一种基于PN结芯片的高压电弧监测系统及其制备方法与流程

文档序号:22682930发布日期:2020-10-28 12:46阅读:177来源:国知局
一种基于PN结芯片的高压电弧监测系统及其制备方法与流程

本发明涉及一种高压电弧监测系统,具体是指一种基于pn结芯片的高压电弧监测系统及其制备方法。

技术背景

电弧是一种气体放电现象,电流通过某些绝缘介质(例如空气)所产生的瞬间火花,这些现象长时间出现会损害高压设备,引发电力系统瘫痪,对电力系统造成严重的危害。此外,电弧放电也会严重地影响人身安全。因此,如何准确、及时、有效地检测电弧放电的位置及强弱对保证电力系统可靠运行、减少设备损坏和确保人身安全具有重要的意义。

电弧放电的监测通常有人工目视检查、远红外望远镜、超声波电晕检测和日盲紫外检测技术等,由于太阳光中含有很强的红外线,用红外线望远镜观察误检率较高,而超声波电晕检测装置探测距离较近,在使用中的人为影响因素较多,检测误差较大。日盲紫外检测技术是近几年来新兴的一种电弧检测方式,可以检测电弧放电发出的200-280nm波段深紫外光谱,而不受太阳光中300~360nm波段的紫外线干扰,检测精度高。



技术实现要素:

本发明的目的是提供一种灵敏度高、稳定性好,可以远程监测高压电弧、电晕发出的紫外线强度等信息,并远程发送到电网监控端的高压电弧监测系统及制备方法。

本发明的技术方案为:

一种基于pn结芯片的高压电弧监测系统,其特征在于由氧化镓基pn结光电芯片、ti/au圆形薄膜电极、紫外光电探测外围电路、指示灯和nb通信模块组成;所述的氧化镓基pn结光电芯片包括蓝宝石单晶衬底、n型β-ga2o3薄膜、p型sm2o3薄膜,其中β-ga2o3薄膜的厚度为300-500nm,位于蓝宝石单晶衬底的上方,并且面积相同,sm2o3薄膜的厚度为300-500nm,位于β-ga2o3薄膜的上方,面积为β-ga2o3薄膜的一半,与β-ga2o3薄膜形成sm2o3/β-ga2o3pn结结构,所述的ti/au圆形薄膜电极,直径为2mm;ti薄膜电极厚度为20-30nm,au薄膜电极在ti薄膜电极的上方,厚度为60-90nm;

所述一种基于pn结芯片的高压电弧监测系统的制作方法具有如下步骤:

(1)氧化镓基pn结光电芯片的制备:

将c面蓝宝石单晶衬底放入v(hf):v(h2o2)=l:5的溶液中浸泡以去除自然氧化层,然后用丙酮、乙醇和去离子水分别超声清洗,并真空干燥;把99.99%纯度的ga2o3和sm2o3靶材分别放置在多靶磁控溅射沉积系统的靶台位置,将上述处理后的c面蓝宝石单晶衬底固定在样品托上,放进真空腔,各靶材与c面蓝宝石单晶衬底的距离均为5厘米;先将腔体抽真空,通入氩气,调整真空腔内的压强,加热蓝宝石单晶衬底,生长ga2o3薄膜,待β-ga2o3薄膜生长完毕,关闭ga2o3靶射频电源,并开启sm2o3靶射频电源,用掩膜版遮住一半面积β-ga2o3薄膜,继续生长sm2o3薄膜,待β-ga2o3薄膜生长完毕,通入氧气,氩气和氧气的流量比为3:1,进行原位退火,其中,抽真空后腔体压强为1×10-4pa,加热c面蓝宝石圆形单晶衬底时腔体压强为3-5pa,通入氧气后的腔体压强为20-50pa,溅射功率为50-100w,溅射时间为1-2h,通入氧气前c面蓝宝石单晶衬底的加热温度为600-700℃,通入氧气后在腔体内原位退火的温度为700-800℃,退火时间为0.5-1.0h;

(2)一种基于pn结芯片的高压电弧监测系统的制作:

利用掩膜版并通过射频磁控溅射技术在sm2o3和β-ga2o3薄膜上方分别沉积一层ti/au圆形薄膜作为测量电极;紫外光电探测外围电路,并将带电极的氧化镓基pn结光电芯片、指示灯和通信模块接入光电探测电路,组装成基于pn结芯片的高压电弧监测系统。

本发明的优点:

1、本发明方法所制备的氧化镓基pn结光电芯片具有工艺可控性强,操作简单,且重复测试具有可恢复性等特点,具有很大的应用前景。

2、本发明方法所制作的氧化镓基pn结光电芯片性能稳定,反应灵敏,暗电流小,具有日盲特性,可零功耗工作,可以监测220nm-280nm波段的深紫外光谱。直接智能鉴定紫外线的波长范围,并对某一特定的紫外波长进行强度监测。

3、本发明方法所制作的一种基于pn结芯片的高压电弧监测系统可以将所需监测的高压电弧、电晕发出的紫外线强度、发光频率等信息远程发送到电网监控端,实现远程监管,可应用于电气电弧报警、高压线电弧、电晕监测等电力设施领域。

附图说明

图1是本发明方法的氧化镓基pn结光电芯片的结构示意图。

图2是用本发明的β-ga2o3薄膜的xrd图谱。

图3是用本发明的sm2o3薄膜的xrd图谱。

图4是用本发明的基于pn结芯片的高压电弧监测系统在1v偏压下光强为1mw/cm2的254nm紫外光照下通过不断开关光源测得的i-t曲线图。

图5是本发明的基于pn结芯片的高压电弧监测系统电路图。

具体实施方式

以下结合实例进一步说明本发明。

实施例1

一种基于pn结芯片的高压电弧监测系统的制作方法具有如下步骤:

(1)氧化镓基pn结光电芯片的制备:

将c面蓝宝石单晶衬底放入v(hf):v(h2o2)=l:5的溶液中浸泡以去除自然氧化层,然后用丙酮、乙醇和去离子水分别超声清洗,并真空干燥;把99.99%纯度的ga2o3和sm2o3靶材分别放置在多靶磁控溅射沉积系统的靶台位置,将上述处理后的c面蓝宝石单晶衬底固定在样品托上,放进真空腔,各靶材与c面蓝宝石单晶衬底的距离均为5厘米;先将腔体抽真空,通入氩气,调整真空腔内的压强,加热蓝宝石单晶衬底,生长ga2o3薄膜,待β-ga2o3薄膜生长完毕,关闭ga2o3靶射频电源,并开启sm2o3靶射频电源,用掩膜版遮住一半面积β-ga2o3薄膜,继续生长sm2o3薄膜,待β-ga2o3薄膜生长完毕,通入氧气,氩气和氧气的流量比为3:1,进行原位退火,其中,抽真空后腔体压强为1×10-4pa,加热c面蓝宝石圆形单晶衬底时腔体压强为3pa,通入氧气后的腔体压强为20pa,溅射功率为100w,溅射时间为1h,通入氧气前c面蓝宝石单晶衬底的加热温度为600℃,通入氧气后在腔体内原位退火的温度为800℃,退火时间为0.5h。

(2)一种基于pn结芯片的高压电弧监测系统的制作:

利用掩膜版并通过射频磁控溅射技术在sm2o3和β-ga2o3薄膜上方分别沉积一层ti/au圆形薄膜作为测量电极;紫外光电探测外围电路,并将带电极的氧化镓基pn结光电芯片、指示灯和通信模块接入光电探测电路,组装成基于pn结芯片的高压电弧监测系统。

将步骤(1)中所得的氧化镓基pn结光电芯片进行xrd分析,发现图2中的(-402)和(-603)晶面衍射峰对应于β-ga2o3相的特征峰,图3中的(222)和(400)晶面衍射峰对应于sm2o3相的特征峰,图2和3中均未发现其它杂质衍射峰,表明所得薄膜为纯相sm2o3和β-ga2o3薄膜,形成sm2o3/β-ga2o3pn结结构光电芯片。

将步骤(1)中所得的氧化镓基pn结光电芯片进行光电性能测试,如图4给出了氧化镓基pn结光电芯片在1v偏压下光强为1mw/cm2的254nm和365nm紫外光照下通过不断开关光源测得的i-t曲线图,图谱显示出了很好的重复性。其中,在254nm波长光的照射下,最大光电流为17μa,关光源后光电流为1.7μa,光暗比达到10,光响应时间为0.5s,表明该探测器对254nm紫外光具有优异的光响应特性。作为对比,氧化镓基pn结光电芯片在365nm紫外光照下,发现探测器无明显响应,表明该芯片具有日盲特性,不会受到太阳光等环境因素干扰,抗干扰能力强。

本发明还了紫外光电探测外围电路,并将带电极的氧化镓基pn结光电芯片、指示灯和通信模块接入光电探测电路(如图5所示),组装成基于pn结芯片的高压电弧监测系统。其电路原理为:在已知探测器d1阻值的情况下,调节可变电阻r1的阻值至与探测器d1的相似,以分担探测器的电压。lm358在这里用作比较器,变阻器r2端的电压作为比较器的反相输入端,即比较器的基准电压。反相器74hc04起到稳压并增强驱动能力作用。其中r3,r4是限流电阻。c1、c2、c3、c4、c5作为旁路电容,起到滤波作用。工作原理:当高压电弧中发出的紫外光照射到探测器上时,探测器的电阻变化,导致电阻r1两端的电压变大,当比较器lm358的正向输入端的电压高于反向输入端时,lm358输出高电平。lm358输出的高电平经过反相器74hc04后变为低电平导致pnp三极管q1导通,红色指示灯亮,同时启动nb通讯模块,将监测信号发送至电网监控终端,实现远程监管,可应用于电气电弧报警、高压线电弧、电晕监测等电力设施领域。

如图1和5所示,一种基于pn结芯片的高压电弧监测系统,由氧化镓基pn结光电芯片10、ti/au圆形薄膜电极20、紫外光电探测外围电路、指示灯30和nb通信模块40组成;

具体地,所述的氧化镓基pn结光电芯片10包括蓝宝石单晶衬底11、n型β-ga2o3薄膜12、p型sm2o3薄膜13,其中β-ga2o3薄膜12的厚度为200-300nm,位于蓝宝石单晶衬底11的上方,并且面积相同,sm2o3薄膜13的厚度为200-300nm,位于β-ga2o3薄膜12的上方,面积为β-ga2o3薄膜12的一半,与β-ga2o3薄膜12形成sm2o3/β-ga2o3pn结结构,所述的ti/au圆形薄膜电极20直径为2mm,ti/au圆形薄膜电极20包括ti薄膜电极和au薄膜电极,au薄膜电极在ti薄膜电极的上方,ti薄膜电极厚度为20-30nm,au薄膜电极的厚度为60-90nm。

所述的氧化镓基pn结光电芯片性能稳定,反应灵敏,暗电流小,具有日盲特性,可零功耗工作,可以监测220nm-280nm波段的深紫外光谱。所述的基于pn结芯片的高压电弧监测系统可以将所需监测的高压电弧、电晕发出的紫外线强度、发光频率等信息远程发送到电网监控端,实现远程监管,可应用于电气电弧报警、高压线电弧、电晕监测等电力设施领域。

实施例2

步骤(2)与实施例1相同。步骤(1)中先将c面蓝宝石单晶衬底放入v(hf):v(h2o2)=l:5的溶液中浸泡以去除自然氧化层,然后用丙酮、乙醇和去离子水分别超声清洗,并真空干燥;把99.99%纯度的ga2o3和sm2o3靶材分别放置在多靶磁控溅射沉积系统的靶台位置,将上述处理后的c面蓝宝石单晶衬底固定在样品托上,放进真空腔,各靶材与c面蓝宝石单晶衬底的距离均为5厘米;先将腔体抽真空,通入氩气,调整真空腔内的压强,加热蓝宝石单晶衬底,生长ga2o3薄膜,待β-ga2o3薄膜生长完毕,关闭ga2o3靶射频电源,并开启sm2o3靶射频电源,用掩膜版遮住一半面积β-ga2o3薄膜,继续生长sm2o3薄膜,待β-ga2o3薄膜生长完毕,通入氧气,氩气和氧气的流量比为3:1,进行原位退火,其中,抽真空后腔体压强为1×10-4pa,加热c面蓝宝石圆形单晶衬底时腔体压强为3pa,通入氧气后的腔体压强为30pa,溅射功率为80w,溅射时间为2h,通入氧气前c面蓝宝石单晶衬底的加热温度为650℃,通入氧气后在腔体内原位退火的温度为750℃,退火时间为0.5h。

所得氧化镓基pn结光电芯片及测试结果均与实例1类似。

实施例3

步骤(2)与实施例1相同。步骤(1)中先将c面蓝宝石单晶衬底放入v(hf):v(h2o2)=l:5的溶液中浸泡以去除自然氧化层,然后用丙酮、乙醇和去离子水分别超声清洗,并真空干燥;把99.99%纯度的ga2o3和sm2o3靶材分别放置在多靶磁控溅射沉积系统的靶台位置,将上述处理后的c面蓝宝石单晶衬底固定在样品托上,放进真空腔,各靶材与c面蓝宝石单晶衬底的距离均为5厘米;先将腔体抽真空,通入氩气,调整真空腔内的压强,加热蓝宝石单晶衬底,生长ga2o3薄膜,待β-ga2o3薄膜生长完毕,关闭ga2o3靶射频电源,并开启sm2o3靶射频电源,用掩膜版遮住一半面积β-ga2o3薄膜,继续生长sm2o3薄膜,待β-ga2o3薄膜生长完毕,通入氧气,氩气和氧气的流量比为3:1,进行原位退火,其中,抽真空后腔体压强为1×10-4pa,加热c面蓝宝石圆形单晶衬底时腔体压强为3pa,通入氧气后的腔体压强为50pa,溅射功率为50w,溅射时间为2h,通入氧气前c面蓝宝石单晶衬底的加热温度为650℃,通入氧气后在腔体内原位退火的温度为750℃,退火时间为0.5h。

所得氧化镓基pn结光电芯片及测试结果均与实例1类似。

实施例4

步骤(2)与实施例1相同。步骤(1)中先将c面蓝宝石单晶衬底放入v(hf):v(h2o2)=l:5的溶液中浸泡以去除自然氧化层,然后用丙酮、乙醇和去离子水分别超声清洗,并真空干燥;把99.99%纯度的ga2o3和sm2o3靶材分别放置在多靶磁控溅射沉积系统的靶台位置,将上述处理后的c面蓝宝石单晶衬底固定在样品托上,放进真空腔,各靶材与c面蓝宝石单晶衬底的距离均为5厘米;先将腔体抽真空,通入氩气,调整真空腔内的压强,加热蓝宝石单晶衬底,生长ga2o3薄膜,待β-ga2o3薄膜生长完毕,关闭ga2o3靶射频电源,并开启sm2o3靶射频电源,用掩膜版遮住一半面积β-ga2o3薄膜,继续生长sm2o3薄膜,待β-ga2o3薄膜生长完毕,通入氧气,氩气和氧气的流量比为3:1,进行原位退火,其中,抽真空后腔体压强为1×10-4pa,加热c面蓝宝石圆形单晶衬底时腔体压强为3pa,通入氧气后的腔体压强为40pa,溅射功率为60w,溅射时间为2h,通入氧气前c面蓝宝石单晶衬底的加热温度为650℃,通入氧气后在腔体内原位退火的温度为750℃,退火时间为0.5h。

所得氧化镓基pn结光电芯片及测试结果均与实例1类似。

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上、在本发明的方法和原则之内,所作的任何修改等同替换、改进,均应包含在本发明的保护范围之内。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1