用于发光单元的巨量转移方法,阵列基板以及显示装置与流程

文档序号:18789411发布日期:2019-09-29 18:29阅读:189来源:国知局
用于发光单元的巨量转移方法,阵列基板以及显示装置与流程

本发明涉及显示技术领域,并且具体地,涉及用于发光单元的巨量转移方法,阵列基板以及显示装置。



背景技术:

微发光二极管(micro-led)是将常规的led结构进行薄膜化和微型化后得到的微型led,其体积约为常规led大小的1%。当微发光二极管作为发光单元应用于显示面板时,包括微发光二极管阵列的显示面板的每一个像素都能被单独控制并且驱动发光。由于微发光二极管阵列的间距(微米等级)比常规led阵列的间距小得多,所以有利于实现显示面板的更高的每英寸像素数(pixelsperinch,ppi)、更高的亮度以及更高的色彩饱和度。目前,限制微发光二极管广泛应用的主要技术难点之一是用于将微发光二极管的阵列转移到衬底基板上的巨量转移技术,而巨量转移技术中的目前亟待解决的技术问题是如何提高对准精度。



技术实现要素:

根据本发明的一方面,提供了一种用于发光单元的巨量转移方法,所述巨量转移方法包括以下步骤:提供阵列排布的多个发光单元,其中,所述多个发光单元中的每一个包括第一电极,并且所述第一电极延伸到所述发光单元的侧边缘;提供衬底基板,其中所述衬底基板包括阵列排布的多个区域,所述多个区域中的每一个包括第二电极和位于所述第二电极上的电固化胶;通过转移设备拾取所述多个发光单元;将第一电压施加到所述第一电极;将第二电压施加到所述第二电极;将所述转移设备与所述衬底基板对准,使得每一个第一电极延伸到所述发光单元的侧边缘的部分与一个对应的电固化胶接触;以及分离所述转移设备与所述多个发光单元,使得所述多个发光单元中的每一个被转移到所述衬底基板的所述多个区域中的一个对应区域。

根据具体实现方案,在由本发明的实施例提供的用于发光单元的巨量转移方法中,所述发光单元包括微发光二极管(micro-led)。

根据具体实现方案,在由本发明的实施例提供的用于发光单元的巨量转移方法中,所述电固化胶包括3-[4-(溴甲基)苯基]-3-(三氟甲基)-双吖丙啶、聚酰胺-g-双吖丙啶、乙烯基酯重氮盐或乙烯基。

根据具体实现方案,在由本发明的实施例提供的用于发光单元的巨量转移方法中,所述第一电压和所述第二电压之间的电压差在0.5v-5v的范围中。

根据具体实现方案,在由本发明的实施例提供的用于发光单元的巨量转移方法中,通过丝网印刷形成所述电固化胶。

根据具体实现方案,在由本发明的实施例提供的用于发光单元的巨量转移方法中,将所述转移设备与所述衬底基板对准的步骤包括:在垂直于所述衬底基板的第一方向上和/或在平行于所述衬底基板的第二方向上相对于所述衬底基板移动所述转移设备。

根据具体实现方案,在由本发明的实施例提供的用于发光单元的巨量转移方法中,每一个发光单元还包括第三电极和位于所述第一电极与所述第三电极之间的发光层。

根据具体实现方案,在由本发明的实施例提供的用于发光单元的巨量转移方法中,所述发光层包括量子阱发光层。

根据具体实现方案,在由本发明的实施例提供的用于发光单元的巨量转移方法中,所述第一电极为阴极,并且所述第三电极为阳极。

根据本发明的另一方面,还提供了一种阵列基板。所述阵列基板包括:衬底基板,包括阵列排布的多个区域;多个第二电极,所述多个第二电极中的每一个位于所述多个区域中的一个对应区域中;多个电固化胶,所述多个电固化胶中的每一个位于所述多个第二电极中的一个对应第二电极上;多个发光单元,所述多个发光单元中的每一个位于所述多个区域中的一个对应区域中,其中,每一个发光单元包括第一电极,并且所述第一电极延伸到所述发光单元的侧边缘;其中,每一个第一电极延伸到所述发光单元的侧边缘的部分与一个对应的电固化胶接触。

根据具体实现方案,在由本发明的实施例提供的阵列基板中,所述发光单元包括微发光二极管(micro-led)。

根据具体实现方案,在由本发明的实施例提供的阵列基板中,所述电固化胶包括3-[4-(溴甲基)苯基]-3-(三氟甲基)-双吖丙啶、聚酰胺-g-双吖丙啶、乙烯基酯重氮盐或乙烯基。

根据具体实现方案,在由本发明的实施例提供的阵列基板中,每一个发光单元还包括第三电极和位于所述第一电极与所述第三电极之间的发光层,并且所述发光层包括量子阱发光层。

根据具体实现方案,在由本发明的实施例提供的阵列基板中,所述第一电极为阴极,并且所述第三电极为阳极。

根据本发明的又一方面,还提供了一种显示装置。所述显示装置包括在前面任一个实施例中描述的阵列基板。

附图说明

将在下文中进一步以非限制性方式并且参照随附各图来描述本发明的实施例,在附图中:

图1示意性示出了一种用于发光单元的巨量转移方式;

图2示意性示出了根据本发明的实施例的用于发光单元的巨量转移方法的流程图;

图3示意性示出了根据本发明的一个实施例的发光单元的截面图;

图4示意性示出了根据本发明的一个实施例的衬底基板的截面图;

图5示意性示出了根据本发明的一个实施例的电固化胶的固化过程的示意图;以及

图6示意性示出了根据本发明的一个实施例的阵列基板的截面图。

具体实施方式

如上所述,微发光二极管是将常规的led结构进行薄膜化和微型化后得到的微型led。与有机发光二极管(oled)相似,微发光二极管具备无需背光源、能够自发光的特性。但相比由有机发光二极管构成的显示面板,由微发光二极管构成的显示面板具有更高的显示分辨率、更高的色彩饱和度以及更长的使用寿命。微发光二极管可以应用于包括诸如穿戴式设备、超大室内显示屏幕、头戴式显示器(hud)、抬头显示器(hud)、车尾灯、无线光通讯li-fi、ar/vr、投影机等多个领域。

在封装环节,常规的led通常采用真空吸附的方式进行转移。由于每个微发光二极管的尺寸通常小于用于真空吸附常规led的真空管的尺寸,所以用于常规led的真空吸附的方式不再适用于微发光二极管的转移。

当前,用于微发光二极管的巨量转移方法例如包括精准抓放(finepick/place)巨量转移方法、选择性释放(selectiverelease)巨量转移方法以及自组装(self-assembly)巨量转移方法。其中,精准抓放巨量转移方法是目前常用的巨量转移方法,其通常包括薄膜转移方式和静电吸附转移方式。这两种转移方式都是通过转移设备从衬底基板上拾取阵列排布的多个微发光二极管,然后将它们转移到另一衬底基板上。图1示意性示出了用于微发光二极管的薄膜转移方式,该转移方式大体包括以下几个步骤:s1,使转移设备(例如,其可以是包括诸如聚二甲基硅氧烷(pdms)材料的弹性印章)对准微发光二极管并快速下压;s2,转移设备发生形变并与微发光二极管紧密贴合;s3,快速上提转移设备,使得微发光二极管与第一衬底基板分离;s4,将转移设备与第二衬底基板对准;s5,使转移设备朝向第二衬底基板快速下压;s6,将转移设备缓慢上提并与微发光二极管分离。需要说明的是,为了便于清楚地说明用于微发光二极管的薄膜转移方式的步骤,图1中仅示意性地示出了一个微发光二极管,但是,本领域技术人员应当清楚地知道,在用于微发光二极管的巨量转移方法中,转移设备通常一次性拾取阵列排布的多个微发光二极管。

通常,精准抓放巨量转移方法是通过提升转移设备的对准精度来提高被转移的微发光二极管的对准精度,但是转移设备的对准精度由于通常受到机械对准等各方面的限制而只能达到例如10-20μm的对准精度,这样的对准精度是不合乎期望的。例如,当微发光二极管以较低的对准精度转移到第二衬底基板上时,将导致微发光二极管的不合乎期望的位置偏差。这种位置偏差通常会产生以下两方面的弊端:一方面是在进行后续的栅线和数据线的布置工艺时,微发光二极管的这种位置偏差将导致栅线和数据线等与对应的微发光二极管的不同的接触面积,从而导致不同的接触电阻;另一方面是如果微发光二极管的位置偏差较大,则需要通过增大栅线/数据线的线宽和增大微发光二极管的引脚(为了避免增大线宽的栅线/数据线覆盖微发光二极管的发光面)来实现栅线/数据线与对应的微发光二极管的电连接,这样就导致增加了每个微发光二极管的占用面积,不利于高分辨率显示面板的实现。

基于上述巨量转移方法中存在的弊端,本发明的实施例提供了一种改进的用于发光单元的巨量转移方法。通过利用电固化胶的电固化特性来进一步优化用于发光单元的巨量转移方法,从而可以提高发光单元与衬底基板的对准精度。

下面将结合附图对根据本发明的实施例的用于发光单元的巨量转移方法进行更详细地解释和说明。需要指出的是,仅作为示例在附图中示出并且在以下描述中详细介绍根据本发明的一些实施例的用于发光单元的巨量转移方法。然而,所有这些示例性的图示和描述均不应当视为对本发明的任何限制。事实上,在获益于本发明的技术教导的基础上,本领域技术人员将能够根据实际情况设想到其他合适的可替换方案。

图2示意性示出了根据本发明的实施例的用于发光单元的巨量转移方法的流程图,图3示意性示出了根据本发明的一个实施例的发光单元的截面图,并且图4示意性示出了根据本发明的一个实施例的衬底基板的截面图。参照图2、图3和图4所示,用于发光单元的巨量转移方法可以包括以下几个步骤:s21,提供阵列排布的多个发光单元100,其中,多个发光单元100中的每一个包括第一电极101,并且每一个第一电极101延伸到发光单元100的侧边缘;s22,提供衬底基板200,其中衬底基板200包括阵列排布的多个区域203,多个区域203中的每一个包括第二电极201和位于第二电极201上的电固化胶202;s23,通过转移设备拾取多个发光单元100;s24,将第一电压(例如,可以是负电压)施加到第一电极101并且将第二电压(例如可以是正电压)施加到第二电极201;s25,将转移设备与衬底基板200对准,使得每一个第一电极101延伸到发光单元100的侧边缘的部分与一个对应的电固化胶202接触;以及s26,分离转移设备与多个发光单元100,使得多个发光单元100中的每一个被转移到衬底基板200的多个区域203中的一个对应区域。

作为具体示例,根据本发明的实施例,在用于发光单元的巨量转移方法中,将转移设备与衬底基板200对准的步骤s25,可以包括以下子步骤:在垂直于衬底基板200的第一方向上和/或在平行于衬底基板200的第二方向上相对于衬底基板200移动转移设备。例如,可以在垂直于衬底基板200的第一方向上使转移设备相对于衬底基板200向上或向下移动5μm和/或在平行于衬底基板200的第二方向上使转移设备相对于衬底基板200向左或向右移动5μm。当然,以上作为示例列举的这些移动距离都只是用于提供对本发明的示意性说明,而非任何限制。

作为具体实现方案,转移设备与衬底基板200的对准可以分为初步对准和精细对准。在转移设备与衬底基板200的初步对准过程中,使转移设备对准衬底基板200并且使其朝向衬底基板200的方向移动,直到微发光二极管与衬底基板200的间距很小(例如几百μm)。然后在转移设备与衬底基板200的精细对准过程中,通过在垂直于衬底基板200的第一方向上和/或在平行于衬底基板200的第二方向上使转移设备相对于衬底基板200移动,使得每一个第一电极101延伸到发光单元100的侧边缘的部分与一个对应的电固化胶202接触。因此,在根据本发明的实施例提供的用于发光单元的巨量转移方法中,通过利用转移设备的对准精度来完成初步对准,并且通过使每一个第一电极101延伸到发光单元100的侧边缘的部分与一个对应的电固化胶202接触来完成进一步缩小范围的精细对准。从而,可以进一步提高微发光二极管与衬底基板200的对准精度。

例如,本发明的实施例提供的用于发光单元的巨量转移方法可以与上文描述的薄膜转移方式相结合。也就是说,可以采用上文描述的薄膜转移方式来巨量转移根据本发明的实施例提供的发光单元100,并且在转移设备与衬底基板200对准的过程中,使得每一个第一电极101延伸到发光单元100的侧边缘的部分与一个对应的电固化胶202接触。

通过上文的描述可以理解到,在本发明的实施例提供的用于发光单元的巨量转移方法中,如果转移设备与衬底基板200未对准或对准偏差较大,则第一电极101延伸到发光单元100的侧边缘的部分无法接触到电固化胶202,这样,第一电极101与第二电极201之间形成的电压差无法施加到电固化胶202上,从而不能实现电固化胶202的固化。这表明发光单元100还未被转移到期望的精度范围内的位置处,在这样的情况下,可以执行如上面描述的步骤s25的子步骤,即在垂直于衬底基板200的第一方向上和/或在平行于衬底基板200的第二方向上相对于衬底基板200移动转移设备。只有当每一个第一电极101延伸到发光单元100的侧边缘的部分接触到一个对应的电固化胶202时,该电固化胶202才能够由于第一电极101与第二电极201之间的电压差而发生固化。此时,表明发光单元100已被转移到期望的精度范围内的位置处。

作为具体示例,在本发明的一个实施例中,发光单元100可以是微发光二极管。图3是微发光二极管的截面图,参照图3,该微发光二极管的第一电极101延伸到微发光二极管的侧边缘,这样的结构设计有利于在用于发光单元的巨量转移方法中实现第一电极101与电固化胶202的接触。例如,在该实施例中,微发光二极管还可以包括第三电极102和位于第三电极102与第一电极101之间的发光层103。发光层103可以包括量子阱发光层。作为具体示例,第一电极101可以是阴极,并且第三电极102可以是阳极。微发光二极管的具体结构将在下文关于阵列基板300的结构描述中进行详细介绍,本文在此不进行过多描述。

图4是根据本发明的一个实施例的衬底基板200的示意图,如图4所示,该衬底基板200包括阵列排布的多个区域203,每一个区域中均包括一个第二电极201和位于第二电极201上的电固化胶202。图5示意性示出了根据本发明的一个实施例的电固化胶的固化过程的示意图。下面,将结合图4和图5,对在用于发光单元的巨量转移方法中所使用的电固化胶202进行详细地描述。

电固化胶202可以包括3-[4-(溴甲基)苯基]-3-(三氟甲基)-双吖丙啶(3-[4-(bromomethyl)phenyl]-3-(trifluoromethyl)-diazirine)、聚酰胺-g-双吖丙啶(pamam-g-diazirine)、乙烯基酯重氮盐(diazoniumsalts)或乙烯基(vinylics)。另外,当电固化胶202包括以上列出的某一特定材料时,还可以根据实际需要而灵活选择这一特定材料在电固化胶202整体中的配比(例如摩尔百分比)。例如,当电固化胶202包括聚酰胺-g-双吖丙啶时,可以通过改变聚酰胺-g-双吖丙啶在电固化胶202整体中的配比(例如,5%、10%、15%)来调整电固化胶202所需的固化时间。通常,聚酰胺-g-双吖丙啶在电固化胶202中的配比越高,电固化胶202所需的固化时间越长。当然,以上作为示例列举的这些材料和/或配比数值都只是用于提供对本发明的示意性说明,而非任何限制。

由这样的材料形成的电固化胶202具有电固化的特性,并且通常可以在比较小的电压差下发生固化。在一实现方案中,电固化胶202的固化电压可以在0.5v-5v的范围中。也就是说,在第一电极101上施加的第一电压与在第二电极201上施加的第二电压之间的电压差可以在0.5v-5v的范围中。例如,在一具体实现方案中,电固化胶202的固化电压可以是2v。图5是电固化胶202的固化过程的示意图,如图5所示,左边是电固化胶202未固化(即未在电固化胶202上施加电压)之前的图片,右边是电固化胶202固化(即在电固化胶202上施加合适的电压)之后的图片。从图5可以看出,在电固化胶202未固化之前,电固化胶202内的各个分子彼此独立;在对电固化胶202施加合适的电压之后,电固化胶202内的各个分子之间发生交联聚合反应,形成空间网状结构。相比于固化前的电固化胶202,固化后的电固化胶202通常会具有诸如更高的硬度、更强的耐热性和耐磨性等特性。因此,在本发明的实施例提供的用于发光单元100的巨量转移方法中,可以通过判断电固化胶202的固化与否来确定微发光二极管是否已经被转移到期望的精度范围内的位置处。也就是说,电固化胶202在本发明的实施例中提供的用于发光单元100的巨量转移方法中主要用来标识发光单元100应被转移的位置。

由于电固化胶202可以在较低的电压下发生固化,所以可以避免高电压产生的静电放电(esd)对微发光二极管造成的不利影响。另外,相比于传统的热固化方式或紫外光固化方式,电固化胶202的电固化特性可以避免在微发光二极管的转移过程中热固化高温(例如,250℃)或光固化的紫外光对微发光二极管产生的不利影响(例如降低微发光二极管的发光效率)。

作为一具体实现方式,可以通过例如丝网印刷工艺来形成所需的电固化胶202。当然,电固化胶202的形成方式并不限于此,可以采用任何合适的工艺来形成本发明的实施例所需的电固化胶202。

在优选的实施例中,第二电极201仅用来提供与第一电极101的电压形成合适电压差的第二电压,使得在第一电极101延伸到微发光二极管的侧边缘的部分与电固化胶202接触时,使电固化胶202发生固化。在将多个微发光二极管巨量转移到衬底基板200上之后,可以通过诸如光刻工艺在衬底基板200上形成用于连接微发光二极管的第一电极101和第三电极102的两条电极导线,以用来驱动微发光二极管发光。或者,在可替换的实施例中,第二电极201还可以复用作用于连接微发光二极管的第一电极101和第三电极102中的一个电极的电极导线。也即,在巨量转移过程中,第二电极201用来提供第二电压,使得在第一电极101延伸到微发光二极管的侧边缘的部分与电固化胶202接触时,使电固化胶202发生固化。在将多个微发光二极管巨量转移到衬底基板200上之后,第二电极201作为电极导线电连接到微发光二极管的第一电极101和第三电极102中的一个,另一额外制作的电极导线电连接到第一电极101和第三电极102中的另外一个,以驱动微发光二极管发光。

通过上文可见,本发明的实施例提出了一种新型的用于发光单元的巨量转移方法。在巨量转移过程中,使每一个第一电极101延伸到发光单元100的侧边缘的部分与一个对应的电固化胶202接触,通过电固化胶202的固化与否来确定每一个微发光二极管是否已经被转移到对应的区域203内的期望的精度范围内的位置处。在本发明的实施例提供的用于发光单元的巨量转移方法中,在转移设备的对准精度的基础上,通过使每一个第一电极101对准一个对应的电固化胶202而进一步缩小了对准范围,从而进一步提升了微发光二极管与衬底基板200的对准精度。

根据本发明的另一方面,还提供了一种阵列基板。接下来,将参照图6,详细地描述根据本发明的实施例提供的阵列基板300。

该阵列基板300包括:衬底基板200,其包括阵列排布的多个区域203;多个第二电极201,其中多个第二电极201中的每一个位于多个区域203中的一个对应区域中;多个电固化胶202,其中多个电固化胶202中的每一个位于多个第二电极201中的一个对应第二电极上;多个发光单元100,其中多个发光单元100中的每一个位于多个区域203中的一个对应区域中,其中,每一个发光单元包括第一电极101,并且该第一电极101延伸到发光单元100的侧边缘;其中,每一个第一电极101延伸到发光单元100的侧边缘的部分与一个对应的电固化胶202接触。

在一具体实现方式中,发光单元100例如可以是微发光二极管。返回参照图3,与常规的电极布置方式不同,图3中的第一电极101延伸到微发光二极管的侧边缘。第一电极101的这种布置方式有利于在微发光二极管的巨量转移过程中实现第一电极101与对应的电固化胶202的接触,即,第一电极101延伸到微发光二极管的侧边缘的部分与对应的电固化胶202接触。如图3所示,微发光二极管还可以包括第三电极102和位于第一电极101与第三电极102之间的发光层103。在该示例中,第一电极101可以是微发光二极管的阴极,并且第三电极102可以是微发光二极管的阳极。发光层103可以包括量子阱发光层,例如,ingan量子阱发光层。通常,衬底基板200的多个区域203中的每一个区域内均包括至少两个电极引脚接触点(图中未示出),其中至少两个电极引脚接触点中的一个与一个对应的微发光二级管的第一电极101电连接,而另一个电极引脚接触点与一个对应的微发光二极管的第三电极102电连接。通过在第一电极101和第三电极102上分别施加合适的电压,可以驱动微发光二极管以使发光层103发光。另外,图3中示出的微发光二极管还可以包括第一半导体层104、第二半导体层105以及第三半导体层106。需要指出的是,这些半导体层可以是单个层,也可以是由多个膜层构成的多个层。例如,在该示例中,第一半导体层104可以是p型gan层,第二半导体层105可以包括n型ingan层、n型algan层和n型gan层,并且第三半导体层106可以包括p型gan层和p型algan层。当然,本领域技术人员可以根据具体应用而灵活地选择任何其他适合的材料。

继续参照图6,第二电极201可以是氧化铟锡(ito)电极,其可以通过光刻工艺而形成。第二电极201可以通过引线连接到衬底基板200的外边缘处的电源。

电固化胶202具有在合适的电压差下发生固化的特性。由于第一电极101延伸到发光单元100的侧边缘的部分与一个对应的电固化胶202接触,所以在这样的情况下,第一电极101与第二电极201之间的电压差使得电固化胶202发生固化,即,在根据本发明的实施例提供的阵列基板300中,电固化胶202是已经固化后的电固化胶。电固化胶202可以包括3-[4-(溴甲基)苯基]-3-(三氟甲基)-双吖丙啶(3-[4-(bromomethyl)phenyl]-3-(trifluoromethyl)-diazirine)、聚酰胺-g-双吖丙啶(pamam-g-diazirine)、乙烯基酯重氮盐(diazoniumsalts)或乙烯基(vinylics)。当然,本领域技术人员还可以根据具体应用和实践要求而灵活地选择任何其他适合的材料。就这一方面而言,本发明不再提供详细介绍,但是旨在涵盖所有这些可设想到的技术方案。

需要说明的是,为了便于清楚地描述阵列基板300的结构,图6的示例中仅示出了部分结构,但是本领域技术人员应当清楚地知道,阵列基板300中的结构并不限于此,阵列基板300还可以包括彼此交错的多条栅线、多条数据线、位于每个区域203内的薄膜晶体管等结构,这些结构相互协作以实现阵列基板300的所需功能。

在本发明的实施例提供的阵列基板300中,通过改善发光单元100和衬底基板200的结构来提高阵列基板300中的发光单元100与衬底基板200的对准精度。具体地,在根据本发明的实施例提供的阵列基板300中,通过使每一个第一电极101延伸到发光单元100的侧边缘的部分与一个对应的电固化胶202接触而使每一个发光单元100位于一个对应的区域203内的期望的精度范围内的位置处。也就是说,本发明的实施例提供的阵列基板300,是在现有转移设备的对准精度的基础上,通过进一步缩小对准范围而得到的阵列基板。所以,相比于采用常规巨量转移方法得到的阵列基板,本发明的实施例提供的阵列基板300可以有效地提高发光单元100与衬底基板200的对准精度。

根据本发明的又一方面,还提供了一种显示装置。这样的显示装置包括在前面任一个实施例中描述的阵列基板。该显示装置可以是诸如穿戴式设备、超大室内显示屏幕、头戴式显示器(hud)、抬头显示器(hud)、车尾灯、无线光通讯li-fi、ar/vr、投影机等任意合适的装置。由于显示装置能够解决与前面的阵列基板基本相同的技术问题,并且实现相同的技术效果,因此,出于简洁的目的,在本文中不再对显示装置的技术效果进行重复描述。

本领域技术人员将理解到,本文中的术语“基本上”还可以包括具有“完整地”、“完全地”、“所有”等的实施例。因此,在实施例中,也可以移除形容词基本上。在适用的情况下,术语“基本上”还可以涉及90%或更高,诸如95%或更高,特别地99%或更高,甚至更特别地99.5%或更高,包括100%。术语“包括”还包括其中术语“包括”意指“由……构成”的实施例。术语“和/或”特别地涉及在“和/或”之前和之后提到的项目中的一个或多个。例如,短语“项目1和/或项目2”及类似短语可以涉及项目1和项目2中的一个或多个。术语“包括”在实施例中可以是指“由……构成”,但是在另一个实施例中可以是指“包含至少所限定的物种以及可选的一个或多个其它物种”。

另外,说明书和权利要求书中的术语第一、第二、第三等被用于在类似的元件之间进行区分并且不一定用于描述序列性或者时间次序。应理解到,如此使用的术语在适当的情况下是可互换的,并且本文所描述的本发明的实施例能够以除本文所描述或说明的其它顺序来操作。

应当指出,以上提到的实施例说明而不是限制本发明,并且本领域技术人员将能够在不脱离随附权利要求书的范围的情况下设计许多可替换的实施例。在权利要求中,放置在圆括号之间的任何参考标记不应解释为限制权利要求。动词“包括”及其词形变化的使用不排除除权利要求中所陈述的那些之外的元件或步骤的存在。在元件前面的冠词“一”或“一个”不排除多个这样的元件的存在。在相互不同的从属权利要求中陈述某些措施的仅有事实不指示这些措施的组合不能用于获益。

可以组合本专利中所讨论的各个方面以便提供附加的优点。另外,特征中的一些可以形成一个或多个分案申请的基础。

附图标记列表

100发光单元

101第一电极

102第三电极

103发光层

104第一半导体层

105第二半导体层

106第三半导体层

200衬底基板

201第二电极

202电固化胶

203阵列排布的多个区域

300阵列基板。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1