤112:将磁场24施加到原始第二层14b′,以使包含在原始第二层14b′中的磁性粉末材料基本上沿期望方向定向。方法100包括固化原始第二层14b′以形成固化的第二层14b(图1c中所示)的步骤114。固化114第二层可以使用激光设备26完成,该激光设备26将激光束28聚焦到将形成磁体10的一部分的原始第二层14b′的部分上,或者固化步骤114可以以任何其它合适的方法完成。

在固化原始第二层14b′的同时执行将磁场24施加到原始第二层14b′的步骤112。在固化原始第二层14b′之前,还可以执行将磁场24施加到原始第二层14b′的步骤112持续预定时间段,以便在固化原始第二层14b的浆料20之前使包含在原始第二层14b′中的磁性粉末材料基本上沿期望的方向定向,这是因为固化过程开始会将磁性粉末材料的取向锁定就位。因此,磁场24优选在固化之前施加至少一段短时间,并且在固化发生的同时施加磁场24。与第一层14a′一样,磁场24优选地以0.5至4特斯拉的范围施加。在一些形式中,如果需要,可以在将原始第二层14b′打印或设置在基部16上的同时施加磁场24和/或可以在打印和固化磁体10的每个层的整个过程中连续地施加磁场24。

在将原始第二层14b′固化成固化的第二层14b之后,固化的第二层14b附连到固化的第一层14c。

方法100可以迭代地重复步骤110、112和114以在其他层上形成附加层以形成整个磁体10。因此,以与产生上述第一层和第二层相似或相同的方式,多个附加层14c、14d、14e、14f、14g、14h可以首先以原始形式逐层地设置在固化的第二层14b上,每个附加层由浆料20形成,并且在设置每个附加层之间,通过应用磁场24固化最近设置的附加层,以形成图1c所示的多个附连的固化层14c、14d、14e、14f、14g、14h。

在通过以原始形式设置每个固化层14a、14b、14c、14d、14e、14f、14g、14h然后在磁场24下固化它们以形成磁体10之后,磁体10(包括其所有层14a、14b、14c、14d、14e、14f、14g、14h)然后可以被烧结和/或进行热等静压(hip)工艺。

因此,形成的磁体10包含包括沿期望方向定向的磁性粉末材料的多个层14a、14b、14c、14d、14e、14f、14g、14h。

形成磁体10的方法100可以包括另外的可选步骤,比如初始制备步骤,包括检查和称量期望材料组合物的起始材料。方法100还可以包括起始材料的真空感应熔炼和带连铸,以形成若干厘米大小的薄片(小于1mm)。然后可以进行氢爆碎,其中薄片在约25℃至约300℃下吸收氢气约5至约20小时,然后在约200℃至约400℃下脱氢约3至约25小时。方法100还可以包括粉碎,其可以包括锤磨和研磨和/或机械粉碎或氮气研磨(如果需要)以形成适合于进一步粉末冶金加工的细粉末。

方法100可包括混合中间粉末、研磨、混合细粉末和混合不同的磁性粉末。例如,如果磁体10可以用nd-fe-b构造生产,其中至少一些nd将被dy或tb代替,则成分粉末可以包括上述含有dy或tb的铁基粉末以及nd-fe-b基的粉末。在一种形式中,例如涉及牵引电动马达的汽车或卡车应用,成品稀土永磁体的dy将高达约8重量%或9重量%。在其他应用中,比如风力涡轮机,主体dy或tb浓度可能需要为3重量%至4重量%。在任何情况下,在可以受益于改进的磁性(比如矫顽力)的任何这种马达中使用永磁体被认为是在本发明的范围内。另外的成分(比如上面提到的粘合剂)也可以被包括在通过混合产生的混合物中,但是这种粘合剂应该保持在最低限度以避免污染或磁性能的降低。在一种形式中,混合可包括使用dy或tb的铁基合金粉末(例如,dy或tb在约15重量%至约50重量%之间)与nd-fe-b基粉末进行混合。

可以筛选磁性粉末以进行尺寸分类,然后与用于最终期望的磁性材料组合物的其他合金粉末以及粘合剂材料混合,以形成充分混合的或均质的材料。然后可以添加溶剂以形成浆料20。

此后,如上所述,比如通过三维打印机打印多个层12。这可以包括使用上面的图3a至图3d所示的方法,或使用其它3d打印方法。如上所述,打印所述层的步骤104、110可以包括将多个层12打印成期望的磁体10最终形状,此后几乎不需要切割和机加工。在将磁场24施加到相应层的同时使每个层固化,以使磁性粉末材料基本上沿期望方向定向,以产生各向异性磁体10。因此,磁性粉末材料在磁场24下对齐,磁场24可以提供约0.5至4特斯拉范围的磁力,优选约2特斯拉。磁场24将使混合物的各个磁性颗粒对齐,使得成品磁体10将具有优选的磁化方向。因此,可以提供使其成分磁性材料以各向异性取向设置的成品磁体10。

在激光固化/扫描之后,粘结磁性粉末。在制造整个“绿色”部件之后,可以将它们加热以进行热固化以增加强度。为了制造粘结磁体,不需要烧结,并且大量有机粘合剂将留在磁体中。然而,为了制造烧结磁体,热固化过程将除去大部分(或几乎所有)有机粘合剂,然后进行固态烧结。

在一些形式中,固化层14a、14b、14c、14d、14e、14f、14g可以被加热到低于烧结温度的硬化温度。例如,硬化温度可低于400℃,然而,该步骤可能不是所有形式都必需的。硬化加热可能产生仍未达到最终强度和微观结构的“硬化的绿色部件”或“棕色部件”,这是因为它们应优选经过烧结以完全硬化。在硬化之后,磁体10稍微硬化,但不像磁体10烧结后那样硬。然而,在该步骤中,大部分粘合剂被烧掉,并留下改善磁性能所需的纯磁体组合物和微观结构。

如果使用烧结,则磁体10在约750℃至约1100℃的温度下烧结。烧结可在真空中进行约1至约30小时并且如果需要进行时效处理,另外的热处理可在约300℃至约700℃下在真空中进行约3至约20小时。

烧结可以在真空中或在惰性气氛(例如,n2或ar)中进行以防止氧化。典型的烧结真空度在约10-3至约10-5帕斯卡的范围内,以达到高达99%的理论密度。更长的烧结时间可以进一步改善烧结密度。如果烧结时间太长,则可能由于微观结构中过度生长的晶粒而对机械性能和磁性能两者产生负面影响。与其他形式的粉末冶金加工一样,可以使用冷却方案,其中烧结的部件在数小时的过程中冷却。烧结104还可以包括使层12经受sic加热元件或高功率微波。

烧结用于通过加热和固态扩散促进冶金结合。因此,温度低于熔化磁性粉末材料所需的温度的烧结被理解为不同于涉及粉末材料的部分熔化的其他较高温度操作。在烧结之前,可以使用热等静压(hip)来改善磁体密度并简化随后的烧结过程。

还可以采用烧结后的附加二次操作,包括少量机加工和表面处理或涂覆。

另外,可以应用hip来增加磁体密度,或者在烧结之前或之后使孔隙率最小化。hip可以包括使磁体10经受热等静压(hip)工艺。在替代配置中,可以使用热锻代替hip工艺。在一些变型中,如果需要,可以进行少量机加工,比如(例如,用陶瓷或金属粉末)抛光和/或研磨。

然后可以应用表面处理,例如,在某些情况下添加氧化物或相关涂层。例如,可以添加保护层或涂层。可以将保护涂层施加在成品磁体上。

通过例如co2激光枪实现激光加热。典型功率为110v和20a。构建速率可以是16cm3/hr或1in3/hr。也可以使用电子束加热。

显而易见的是,在不脱离所附权利要求限定的本发明的范围的情况下,可以进行修改和变化。更具体地,尽管本发明的一些方面在本文中被标识为优选的或特别有利的,但是预期本发明不必限于本发明的这些优选方面。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1