一种基于陷光结构玻璃的高效钙钛矿太阳能电池的设计的制作方法

文档序号:24341539发布日期:2021-03-19 12:23阅读:57来源:国知局
一种基于陷光结构玻璃的高效钙钛矿太阳能电池的设计的制作方法

(一)技术领域

本发明涉及一种基于陷光结构玻璃的高效钙钛矿太阳能电池的设计,属于太阳能电池领域,具体涉及微纳加工,光电子器件。

(二)

背景技术:

目前钙钛矿太阳能电池的转化效率已突破25%,成为当今市场最具有竞争力的太阳能电池之一,这主要归功于钙钛矿材料其本身光吸收层的高吸收率及带隙可调等优势,据预测钙钛矿太阳能电池的转化效率可高达50%。但目前大部分的钙钛矿太阳能电池都是以平板结构居多,所以当光照射到电池表面时,就有很大一部分入射光会被反射而造成损耗。另外,平板结构的钙钛矿吸光层厚度一般相对较薄,导致入射光不能被充分吸收,这也会引起额外的光学损失,导致电池性能的降低,甚至造成严重的光生电荷复合,使电池失效或效率低下。

为解决上述光能流失的问题,陷光技术相继引入钙钛矿太阳能电池领域。目前,在钙钛矿太阳能电池中,引入的陷光结构主要有表面陷光结构、电池内部陷光结构,陷光结构衬底这三大类。唐建新等人于2017年公开的一种钙钛矿太阳能电池及其制备方法(中国专利:201611142357.9)主要在其第二传输层设有纳米陷光结构,增加太阳能电池从紫外到红外宽光谱范围内的光吸收;向勇与兰洵于2018年公开的一种混合陷光结构的钙钛矿太阳能电池及其制备方法(中国专利:201710725231.2)主要在钙钛矿太阳能电池中加入了微纳颗粒陷光层,增加了入射光的散射和延长其光程来增强太阳能电池对光的吸收;王旭辉等人于2018年公开的一种具有陷光结构的钙钛矿太阳能电池及其制备方法(中国专利:201810568820.9)主要在太阳能电池中的减反射层的表面与透明电极层的表面制备纳米结构,使钙钛矿光活性层能吸收更多的光能。上述陷光技术都提升了钙钛矿太阳能电池的转化效率,但目前仍没有探讨将钙钛矿太阳能电池直接沉积在陷光结构表面,使钙钛矿太阳能电池也陷光结构化的在先技术,这就限制了陷光技术提升钙钛矿太阳能电池转化效率的更多可能性。

本发明公开了一种基于陷光结构玻璃的高效钙钛矿太阳能电池的设计。该发明以太阳能级玻璃为衬底,在所述衬底表面制备高效陷光结构,然后将钙钛矿太阳能电池直接沉积在所述高效陷光结构的陷光结构面,构筑出一种基于陷光结构玻璃的高效钙钛矿太阳能电池。与在先技术相比,它将钙钛矿材料的光能高吸收率以及带隙可调等优势和陷光结构减少入射光的反射率,延长光子在吸收层的光路等优势有机地结合起来,进一步提升太阳能电池的转换效率。本发明设计能使钙钛矿太阳能电池的效率提升10-15%。

(三)

技术实现要素:

本发明的目的在于提供一种基于陷光结构玻璃的高效钙钛矿太阳能电池的设计。

本发明的目的是这样实现的:

一种基于陷光结构玻璃的高效钙钛矿太阳能电池的设计,它由电池背电极层2、背电极电子传输层3、钙钛矿层4、前电极空穴传输层5、前电极层6直接沉积在高效陷光结构玻璃1的陷光结构面构成钙钛矿太阳能电池。在接受太阳光7照射时,钙钛矿层4首先吸收光子产生电子-空穴对,然后未复合的电子从钙钛矿层4传输到背电极电子传输层3,最后被背电极层2收集;而未复合的空穴从钙钛矿层4传输到前电极传输层5,最后被前电极层6所收集。在此程中,陷光结构发挥着减少光的反射率,增加电池对入射光的光能吸收,进一步提升钙钛矿太阳能电池的光电转换效率的作用。

所述的高效陷光结构玻璃的具体制备流程为:其一,采用rca步骤对太阳能级玻璃进行彻底的清洗,去除玻璃表面的杂质,以及各种有机物和无机物,以保证玻璃的高清洁度;其二,采用磁控溅射方法在清洁玻璃表面先溅射一层cr,再溅射一层cu,形成cr/cu组合的金属种子层;其三,采用suss全自动高性能涂胶机,旋涂正光刻胶,涂胶完成后进行烘干处理;其四,采用350-450的紫外光,在suss双面对准接触式光刻中光刻,然后在显影液中显影,最后在70-90度的烘箱中进行烘烤;其五,将样品浸泡在丙酮中进行去胶处理;其六,采用10-20%的hf溶液刻蚀带结构金属种子层掩膜的玻璃衬底;最后,将刻蚀后的玻璃基片浸没在硝酸铈铵和高氯刻蚀液中,也可以借助超声设备加速进程,直至将残留的金属种子层去除干净,得到陷光结构玻璃衬底。所述高效陷光结构玻璃的陷光结构周期与深度为微纳米级别。

所述钙钛矿太阳能电池沉积在陷光结构玻璃的陷光面的具体步骤为:其一,采用磁控溅射法,在结构玻璃衬底的陷光结构面溅射电池背电极层;其二,采用电子束蒸发法,在电池背电极层上沉积背电极电子传输层;其三,采用旋涂工艺,在背电极电子传输层上旋涂钙钛矿层,并进行顺序梯度热退火工艺处理;其四,采用电子束蒸发法,在钙钛矿层上沉积前电极空穴传输层;最后采用磁控溅射法,在前电极空穴传输层上溅射前电极层。所述钙钛矿太阳能电池的各层厚度为微纳米级别。

(四)附图说明

图1是陷光结构深宽比约为0.5,钙钛矿厚度均匀的太阳能电池示意图。

图2是陷光结构深宽比约为0.5,钙钛矿厚度均匀的太阳能电池剖面图。

图3是陷光结构深宽比约为0.5,钙钛矿厚度不均匀的太阳能电池剖面图。

图4是陷光结构深宽比约为0.3,放大1000倍的陷光结构玻璃sem图。

图5是陷光结构深宽比约为0.5,钙钛矿厚度不均匀的太阳能电池与对应的平板钙钛矿太阳能电池的反射率对比图。

图中,1为陷光结构玻璃;2为电池背电极层;3为背电极电子传输层;4为钙钛矿层;5为前电极空穴传输层;6为电池前电极层;7为入射太阳光。

(五)具体实施方式

下面结合具体的实施例来进一步阐述本发明。

图2给出了陷光结构深宽比约为0.5,钙钛矿厚度均匀的太阳能电池的实施例。其具体实施步骤为:通过光刻、显影及刻蚀等工艺在太阳能级玻璃上制备半径约为1μm,深宽比约为0.5的半球凹坑陷光结构;采用磁控溅射法,在陷光结构玻璃1的陷光结构面溅射厚度为100nm的ag做为电池背电极层2;采用电子束蒸发法,在电池背电极层2上沉积厚度为100nm的nb2o5做为背电极电子传输层3;采用旋涂工艺,在背电极电子传输层3上旋涂厚度为100nm的cspbi2br做为钙钛矿层4;采用电子束蒸发法,在钙钛矿层4上沉积厚度为100nm的niox做为前电极空穴传输层5;最后采用磁控溅射法,在前电极空穴传输层5上溅射厚度为100nm的ito做为电池前电极层6。

图3给出了陷光结构深宽比约为0.5,钙钛矿厚度不均匀的太阳能电池的实施例。其具体实施步骤为:通过光刻、显影及刻蚀等工艺在太阳能级玻璃上制备半径为1μm,深宽比约为0.5的半球凹坑陷光结构;采用磁控溅射法,在陷光结构玻璃1的陷光结构面溅射厚度为100nm的ag做为电池背电极层2;采用电子束蒸发法,在电池背电极层2上沉积厚度为60nm的nb2o5做为背电极电子传输层3;采用旋涂工艺,在背电极电子传输层3上旋涂厚度为300nm的cspbi2br做为钙钛矿层4;采用电子束蒸发法,在钙钛矿层4上沉积厚度为30nm的niox做为前电极空穴传输层5;最后采用磁控溅射法,在前电极空穴传输层5上溅射厚度为150nm的ito做为电池前电极层6。

以上对本发明的具体实施做了详细描述,但必须再次重申的是,本发明的核心内容是将钙钛矿太阳能电池直接沉积在陷光结构玻璃的陷光面,本发明并不局限于上述特定实施方式,本领域的技术人员可以在权利范围内做出各种变形和改进,这不影响本发明设计的实质内容。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1