铁基超导线圈及制备方法及测量铁基超导接头电阻的方法与流程

文档序号:22248819发布日期:2020-09-18 12:22阅读:118来源:国知局
铁基超导线圈及制备方法及测量铁基超导接头电阻的方法与流程

本发明涉及铁基超导材料技术领域,具体涉及一种铁基超导线圈及制备方法及测量铁基超导接头电阻的方法。



背景技术:

铁基化合物超导材料是一种新近发现的化合物超导体。目前其最高超导转变温度已达55k,并很有可能继续提高。与传统低温超导材料相比,铁基超导体有转变温度高、上临界场大、临界电流的强磁场依赖性小等优点,是一种在20-50k范围内具有极大应用前景的新型超导材料。与氧化物高温超导材料相比,铁基超导体的晶体结构更为简单、相干长度大、各向异性小、制备工艺简单,因此铁基超导材料的制备受到国际上的广泛关注。当前这类铁基超导体的临界传输电流密度在4.2k和10t下已经超过了1.5×105a/cm2,同时第一根百米铁基超导长线也已于2017年制备出来,这些都标志着铁基超导体的性能已经达到了实用化的水平。

目前基于铁基化合物超导材料已经可以制备铁基超导接头,但铁基超导线圈的报道鲜少。然而,铁基超导线圈对于强磁场和无电阻线圈发展具有重大意义。



技术实现要素:

有鉴于此,为了克服现有技术中不能制备铁基超导线圈的缺陷,本发明实施例提供了一种铁基超导线圈及制备方法及测量铁基超导接头电阻的方法。

根据第一方面,本发明实施例提供了一种铁基超导线圈,包括:铁基超导线材,铁基超导线材两端通过接头连接;铁芯,铁基超导线材绕设于铁芯上,铁芯的横截面为非闭合形状。

可选地,接头为铁基超导接头或铁基有阻接头。

可选地,铁基超导线圈还包括:稳定化材料,包覆在铁基超导线材的表面,用于对铁基超导线材进行加固,稳定化材料为环氧树脂。

根据第二方面,本发明实施例提供了一种制备铁基超导线圈的方法,包括:将铁基超导线材缠绕到铁芯上,铁芯的横截面为非闭合形状;通过接头将缠绕到铁芯上的铁基超导线材的两端进行连接。

可选地,通过接头将缠绕到铁芯上的铁基超导线材的两端进行连接,包括:将需要连接的铁基超导线材的两端剥离其表面的非超导层,使超导芯露出;将铁基超导线材的两端露出的超导芯直接接触或在铁基超导线材的两末端露出的超导芯之间填充铁基超导粉末,然后用金属包套包覆铁基超导线材的两端的连接区域;将连接区域进行冷压处理;将冷压处理后的铁基超导线圈进行热处理。

可选地,通过接头将缠绕到铁芯上的铁基超导线材的两端进行连接,包括:将需要连接的铁基超导线材的两端进行焊接,以使铁基超导线材的两端连接。

可选地,制备铁基超导线圈的方法还包括:在两端进行连接后的铁基超导线材的表面涂覆稳定化材料。

根据第三方面,本发明实施例提供了一种测量铁基超导接头电阻的方法,包括:在预设温度下对待测铁基超导线圈进行励磁;将励磁后的待测铁基超导线圈进行加热,以使待测铁基超导线圈失超;停止对失超后的待测铁基超导线圈加热,以使待测铁基超导线圈呈超导态;停止对待测铁基超导线圈进行励磁,并同时测量待测铁基超导线圈的磁场强度随时间的变化曲线;根据磁场强度随时间的变化曲线计算待测铁基超导线圈的接头的电阻。

可选地,采用如第二方面或第二方面任意实施方式中的制备铁基超导线圈的方法制备待测铁基超导线圈。

可选地,在预设温度下对铁基超导线圈进行励磁,包括:将励磁线圈与铁基超导线圈成同心结构放置在液氦中;对励磁线圈进行通电,以对铁基超导线圈进行励磁。

可选地,停止对铁基超导线圈进行励磁,包括:对励磁线圈进行断电,以停止对铁基超导线圈进行励磁。

本发明实施例具有如下有益效果:

1.本发明实施例提供的铁基超导线圈及制备方法,通过将铁基超导线材绕设于铁芯上,铁芯的横截面为非闭合形状,铁基超导线材两端通过接头连接,制备了铁基超导线圈,实现了铁基超导体的闭环运行,且通过将铁芯的横截面设置为非闭合形状,使得铁基超导线圈在使用时,铁芯自身不会产生磁场,从而不对铁基超导线圈产生的磁场产生影响。

2.本发明实施例提供的测量铁基超导接头电阻的方法,通过在预设温度下对待测铁基超导线圈进行励磁,使得待测铁基超导线圈产生感应电流;将励磁后的待测铁基超导线圈进行加热,以使待测铁基超导线圈失超,使得待测铁基超导线圈消耗掉感应电流;停止对失超后的待测铁基超导线圈加热,以使待测铁基超导线圈呈超导态;停止对待测铁基超导线圈进行励磁,并同时测量待测铁基超导线圈的磁场强度随时间的变化曲线,使得测得的磁场强度只有待测铁基超导线圈产生的磁场强度;从而根据铁基线圈产生的磁场强度随时间的变化曲线可以准确计算得到待测铁基超导线圈的接头的电阻。

附图说明

为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1示出了本发明实施例的铁基超导线圈的结构示意图;

图2示出了本发明实施例的铁基超导线材的结构示意图;

图3示出了本发明实施例的铁芯的横截面的形状示意图;

图4示出了本发明实施例的铁基超导接头的结构示意图;

图5示出了本发明实施例的另一铁基超导接头的结构示意图;

图6示出了本发明实施例的另一铁基超导接头的结构示意图;

图7示出了本发明实施例的制备铁基超导线圈的流程示意图;

图8示出了本发明实施例的铁基超导线圈热处理工艺示意图;

图9示出了本发明实施例的测量铁基超导接头电阻的流程示意图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明实施例提供了一种铁基超导线圈,如图1所示,包括:铁基超导线材11,铁基超导线材11两端通过接头12连接;铁芯13,铁基超导线材11绕设于铁芯13上,铁芯13的横截面为非闭合形状。

具体地,如图2所示,铁基超导线材11包括铁基超导芯111和包覆铁基超导芯111的非超导层112。铁基超导线材11绕设于铁芯13上,铁芯13为管状结构,且在该铁芯13上,沿轴线方向,具有从一端贯穿至另一端的开口结构,从而形成非闭合结构,如图3所示。将用于绕制铁基超导线材11的铁芯13设置为非闭合的形状,可以防止铁基超导线圈工作时铁芯自身产生的感应磁场对铁基超导线圈产生的感应磁场的影响。

本发明实施例提供的铁基超导线圈,通过将铁基超导线材绕设于铁芯上,铁芯的横截面为非闭合形状,铁基超导线材两端通过接头连接,制备了铁基超导线圈,实现了铁基超导体的闭环运行,且通过将铁芯的横截面设置为非闭合形状,使得铁基超导线圈在使用时,铁芯自身不会产生磁场,从而不对铁基超导线圈产生的磁场产生影响。

在可选的实施例中,接头12为铁基超导接头或铁基有阻接头。具体地,如图4-6所示,铁基超导接头包括被连接的铁基超线材11和金属包套14。被连接的铁基超线材11的两端通过机械或者化学法去除了其表面的非超导层,使其待连接区域的超导芯111裸露出来。被连接的铁基超线材11的两端通过裸露出的超导芯111直接接触进行连接或通过在两端间填充铁基超导粉末15进行连接,上述处理过的铁基超导线材11的两端通过单层或多层金属包套14包裹起来,形成连接区域,连接区域进行冷压处理和热处理后,形成了铁基超导接头。

铁基有阻接头包括被连接的铁基超导线材11和焊料,铁基有阻接头是通过将被连接的铁基超导线材11的两端通过焊料进行焊接而形成的。铁基有阻接头形成时,不需要将被连接的铁基超导线材的两端的非超导层去除。

在可选的实施例中,铁基超导线圈还包括:稳定化材料,包覆在铁基超导线材11的表面,用于对铁基超导线材11进行加固,稳定化材料为环氧树脂。

具体地,对于铁基超导线材,其柔韧性较差,为了防止铁基超导线圈在使用过程中的损坏,可以在成型的铁基超导线圈的铁基超导线材11表面涂覆一层稳定化材料,用于对铁基超导线材11进行加固,稳定化材料为环氧树脂。

本发明实施例还提供了一种制备铁基超导线圈的方法,如图7所示,包括:

s101.将铁基超导线材缠绕到铁芯上,铁芯的横截面为非闭合形状;具体地,铁芯的形状可以为带有纵向缺口的铁环,铁环的横截面的形状为非闭合形状。将用于绕制铁基超导线材的铁芯设置为非闭合的形状,可以防止铁基超导线圈工作时铁芯自身产生的感应磁场对铁基超导线圈产生的感应磁场的影响。

s102.通过接头将缠绕到铁芯上的铁基超导线材的两端进行连接。具体地,可以通过铁基超导接头或铁基有阻接头将缠绕到铁芯上的铁基超导线材的两端进行连接。

本发明实施例提供的制备铁基超导线圈的方法,通过将铁基超导线材绕设于铁芯上,铁芯的横截面为非闭合形状,铁基超导线材两端通过接头连接,制备了铁基超导线圈,实现了铁基超导体的闭环运行,且通过将铁芯的横截面设置为非闭合形状,使得铁基超导线圈在使用时,铁芯自身不会产生磁场,从而不对铁基超导线圈产生的磁场产生影响。

在可选的实施例中,以铁基超导接头将缠绕到铁芯上的铁基超导线材的两端进行连接为例进行说明,此时,步骤s102中,通过接头将缠绕到铁芯上的铁基超导线材的两端进行连接,具体包括:将需要连接的铁基超导线材的两端剥离其表面的非超导层,使超导芯露出;将铁基超导线材的两端露出的超导芯直接接触或在铁基超导线材的两末端露出的超导芯之间填充铁基超导粉末,然后用金属包套包覆铁基超导线材的两端的连接区域;将连接区域进行冷压处理;将冷压处理后的铁基超导线圈进行热处理。

具体的,在对连接区域进行冷压处理后,还需要对连接区域进行热处理,在对连接区域进行热处理时,连接区域需要承受高温,并且为了防止铁基材料在高温时被氧化,热处理时需要惰性气氛及密闭,因此,为了连接区域更便捷的进行热处理,可以将整个的铁基超导线圈同时进行热处理。热处理的工艺流程如图8所示,t1的取值范围为200℃~700℃,t2的取值范围为700℃~1200℃,c1的取值范围为20min~70min,c2的取值范围为80min~100min,c3的取值范围为140min~160min,c4的取值范围为320min~350min,c5的取值范围为620min~680min,c6的取值范围为780min~1480min。

通过采用铁基超导接头将缠绕到铁芯上的铁基超导线材的两端进行连接,由于铁基超导接头的电阻较小,从而获得的铁基超导线圈的电阻较小,并且,通过铁基超导接头连接铁基超导线材的两端所获得的铁基超导线圈,由于铁基超导线材的电阻极小,可以用于测量铁基超导接头的电阻。

在可选的实施例中,以铁基有阻接头将缠绕到铁芯上的铁基超导线材的两端进行连接为例进行说明,此时,通过接头将缠绕到铁芯上的铁基超导线材的两端进行连接,具体包括:将需要连接的铁基超导线材的两端进行焊接,以使铁基超导线材的两端连接。

具体地,通过铁基有阻接头将铁基超导线材的两端进行连接,由于不需要将铁基超导线材的两端的非超导层去除,且不需要金属包套包覆连接区域,制作工艺简单。

在可选的实施例中,制备铁基超导线圈的方法还包括:在两端进行连接后的铁基超导线材的表面涂覆稳定化材料。具体地,对于铁基超导线材,其柔韧性较差,为了防止铁基超导线圈在使用过程中的损坏,可以在成型的铁基超导线圈的铁基超导线材表面涂覆一层稳定化材料,用于对铁基超导线材进行加固,稳定化材料为环氧树脂。

现有技术中,一般采用四引线法测量铁基超导接头的电阻,但是由于常规四引线法的测量精度一般为10-9ω数量级,但铁基超导接头的电阻一般低于10-12ω数量级,因此,采用四引线法测得的铁基超导接头的电阻不准确,为此,本发明实施例还提供了一种测量铁基超导接头电阻的方法,如图9所示,包括:

s201.在预设温度下对待测铁基超导线圈进行励磁;具体地,在本发明实施例中,由于铁基超导线圈的电阻极小,相对于铁基超导接头的电阻可以忽略不计,因此可以采用测量待测铁基超导线圈的电阻来获得待测铁基超导接头的电阻。在测量待测铁基超导线圈的电阻时,需要给待测铁基超导线圈提供一个励磁线圈,通过给励磁线圈通电流/断电流的过程,使得待测铁基超导线圈产生感应电流。并且,铁基超导线圈工作时,需要在低温下进行,因为高温会使铁基超导线圈失超,预设温度的范围为0k~35k。

s202.将励磁后的待测铁基超导线圈进行加热,以使待测铁基超导线圈失超;具体地,励磁线圈通电之后,会产生一个变化的磁场,这一变化的磁场会使待测铁基超导线圈产生感应电流,此时如果测量磁场,既有励磁线圈产生的磁场,又存在铁基超导线圈产生的磁场,因此,需要测量励磁线圈断电后,铁基超导线圈的磁场变化,来计算铁基超导线圈的电阻。但是如果此时励磁线圈断电,待测铁基超导线圈产生的感应电流也会立刻消失。因此,需要在给励磁线圈断电之前,给铁基超导线圈进行加热,使得超导线圈失超,从而将铁基超导线圈内的电流耗损掉。

s203.停止对失超后的待测铁基超导线圈加热,以使待测铁基超导线圈呈超导态;具体地,待测铁基超导线圈内的电流损耗完之后,停止对铁基超导线圈的加热,从而使铁基超导线圈又呈超导态。

s204.停止对待测铁基超导线圈进行励磁,并同时测量待测铁基超导线圈的磁场强度随时间的变化曲线;具体地,铁基超导线圈又呈超导态后,对励磁线圈断电,从而会使铁基超导线圈重新产生感应电流,此时,可以通过霍尔探头测量铁基超导线圈的磁场变化。

s205.根据磁场强度随时间的变化曲线计算待测铁基超导线圈的接头的电阻。具体地,根据磁场的变化可以得到铁基超导线圈电流随时间的变化曲线,从而根据公式可以计算出铁基超导线圈的电阻,其中τ为时间常数τ=l/r,其中l为铁基超导线圈电感,r为铁基超导线圈的电阻。从而可以得到铁基超导接头的电阻。

本发明实施例提供的测量铁基超导接头电阻的方法,通过在预设温度下对待测铁基超导线圈进行励磁,使得待测铁基超导线圈产生感应电流;将励磁后的待测铁基超导线圈进行加热,以使待测铁基超导线圈失超,使得待测铁基超导线圈消耗掉感应电流;停止对失超后的待测铁基超导线圈加热,以使待测铁基超导线圈呈超导态;停止对待测铁基超导线圈进行励磁,并同时测量待测铁基超导线圈的磁场强度随时间的变化曲线,使得测得的磁场强度只有待测铁基超导线圈产生的磁场强度;从而根据铁基线圈产生的磁场强度随时间的变化曲线可以准确计算得到待测铁基超导线圈的接头的电阻。

在可选的实施例中,采用如上述任意实施方式中的制备铁基超导线圈的方法制备待测铁基超导线圈。

在可选的实施例中,步骤s201,在预设温度下对铁基超导线圈进行励磁,具体包括:将励磁线圈与铁基超导线圈成同心结构放置在液氦中;对励磁线圈进行通电,以对铁基超导线圈进行励磁。

具体地,液氦可以提供铁基超导线圈工作时的低温环境。将励磁线圈与铁基超导线圈成同心结构设置在液氦中,可以使得励磁线圈通电/断电时,可以使得铁基超导线圈内产生感应电流。通过对励磁线圈通电,可以使得铁基超导线圈内产生感应电流,从而实现对铁基超导线圈进行励磁。

在可选的实施例中,步骤s204中,停止对铁基超导线圈进行励磁,具体包括:对励磁线圈进行断电,以停止对铁基超导线圈进行励磁。

具体地,对励磁线圈进行断电,停止对铁基超导线圈进行励磁,励磁线圈会产生一个变化的磁场,这一变化的磁场会重新使铁基超导线圈产生感应电流。

虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1