应用于等离子体系统的方法及相关等离子体系统与流程

文档序号:23138931发布日期:2020-12-01 13:15阅读:156来源:国知局
应用于等离子体系统的方法及相关等离子体系统与流程

本发明是有关于一种操作方法,详细来说,是一种应用于等离子体系统的方法及相关等离子体系统。



背景技术:

集成电路特征尺寸不断减小,其要求的加工工艺也越来越严格,其中一个很重要的要求是刻蚀产品的一致性问题,在工艺过程中,对同一型号的机台所有腔室的工艺结果一致性均需做严格要求,来避免由于各腔室的一致性问题造成的工艺风险,因此不同腔室间需要通过严格的过程管控,实现工艺结果一致性。而在实际控制过程中,仍然存在由于下电极走线形式等的不可控分布参数差异带来的刻蚀结果差异,尤其在先进工艺时这种差异被进一步放大。



技术实现要素:

因此,本发明公开了一种应用于等离子体系统的方法及相关等离子体系统来解决背景技术中的问题。

依据本发明的一实施例,揭露一种应用于等离子体系统的方法,所述等离子体系统具有腔室、置于所述腔室内的下部电极以及通过匹配电路耦接至所述下部电极的射频源,所述等离子体系统用于对置于所述下部电极上的工作件进行加工。所述方法包括:启动所述射频源;增加所述射频源的射频功率,并对应所述匹配电路的默认位置于所述下部电极产生输出功率;及当第一条件满足时,以第一趋势调整所述射频功率并以增加所述输出功率与所述射频功率的比值的第二趋势调整所述匹配电路来满足第二条件。

依据本发明的一实施例,揭露一种应用于等离子体系统的方法,所述等离子体系统具有腔室、置于所述腔室内的下部电极以及通过匹配电路耦接至所述下部电极的射频源,所述等离子体系统用于对置于所述下部电极上的工作件进行加工。所述方法包括:启动所述射频源产生射频功率;增加所述射频源的所述射频功率,所述射频功率通过所述匹配电路的默认位置于所述下部电极产生输出功率;及当耦接至所述工作件的传感器所侦测的直流电压值达到所述默认电压值或所述射频功率达到最大射频功率时,调整所述匹配电路来增加所述输出功率与所述射频功率的比值。

依据本发明的一实施例,揭露一种等离子体系统,所述等离子体系统用于对置于所述腔室内的工作件进行加工。所述等离子体系统包括下部电极、射频源、匹配电路以及控制电路。所述下部电极置于所述腔室内;所述射频源耦接至所述下部电极;所述匹配电路耦接至所述射频源与所述下部电极之间,其中当所述射频源启动产生射频功率时,所述匹配电路的默认位置对应所述射频功率于所述下部电极产生输出功率;所述控制电路耦接至所述射频源与所述匹配电路,其中所述控制电路用于控制所述射频源来增加所述射频功率,直至第一条件满足后,以第一趋势调整所述射频功率并以增加所述输出功率与所述射频功率的比值的第二趋势调整所述匹配电路来满足第二条件。

附图说明

图1是依据本发明一实施例之等离子体系统的示意图。

图2是依据本发明一实施例之匹配电路的示意图。

图3是依据本发明一实施例之应用于等离子体系统的方法的第一部分流程图。

图4a是依据图3所示方法之第一部分流程图的波形图。

图4b是依据图3所示方法之第一部分流程图的另一波形图。

图5是依据本发明一实施例之应用于等离子体系统的方法的第二部分流程图。

图6a是依据图5所示方法之第二部分流程图的波形图。

图6b是依据图5所示方法之第二部分流程图的另一波形图。

图7a是依据图4a实施例的波形图。

图7b是依据图4b实施例的波形图。

图7c是依据图4b实施例的另一波形图。

图8是依据本发明另一实施例之应用于等离子体系统的方法的流程图。

图9a是依据图8所示方法之流程图的波形图。

图9b是依据图8所示方法之流程图的另一波形图。

具体实施方式

以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。

再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。

虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。

当等离子体系统对工作件(如晶圆)进行加工的时候,举例来说,对工作件(如晶圆)进行蚀刻,必须对工作件(如晶圆)上的电压偏压值进行实时检测,而为了实现工作件(如晶圆)上工艺结果的一致性,必须控制工作件(如晶圆)上的电压偏压值在加工的过程中维持恒定。若工作件(如晶圆)上的电压偏压值花费过长时间才达到默认的电压偏压值,不稳定的电压偏压值可能导致工作件(如晶圆)的工艺结果不如预期,进而大幅降低良率。因此,如何快速的将工作件(如晶圆)上的电压偏压值调整至默认的电压偏压值,并维持恒定是达到工艺结果一致性的主要挑战。本发明公开一种应用于等离子体系统的方法以及相关等离子体系统,所述方法以及所述等离子体系统可以快速的将工作件(如晶圆)上的电压偏压值调整至默认的电压偏压值,避免工作件(如晶圆)上的电压偏压值花费过长时间才达到默认的电压偏压值。本发明公开的方法以及等离子体系统可有效地提升工作件(如晶圆)的生产良率并节省能量损耗。

图1是依据本发明一实施例之等离子体系统1的示意图。在本实施例中,等离子体系统1用于对工作件(如晶圆)进行加工,举例来说,等离子体系统1可以是一种蚀刻装置,利用等离子体对工作件(如晶圆)进行蚀刻。如图1所示,等离子体系统1包括腔室10、置于腔室10内的下部电极11、射频电源12、匹配电路13、传感器14以及控制电路15。工作件(如晶圆)置于下部电极11之上以进行加工。射频电源12通过匹配电路13耦接至下部电极11,其中射频电源12用以提供射频功率rfp,射频功率rfp经过匹配电路13内的匹配器后,在下部电极11形成输出功率outp。

通过调整匹配电路13内所述匹配器的位置,可以使匹配电路13具有不同的阻抗,当匹配电路13的阻抗与射频电源12的输出阻抗(如50奥姆的输出阻抗)、射频电源12和匹配电路13之间的传输线的阻抗、下部电极11的阻抗以及腔室10内的等离子体所形成的阻抗达成阻抗匹配时,匹配电路13对射频功率rfp的反射功率最小,此时,输出功率outp与射频功率rfp的比值最大。

本技术领域具有通常知识者应能理解为求精准实现阻抗匹配,射频电源12与匹配电路13之间可设置有幅值相位检测电路(图未示),所述幅值相位检测电路用于获得从匹配电路13的输入端向腔室10看去的阻抗的模值和相位,并提供匹配控制算法所需的输入量给控制电路15,控制电路15调整匹配电路13,最终使匹配电路13与腔室10的总阻抗匹配射频电源12的输出阻抗(如50奥姆的输出阻抗),来实现阻抗匹配。

传感器14耦接至下部电极11,用于实时检测工作件(如晶圆)上方的射频电压值,将所述射频电压值转换为直流偏压值bias,并输出直流偏压值bias。控制电路15接收直流偏压值bias,并依据直流偏压值bias以及默认电压值来实时调整射频电源12的射频功率rfp或匹配电路13中所述匹配器的位置。默认电压值可预先储存于等离子体系统1的储存装置(图未示),如内存之中。控制电路15自所述储存装置读取所述默认电压值后,比较所述默认电压值以及直流偏压值bias以实时调整射频电源12的射频功率rfp或匹配电路13中所述匹配器的位置。详细来说,控制电路15可实时读取射频电源12及匹配电路13中的数据参数,根据数据中同一时间点的射频功率rfp及匹配电路的所述匹配器位置来判断如何调整射频电源12及匹配电路13。

本技术领域具有通常知识者应能理解等离子体系统1还包括其他必要装置与组件以实现对工作件(如晶圆)进行加工。举例来说,等离子体系统1包括上部射频电源、对应所述上部射频电源的匹配电路以及线圈,还另外包括用以导入反应气体的管线等,然而为求图示简洁,图1仅描绘与本发明的发明精神相关的装置与组件。

图2是依据本发明一实施例之匹配电路13的示意图。如图2所示,匹配电路13包括可变电容c1、c2以及电感l1及l2,其中可变电容c1与电感l1串联连接形成调谐电路,而可变电容c2与电感l2串联连接形成另一调谐电路。详细来说,电感l1的一端连接至射频电源12而另一端连接至可变电容c1的一端,可变电容c1的另一端连接至下部电极11;可变电容c2的一端连接至射频电源12而另一端连接至电感l2的一端,电感l2的另一端连接至参考电源端(如接地端)。本技术领域具有通常知识者应能轻易理解调谐电路并不限定其中电容与电感的位置,只要电容与电感串联连接即可实现调谐电路的功能与目的。上述段落及后续段落所提及的匹配器位置即为可变电容c1与c2的阻抗。需注意的是,本发明并不限定匹配电路13中仅有电容为可变,同样地,通过可变电感同样可以实现阻抗匹配。如上所述,当控制电路15接收直流偏压值bias,并依据直流偏压值bias以及默认电压值判断需要调整匹配电路中的匹配器时,控制电路15可通过其中所包含的步进马达(图未示)调整匹配电路13的可变电容c1或c2以达到阻抗匹配。

图3是依据本发明一实施例之方法2的第一部分流程图,倘若大体上可以得到大致相同的结果,本发明并不限定完全依据图3所示的流程步骤执行。

步骤201:启动射频电源来产生射频功率

步骤202:增加射频功率,射频功率对应匹配电路的匹配器的默认位置于下部电极产生输出功率。

步骤203:控制电路判断射频功率或直流偏压值是否满足第一条件,若是,则接续图5的流程图;否则,进入步骤202。

详细来说,当传感器14输出的直流偏压值bias达到默认电压值时,控制电路15判断第一条件满足,或者,当射频电源12的射频功率rfp达到最大射频功率rfpmax时,控制电路15判断第一条件满足。

参考图4a,图4a是依据图3所示方法2之第一部分流程图的波形图。在时间点t0时,射频电源12启动(步骤201);接着,控制电路15增加射频功率rfp,射频功率rfp对应匹配电路13的匹配器的默认位置于下部电极11产生输出功率outp(步骤202)。所述默认位置对应未调整匹配电路13的匹配器时,匹配电路13所具有的阻抗。由于射频功率rfp的增加,输出功率outp也会相应地增加,如此一来,工作件(如晶圆)上方的射频电压值也会增加,使得传感器14输出的直流偏压值bias随之增加。需注意的是,在增加射频功率rfp的过程中,匹配电路13的匹配器的位置维持在所述默认位置。在时间点t1时,由于射频功率rfp的增加,使得直流偏压值bias上升到默认电压值,此时,控制电路15判断第一条件满足。

参考图4b,图4b是依据图3所示方法2之第一部分流程图的另一波形图。在时间点t0时,射频电源12启动(步骤201);接着,增加射频功率rfp,射频功率rfp对应匹配电路13的匹配器的默认位置于下部电极11产生输出功率outp(步骤202)。相同地,由于射频功率rfp的增加,输出功率outp也会相应地增加,如此一来,工作件(如晶圆)上方的射频电压值也会增加,使得传感器14输出的直流偏压值bias随之增加,并且同样地,在增加射频功率rfp的过程中,匹配电路13的匹配器的位置维持在所述默认位置。在时间点t1时,虽然直流偏压值bias尚未到达默认电压值,但此时射频功率rfp已经达到最大射频功率rfpmax,控制电路15判断第一条件满足。

参考图5,图5是接续图3的方法2之第二部分流程图。倘若大体上可以得到大致相同的结果,本发明并不限定完全依据图5所示的流程步骤执行。

步骤204:控制电路以第一趋势调整射频功率。

步骤205:控制电路以第二趋势调整匹配电路的匹配器的位置。

步骤206:控制电路判断匹配电路的匹配器的位置或直流偏压值是否满足第二条件,若是,进入步骤207;否则,进入步骤204及步骤205。

步骤207:流程结束。

详细来说,控制电路15以递减的第一趋势调整射频功率rfp,并且,控制电路15以增加输出功率outp与射频功率rfp的比值的第二趋势调整匹配电路13的匹配器的位置。换言之,控制电路15会控制匹配电路13的匹配器的位置,来使得匹配电路13的阻抗与射频电源12的输出阻抗(如50奥姆的输出阻抗)、射频电源12和匹配电路13之间的传输线的阻抗、下部电极11的阻抗以及腔室10内的等离子体所形成的阻抗达到阻抗匹配。另外,当直流偏压值bias达到默认电压值并且输出功率outp与射频功率rfp的比值为最大(即阻抗匹配)时,控制电路15判断第二条件满足。

参考图6a,图6a是依据图5所示方法2之第二部分流程图的波形图。接续图4a的实施例,在时间点t1时,直流偏压值bias达到默认电压值,控制电路15判断第一条件满足后,控制电路15以增加输出功率outp与射频功率rfp的比值的第二趋势调整匹配电路13中匹配器的位置(步骤205)。随着控制电路15的调整,匹配电路13中匹配器的位置越加接近阻抗匹配时的匹配位置,换言之,输出功率outp将会增加,而直流偏压值bias也会据此增加。由于在时间点t1时,直流偏压值bias已经达到默认电压值,若直流偏压值bias继续增加,将偏离默认电压值,因此,控制电路15同时会以递减的第一趋势来调整射频功率rfp(步骤204),藉此控制直流偏压值bias不会偏离默认电压值太多,能更快的稳定在默认电压值。

在图6a中,以虚线箭头表示趋势。举例来说,控制电路15以递减的第一趋势来调整射频功率rfp,因此,图6a所示的射频功率rfp在时间点t1后会呈现向下的趋势。以另一例子而言,控制电路15以增加输出功率outp与射频功率rfp的比值的第二趋势调整匹配电路13中匹配器的位置,因此,图6a所示的匹配器位置在时间点t1后会呈现朝向匹配位置调整的趋势。以另一例子而言,图6a所示的直流偏压值bias在时间点t1后会呈现维持在默认电压值的趋势。需注意的是,由于图6a中的虚线箭头表示的仅仅是趋势,换言之,不限定射频功率rfp如图6a中所示的以线性变化来递减,射频功率rfp可能以曲线变化递减或者持平一段时间后再递减;同样地,不限定直流偏压值bias会固定维持在默认电压值,直流偏压值bias可能在默认电压值做一定范围的震荡。

另外,需注意的是,图6a中的匹配位置代表的是当匹配电路13中匹配器调整到所谓「匹配位置」时,此时输出功率outp与射频功率rfp的比值为最大,换言之,达到阻抗匹配。匹配器在默认位置所代表的阻抗与匹配器在匹配位置所代表的阻抗之间并不限定为线性变化,同时,虽然图6a描绘匹配器位置的趋势是往上增加,并不限定匹配器在匹配位置所代表的阻抗较默认位置所代表的阻抗大。图6a所描绘的匹配器位置仅应解读为匹配器位置自默认位置以增加输出功率outp与射频功率rfp的比值的第二趋势开始调整,当匹配器位置达到「匹配位置」时,输出功率outp与射频功率rfp的比值为最大。

在时间点t2时,输出功率outp与射频功率rfp的比值为最大并且直流偏压值bias为默认电压值,此时,控制电路15判断第二条件满足,将停止调整射频功率rfp以及匹配电路13的匹配器位置,据此,方法2的流程结束。

通过先行增加射频功率rfp直到直流偏压值bias达到默认电压值后,再开始调整匹配电路13的匹配器位置,可以有效地使直流偏压值bias快速地达到默认电压值的时间,并且由于匹配电路13的匹配器达到匹配位置,此时反射功率为最小,可以有效地减少能量损耗。

参考图6b,图6b是依据图5所示方法2之第二部分流程图的另一波形图。接续图4b的实施例,在时间点t1时,虽然直流偏压值bias尚未到达默认电压值,然而射频功率rfp已经达到最大射频功率rfpmax,控制电路15判断第一条件满足。接着,控制电路15以增加输出功率outp与射频功率rfp的比值的第二趋势调整匹配电路13中匹配器的位置(步骤205)。随着控制电路15的调整,匹配电路13中匹配器的位置越加接近阻抗匹配时的匹配位置,换言之,输出功率outp将会增加,而直流偏压值bias也会据此增加。同时,控制电路15以递减的第一趋势来调整射频功率rfp(步骤204)。即便射频功率rfp的减少会导致直流偏压值bias同样有减少的趋势,但若匹配电路13中匹配器的位置朝「匹配位置」调整时对于直流偏压值bias的增加程度大于射频功率rfp的减少对于直流偏压值bias的减少程度的情况下,直流偏压值bias仍能持续增加,直到达到默认电压值。

然而,此并非本发明的一限制。如上所述,由于在时间点t1时,直流偏压值bias虽然尚未达到默认电压值,但射频功率rfp已经达到最大射频功率rfpmax,若紧接着将射频功率rfp降低,会导致直流偏压值bias在还没达到默认电压值的情况下先有降低的趋势,进而偏离默认电压值。据此,在另一实施例中,控制电路15可以在时间点t1后控制射频功率rfp持平一段时间,此时,由于匹配电路13中匹配器的位置越加接近阻抗匹配时的匹配位置,直流偏压值bias会因此增加。直到直流偏压值bias达到默认电压值后,控制电路15再以递减的第一趋势调整射频功率rfp(步骤204),藉此控制直流偏压值bias不会偏离默认电压值太多,能更快速地达到默认电压值。

同样地,在图6b中,以虚线箭头表示趋势。举例来说,在时间点t1时,控制电路15可以以递减的第一趋势调整射频功率rfp,或者,先将射频功率rfp持平一段时间后,以递减的第一趋势来调整射频功率rfp。因此,图6b所示的射频功率rfp在时间点t1后会呈现向下的趋势。以另一例子而言,控制电路15以增加输出功率outp与射频功率rfp的比值的第二趋势调整匹配电路13中匹配器的位置,因此,图6b所示的匹配器位置在时间点t1后会呈现朝向匹配位置调整的趋势。以另一例子而言,图6b所示的直流偏压值bias在时间点t1后会呈现朝默认电压值调整的趋势。由于图6b中的虚线箭头表示的仅仅是趋势,换言之,不限定射频功率rfp如图6b中所示以线性变化来递减,如上所述,射频功率rfp可能持平一段时间后再递减;同样地,不限定直流偏压值bias会以线性变化调整成默认电压值,直流偏压值bias可能以曲线变化朝默认电压值调整。

同样地,图6b所描绘的匹配器位置仅能解读为匹配器位置自默认位置以增加输出功率outp与射频功率rfp的比值的第二趋势开始调整,当匹配器位置达到「匹配位置」时,输出功率outp与射频功率rfp的比值为最大。

在时间点t2时,输出功率outp与射频功率rfp的比值为最大并且直流偏压值bias为默认电压值,此时,控制电路15判断第二条件满足,将停止调整射频功率rfp以及匹配电路13的匹配器位置,据此,方法2的流程结束。

通过先行增加射频功率rfp直到射频功率rfp达到最大射频功率rfpmax后,再开始调整匹配电路13的匹配器位置,可以有效地使直流偏压值bias快速地达到默认电压值的时间,并且由于匹配电路13的匹配器达到匹配位置,反射功率为最小,可以有效地减少能量损耗。

参考图7a,图7a是依据本发明一实施例以第一趋势调整射频功率rfp并以第二趋势调整匹配电路13的匹配器位置的波形图。接续图4a的实施例,在时间点t1时,直流偏压值bias达到默认电压值,控制电路15判断第一条件满足后,控制电路15以增加输出功率outp与射频功率rfp的比值的第二趋势调整匹配电路13中匹配器的位置,同时,控制电路15以递减的第一趋势来调整射频功率rfp。由于射频功率rfp的减少对于直流偏压值bias的减少程度并非线性变化,同样地,匹配电路13中匹配器的位置朝「匹配位置」调整时对于直流偏压值bias的增加并非线性变化,另外,等离子体的阻抗也并非线性的变化,综合以上因素,直流偏压值bias并无法稳定地增加或减少。据此,在图7a中,在时间点t1到t3之间,由于匹配电路13的匹配器位置以及射频功率rfp在同时调整,直流偏压值bias会呈现在默认电压值的一定范围内震荡。

在本实施例中,在时间点t1到t3的时间段内,匹配电路13中匹配器的位置朝「匹配位置」调整时对于直流偏压值bias的增加程度大于射频功率rfp的减少对于直流偏压值bias的减少程度,因此,在时间点t3时,直流偏压值bias会大于默认电压值,若持续控制匹配电路13中匹配器的位置以朝「匹配位置」调整,将会使得直流偏压值bias偏离默认电压值。据此,控制电路15停止调整匹配电路13的匹配器位置,并持续递减射频功率rfp。如此一来,在时间点t3到t4的时间段内,直流偏压值bias会呈现递减趋势。

本技术领域具有通常知识者应能轻易理解,若在时间点t1到t3之间,匹配电路13中匹配器的位置朝「匹配位置」调整时对于直流偏压值bias的增加程度小于射频功率rfp的减少对于直流偏压值bias的减少程度,会使得在时间点t3时,直流偏压值bias小于默认电压值。若持续控制递减射频功率rfp,将会使得直流偏压值bias更加偏离默认电压值。相应地,控制电路15可停止递减射频功率rfp,并持续控制匹配电路13中匹配器的位置以朝「匹配位置」调整。如此一来,在时间点t3到t4的时间段,直流偏压值bias会呈现递增趋势。

继续参考图7a,在时间点t4时,直流偏压值bias回到默认电压值。在时间点t4到t5的时间段内,控制电路15再次控制匹配电路13中匹配器的位置朝「匹配位置」调整,并同时递减射频功率rfp。由于此时匹配电路13中匹配器的位置朝「匹配位置」调整时对于直流偏压值bias的增加程度小于射频功率rfp的减少对于直流偏压值bias的减少程度,因此,在时间点t5时,直流偏压值bias会小于默认电压值,此时,若持续控制递减射频功率rfp,将会使得直流偏压值bias更加偏离默认电压值。据此,控制电路15停止递减射频功率rfp,并持续调整匹配电路13的匹配器位置。如此一来,在时间点t5到t2的时间段内,直流偏压值bias会呈现递增趋势。

本技术领域具有通常知识者应能轻易理解,若在时间点t4到t5的时间段内,匹配电路13中匹配器的位置朝「匹配位置」调整时对于直流偏压值bias的增加程度大于射频功率rfp的减少对于直流偏压值bias的减少程度,会使得在时间点t5时,直流偏压值bias会大于默认电压值,若持续控制匹配电路13中匹配器的位置以朝「匹配位置」调整将会使得直流偏压值bias更加偏离默认电压值。相应地,控制电路15可停止控制匹配电路13中匹配器的位置以朝「匹配位置」调整,并持续递减射频功率rfp。如此一来,在时间点t5到t2的时间段内,直流偏压值bias会呈现递减趋势。

在时间点t2时,输出功率outp与射频功率rfp的比值为最大并且直流偏压值bias为默认电压值,此时,控制电路15判断第二条件满足,将停止调整射频功率rfp以及匹配电路13的匹配器位置。

需注意的是,图7a中直流偏压值bias的变化仅为范例说明,并非本发明的一限制。本发明精神在于使得直流偏压值bias快速地达到默认电压值,本技术领域具有通常知识者在阅读完上述实施例后应能轻易理解控制匹配电路13的匹配器位置朝「匹配位置」调整可以增加直流偏压值bias,相反地,减少射频功率rfp可以减少直流偏压值bias,控制电路15可依据直流偏压值bias的实际情况调整匹配电路13的匹配器位置以及射频功率rfp,以实现本发明的发明精神。

参考图7b,图7b是依据本发明一实施例以第一趋势调整射频功率rfp并以第二趋势调整匹配电路13的匹配器位置的另一波形图。接续图4b的实施例,在时间点t1时,虽然直流偏压值bias尚未到达默认电压值,然而射频功率rfp已经达到最大射频功率rfpmax,因此控制电路15判断第一条件满足。接着,如同图6b的实施例所描述,控制电路15以递减的第一趋势调整射频功率rfp,并同时控制匹配电路13中匹配器的位置接近阻抗匹配时的匹配位置。

在时间点t1到t3的时间段内,由于匹配电路13中匹配器的位置朝「匹配位置」调整时对于直流偏压值bias的增加程度小于射频功率rfp的减少对于直流偏压值bias的减少程度,因此,直流偏压值bias呈现递减的趋势。直到时间点t3时,匹配电路13中匹配器的位置朝「匹配位置」调整时对于直流偏压值bias的增加程度开始大于射频功率rfp的减少对于直流偏压值bias的减少程度,因此,直流偏压值bias开始呈现增加的趋势。本技术领域具有通常知识者应能轻易理解,若在时间点t1到t3的时间段内,匹配电路13中匹配器的位置朝「匹配位置」调整时对于直流偏压值bias的增加程度大于射频功率rfp的减少对于直流偏压值bias的减少程度时,直流偏压值bias将不会有时间点t1到t3的时间段内递减的趋势,相对的,直流偏压值bias将会持续增加。

直到时间点t2时,输出功率outp与射频功率rfp的比值为最大并且直流偏压值bias为默认电压值,此时,控制电路15判断第二条件满足,将停止调整射频功率rfp以及匹配电路13的匹配器位置。

参考图7c,图7c是依据本发明一实施例以第一趋势调整射频功率rfp并以第二趋势调整匹配电路13的匹配器位置的又另一波形图。接续图4b的实施例,在时间点t1时,虽然直流偏压值bias尚未到达默认电压值,然而射频功率rfp已经达到最大射频功率rfpmax,因此控制电路15判断第一条件满足。接着,如同图6b的实施例所描述,控制电路15先控制射频功率rfp持平,并同时控制匹配电路13中匹配器的位置朝「匹配位置」调整。直流偏压值bias因此增加。直到时间点t3时,直流偏压值bias达到默认电压值,控制电路15开始以递减的第一趋势调整射频功率rfp并持续控制匹配电路13中匹配器的位置接近阻抗匹配时的匹配位置。

如同图7a实施例所描述,由于射频功率rfp的减少对于直流偏压值bias的减少程度并非线性变化,同样地,匹配电路13中匹配器的位置朝「匹配位置」调整时对于直流偏压值bias的增加并非线性变化,因此,并无法保证直流偏压值bias会稳定的增加或减少。据此,在图7c中,在时间点t3到t2之间,直流偏压值bias呈现在默认电压值的一定范围内震荡。本领域具有通常知识者在阅读完上述实施例后,应能理解图7c的实施例中,时间点t3到t2的时间段内,直流偏压值bias相对于射频功率rfp的减少以及匹配电路13中匹配器的位置朝「匹配位置」调整时的变化,详细说明将在此省略以省篇幅。

在时间点t2时,输出功率outp与射频功率rfp的比值为最大并且直流偏压值bias为默认电压值,此时,控制电路15判断第二条件满足,将停止调整射频功率rfp以及匹配电路13的匹配器位置。

在上述的实施例中,通过先行增加射频功率rfp直到第一条件满足,亦即,直流偏压值bias达到默认电压值,或者,射频功率rfp达到最大射频功率rfpmax后,再开始调整匹配电路13的匹配器位置,可以有效地使直流偏压值bias快速地达到默认电压值,并且由于匹配电路13的匹配器达到匹配位置,反射功率为最小,可以有效地减少能量损耗。然而,此并非本发明的一限制。由于调整匹配电路13的匹配器达到匹配位置是为了使得反射功率为最小,藉以减少能量损耗,然而在不考虑能量损耗的情况下,控制电路15可以选择不将匹配电路13的匹配器位置调整至「匹配位置」。

图8是依据本发明另一实施例之应用于等离子体系统的方法的流程图。倘若大体上可以得到大致相同的结果,本发明并不限定完全依据图8所示的流程步骤执行。

步骤701:启动射频电源来产生射频功率。

步骤702:增加射频功率,射频功率对应匹配电路的匹配器的默认位置于下部电极产生输出功率。

步骤703:控制电路判断射频功率或直流偏压值是否满足第一条件,若是,则进入步骤704;否则,进入步骤702。

如同图3实施例所述,当传感器14输出的直流偏压值bias达到默认电压值时,控制电路15判断第一条件满足,或者,当射频电源12的射频功率rfp达到最大射频功率rfpmax时,控制电路15判断第一条件满足。

步骤704:选择性地调整匹配电路13的匹配器位置。

详细来说,若传感器14输出的直流偏压值bias达到默认电压值,控制电路将不对匹配电路13的匹配器位置进行调整;若射频电源12的射频功率rfp达到最大射频功率rfpmax而直流偏压值bias尚未达到默认电压值时,控制电路将对匹配电路13的匹配器位置朝「匹配位置」进行调整。

参考图9a,在时间点t0时,射频电源12启动(步骤701);接着,增加射频功率rfp,射频功率rfp对应匹配电路13的匹配器的默认位置于下部电极11产生输出功率outp(步骤702)。由于射频功率rfp的增加,输出功率outp也会相应地增加,如此一来,工作件(如晶圆)上方的射频电压值也会相应地增加,使得传感器14输出的直流偏压值bias随之增加。在增加射频功率rfp的过程中,控制电路15始终将匹配电路13的匹配器的位置维持在所述默认位置。在时间点t1时,由于射频功率rfp的增加,使得直流偏压值bias上升到默认电压值,此时,控制电路15判断第一条件满足(步骤703)。由于直流偏压值bias已经达到默认电压值,因此,控制电路15停止调整射频功率rfp。虽然控制电路15并未调整匹配电路13的匹配器位置(步骤704),使得匹配电路13的匹配器位置并非位于「匹配位置」,然而在不考虑匹配电路13对于射频功率rfp的反射功率的大小的情况下,直流偏压值bias依然可以快速地达到默认电压值。

参考图9b,在时间点t0时,射频电源12启动(步骤701);接着,控制电路15增加射频功率rfp,射频功率rfp对应匹配电路13的匹配器的默认位置于下部电极11产生输出功率outp(步骤702)。由于射频功率rfp的增加,输出功率outp也会相应地增加,如此一来,工作件(如晶圆)上方的射频电压值也会增加,使得传感器14输出的直流偏压值bias随之增加。同样的,在增加射频功率rfp的过程中,匹配电路13的匹配器的位置维持在所述默认位置。在时间点t1时,虽然直流偏压值bias尚未到达默认电压值,但此时射频功率rfp已经达到最大射频功率rfpmax,此时,控制电路15判断第一条件满足(步骤703)。接着,控制电路15将射频功率rfp持平,并开始控制匹配电路13的匹配器位置朝「匹配位置」调整(步骤704),使得直流偏压值bias持续增加。在时间点t3时,虽然匹配电路13的匹配器位置尚未达到「匹配位置」,然而直流偏压值bias已达到默认电压值,因此,控制电路15停止调整匹配电路13的匹配器位置。如此一来,在不考虑射频功率rfp的大小(维持最大射频功率rfpmax)以及匹配电路13对于射频功率rfp的反射功率的大小的情况下,直流偏压值bias依然可以快速地达到默认电压值。

简单归纳本发明,通过先行增加射频功率rfp直到第一条件满足,亦即,直流偏压值bias达到默认电压值,或者,射频功率rfp达到最大射频功率rfpmax后,再开始调整匹配电路13的匹配器位置,可以有效地使直流偏压值bias快速地达到默认电压值,并且由于匹配电路13的匹配器达到匹配位置,反射功率为最小,可以有效地减少能量损耗。然而在不考虑能量损耗的情况下,控制电路15可以选择不将匹配电路13的匹配器位置调整至「匹配位置」,依然可以有效地使直流偏压值bias快速地达到默认电压值。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1