显示基板以及显示装置的制作方法

文档序号:27842458发布日期:2021-12-08 10:12阅读:162来源:国知局
显示基板以及显示装置的制作方法

1.本公开的实施例涉及一种显示基板以及显示装置。


背景技术:

2.目前,显示器件的显示屏正往大屏化、全屏化方向发展。通常,显示器件(例如手机、平板电脑等)具有摄像装置(或成像装置),该摄像装置通常设置在显示屏的显示区域外的一侧。但是,由于摄像装置的安装需要占据一定的边框位置,因此不利于显示屏的全屏化、窄边框设计。例如,可以将摄像装置与显示屏的显示区域结合、重叠在一起,在显示区域中为摄像装置预留位置,以获得显示屏显示区域的最大化。


技术实现要素:

3.本公开至少一实施例提供了一种显示基板,该显示基板包括衬底基板、第一开口区域、第二开口区域、开口间区域、显示区域和第一信号线。第一开口区域包括第一开口和围绕所述第一开口的第一开口周边区域;第二开口区域与所述第一开口区域沿所述第一方向相邻设置,且包括第二开口和围绕所述第二开口的第二开口周边区域;开口间区域位于所述第一开口区域和所述第二开口区域之间,所述开口间区域、所述第一开口周边区域和所述第二开口周边区域三者中的至少一者包括第一虚拟子像素;显示区域至少部分围绕所述第一开口区域、所述第二开口区域和所述开口间区域,且包括多个像素,每个所述像素包括多个子像素,每个所述子像素包括像素电路,所述像素电路包括:晶体管、发光元件和存储电容,包括有源层、栅极和源漏极;发光元件与所述晶体管的源漏极之一连接;存储电容包括第一极板和第二极板,所述栅极、所述存储电容的第一极板同层设置;第一信号线沿第一方向延伸,包括穿过所述第一开口周边区域、所述开口间区域和所述第二开口周边区域的第一部分,配置为给所述像素电路提供第一显示信号;所述第一信号线的第一部分穿过所述第一虚拟子像素,所述第一虚拟子像素包括虚拟像素电路,所述虚拟像素电路包括第一补偿电容,所述第一补偿电容包括:第一极板和第二极板。第一极板与所述第一信号线的第一部分同层设置且与第一信号线电连接,且与所述存储电容的第二极板同层设置;第二极板与所述第一补偿电容的第一极板异层设置且绝缘,其中,所述第一补偿电容的第二极板在所述衬底基板上的正投影与所述第一补偿电容的第一极板在所述衬底基板上的正投影至少部分重叠。
4.本公开至少一实施例还提供一种显示基板,该显示基板包括衬底基板,衬底基板包括:第一开口区域、显示区域、多条第一信号线、多条第二信号线和第一浮置电极。第一开口区域包括第一开口和围绕所述第一开口的第一开口周边区域;显示区域至少部分围绕所述第一开口区域,包括:第一显示区域,位于所述第一开口区域的第一侧;以及第二显示区域,位于所述第一开口区域的第二侧,其中,所述第一侧与所述第二侧在第一方向上彼此相对,所述第一显示区域和所述第二显示区域包括多个像素;多条第一信号线配置为给所述多个像素提供第一显示信号,沿所述第一方向延伸且穿过所述第一显示区域和所述第二显
示区域;多条第二信号线配置为给所述多个像素提供第二显示信号,沿与所述第一方向相交的第二方向延伸,所述多条第二信号线的部分沿所述第二方向穿过所述第一开口周边区域,所述多条第二信号线的所述部分中的每条第二信号线包括位于所述第一开口周边区域的纵向绕线部,其中,所述纵向绕线部部分地围绕所述第一开口设置;所述多条第二信号线的纵向绕线部中最靠近所述第一开口的纵向绕线部为边缘纵向绕线部,所述第一浮置电极与所述边缘纵向绕线部同层设置且位于所述边缘纵向绕线部的靠近所述第一开口的一侧。
5.本公开至少一实施例提供一种显示装置,包括上述任一的显示基板。
附图说明
6.为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
7.图1为一种显示基板的平面示意图;
8.图2a为本公开一实施例提供的一种显示基板的平面示意图;
9.图2b为图2a中包括第一开口区域和第二开口区域的局部放大示意图;
10.图2c为图2a中包括第一开口区域和开口间区域的局部放大示意图;
11.图3a为显示基板的显示区域中的子像素的一种截面示意图;
12.图3b为显示基板的显示区域中的子像素的另一种截面示意图;
13.图4a为本公开一实施例提供的一种显示基板中的第一虚拟像素电路的平面布局示意图;
14.图4b为沿图4a中的a2

b2线的截面示意图;
15.图4c

4g为本公开一实施例提供的一种显示基板的第一虚拟像素电路的各层的示意图;
16.图4h为本公开一实施例提供的另一种显示基板的第一补偿电容的第一极板的示意图;
17.图4i为沿图4a中的a3

b3线的截面示意图;
18.图4j是显示基板的局部图;
19.图5a为图2c中的局部c的放大示意图;
20.图5b为图2c中的局部d的放大示意图;
21.图5c为图2c中的局部e的放大示意图;
22.图5d为图2c中的局部f的放大示意图;
23.图5e为第一信号线和第二信号线进行换层的区域的放大示意图;
24.图5f

5h分别为沿图5e中的a4

b4线、a5

b5线和a6

b6线的截面示意图;
25.图6为本公开一实施例提供的一种阵列基板中的像素电路的等效电路图;
26.图7a为本公开一实施例提供的一种阵列基板中的像素电路的平面布局示意图;
27.图7b

图7k为本公开一实施例提供的一种阵列基板的像素电路的各层的示意图;
28.图8a为沿图7a中的a

a’线的一种截面示意图;
29.图8b为沿图7a中的b

b’线的一种截面示意图;
30.图9是图6所示的像素电路的工作过程的信号时序图;
31.图10a是本公开一实施例提供的一种显示基板的第一开口区域的放大示意图;
32.图10b是本公开一实施例提供的另一种显示基板的第一开口区域的放大示意图;
33.图10c是本公开一实施例提供的另一种显示基板的第一开口区域的放大示意图;
34.图11是图10a中的局部h的放大示意图;
35.图12是图11中的局部g的放大示意图;
36.图13是图12中的局部i的放大示意图;
37.图14是图12中的局部j的放大示意图;
38.图15为本公开实施例的又一种显示基板的平面示意图;
39.图16a为本公开一实施例提供的一种显示基板中的一个第二虚拟子像素中的第二虚拟像素电路的平面布局示意图;
40.图16b为沿图16a中的a3

b3线的截面示意图;
41.图16c

图16f为本公开一实施例提供的一种显示基板的第二虚拟像素电路的各层的示意图;
42.图17为本公开一实施例提供的一种显示基板中的一个第二虚拟子像素中的第二虚拟像素电路的平面布局示意图。
具体实施方式
43.为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例的附图,对本实用新型实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本实用新型的一部分实施例,而不是全部的实施例。基于所描述的本实用新型的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
44.除非另外定义,本公开使用的技术术语或者科学术语应当为本实用新型所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
45.在下面的描述中,当提及两个或更多部件“一体成型”时,表示这些部件通过至少同一原料层形成,例如通过对同一膜层进行同一次构图工艺形成,由此彼此之间不存在界面而是连续的。
46.图1为一种显示基板的平面示意图。如图1所示,该显示基板10包括显示区域101和围绕显示区域101的周边区域102,显示区域101被设计为例如在至少一侧具有凹口103的不规则形状,该显示基板10可以在凹口103 的区域中布置例如摄像头、距离传感器等器件,由此有助于实现显示基板10 的窄边框设计。
47.如图1所示,显示区域101包括位于凹口103的左右两侧的第一显示区域1011和第二显示区域1012,第一显示区域1011与和第二显示区域1012 相对于显示区域101的底边
(图中下侧边缘)处于相同的水平位置,例如由图中相同的左右水平延伸的一条或多条扫描信号线(栅线)驱动。当然,在其他一些实施例中,第一显示区域与第二显示区域也可以处于不同的水平位置,例如当采用该显示基板的显示屏为异形(非矩形或非类似矩形)显示屏时,在异形屏中,例如第一显示区域与第二显示区域沿显示屏地弯曲的边缘排布,则第一显示区域与第二显示区域未必在同一水平位置。由于凹口103 的存在,位于第一显示区域1011与和第二显示区域1012中的同一行像素的像素数量,比除了第一显示区域1011与和第二显示区域1012外的显示区域 101中其他部分(例如图1中的中部)的一行像素的像素数量少。因此,在该显示基板10中,对于水平延伸的用于为第一显示区域1011与和第二显示区域1012中的同一行像素提供显示信号(例如扫描信号)的信号线所连接的像素数量,与用于为除了第一显示区域1011与和第二显示区域1012外的显示区域101中其他部分的一行像素提供电信号(例如扫描信号)的信号线所连接的像素数量不同,并且在凹口103为不规则形状(例如梯形、水滴形等)时,第一显示区域1011和第二显示区域1012中不同行像素的像素数量也可能不同。因此,在该显示基板10中,由于不同行像素的像素数量不同,导致连接不同行像素的信号线的负载不同,进而这些信号线传输信号的速度不同,实际的显示信号与设计值之间的偏差不同,这会影响显示基板的显示效果。
48.例如,可以对这些负载不同的信号线进行负载补偿,以使这些信号线的负载基本相同,从而减小由于设置凹口103对显示质量的不利影响。
49.本公开至少一实施例提供了一种显示基板,该显示基板包括衬底基板、第一开口区域、第二开口区域、开口间区域、显示区域和第一信号线。第一开口区域包括第一开口和围绕所述第一开口的第一开口周边区域;第二开口区域与所述第一开口区域沿所述第一方向相邻设置,且包括第二开口和围绕所述第二开口的第二开口周边区域;开口间区域位于所述第一开口区域和所述第二开口区域之间,所述开口间区域、所述第一开口周边区域和所述第二开口周边区域三者中的至少一者包括第一虚拟子像素;显示区域至少部分围绕所述第一开口区域、所述第二开口区域和所述开口间区域,且包括多个像素,每个所述像素包括多个子像素,每个所述子像素包括像素电路,所述像素电路包括:晶体管、发光元件和存储电容,包括有源层、栅极和源漏极;发光元件与所述晶体管的源漏极之一连接;存储电容包括第一极板和第二极板,所述栅极、所述存储电容的第一极板同层设置;第一信号线沿第一方向延伸,包括穿过所述第一开口周边区域、所述开口间区域和所述第二开口周边区域的第一部分,配置为给所述像素电路提供第一显示信号;所述第一信号线的第一部分穿过所述第一虚拟子像素,所述第一虚拟子像素包括虚拟像素电路,所述虚拟像素电路包括第一补偿电容,所述第一补偿电容包括:第一极板和第二极板。第一极板与所述第一信号线的第一部分同层设置且与第一信号线电连接,且与所述存储电容的第二极板同层设置;第二极板与所述第一补偿电容的第一极板异层设置且绝缘,其中,所述第一补偿电容的第二极板在所述衬底基板上的正投影与所述第一补偿电容的第一极板在所述衬底基板上的正投影至少部分重叠。
50.本公开至少一实施例还提供一种显示基板,该显示基板包括衬底基板,衬底基板包括:第一开口区域、显示区域、多条第一信号线、多条第二信号线和第一浮置电极。第一开口区域包括第一开口和围绕所述第一开口的第一开口周边区域;显示区域至少部分围绕所述第一开口区域,包括:第一显示区域,位于所述第一开口区域的第一侧;以及第二显示区
域,位于所述第一开口区域的第二侧,其中,所述第一侧与所述第二侧在第一方向上彼此相对,所述第一显示区域和所述第二显示区域包括多个像素;多条第一信号线配置为给所述多个像素提供第一显示信号,沿所述第一方向延伸且穿过所述第一显示区域和所述第二显示区域;多条第二信号线配置为给所述多个像素提供第二显示信号,沿与所述第一方向相交的第二方向延伸,所述多条第二信号线的部分沿所述第二方向穿过所述第一开口周边区域,所述多条第二信号线的所述部分中的每条第二信号线包括位于所述第一开口周边区域的纵向绕线部,其中,所述纵向绕线部部分地围绕所述第一开口设置;所述多条第二信号线的纵向绕线部中最靠近所述第一开口的纵向绕线部为边缘纵向绕线部,所述第一浮置电极与所述边缘纵向绕线部同层设置且位于所述边缘纵向绕线部的靠近所述第一开口的一侧。
51.下面通过几个具体的实施例对本公开进行说明。为了保持本实用新型实施例的以下说明清楚且简明,可省略已知功能和已知部件的详细说明。当本实用新型实施例的任一部件在一个以上的附图中出现时,该部件在每个附图中由相同的参考标号表示。
52.图2a为本公开实施例的一种显示基板的平面示意图,图2b为图2a中包括第一开口区域和第二开口区域的局部放大示意图。
53.如图2a和图2b所示,显示基板20包括衬底基板,衬底基板包括第一开口区域202a、第二开口区域202b、开口间区域2014、显示区域201和第一信号线23。第一开口区域202a包括第一开口201a和围绕第一开口201a 的第一开口周边区域203a;第二开口区域202b与第一开口区域202a沿第一方向r1相邻设置,且包括第二开口201b和围绕第二开口201b的第二开口周边区域203b。开口间区域2014位于第一开口区域202a和第二开口区域202b之间。显示区域201至少部分围绕第一开口区域202a、第二开口区域202b和开口间区域2014,且包括多个像素,每个像素包括多个子像素,每个所述子像素包括像素电路。如图2b所示,第一信号线23沿第一方向 r1延伸,包括穿过第一开口周边区域202a、开口间区域2014和第二开口周边区域203b的第一部分,配置为给像素电路提供第一显示信号。
54.例如,在图2a和图2b所示的实施例中,第二开口区域202b与第一开口区域202a沿第一方向r1排列,由此,开口间区域2014在第一方向r1 上位于第一开口区域202a和第二开口区域202b之间。当然,在其他实施例中,第二开口区域202b也可以与第一开口区域202a沿第二方向r2排列,此时,开口间区域2014在第二方向r2上位于第一开口区域202a和第二开口区域202b之间。本公开实施例对第二开口区域202b与第一开口区域202a 的排列方向不做限定。
55.显示区域201包括阵列排布的像素,每个像素包括一个或多个子像素,还包括用于向子像素传输各种电信号的各种信号线,以用于实现显示功能;边框区204包括各种驱动电路、电连接子像素的信号线、接触垫等,边框区 204的信号线与显示区域201中的信号线(例如栅线、数据线等)电连接(或一体形成)以为子像素提供电信号(例如扫描信号、数据信号等)。
56.例如第一开口201a设置来允许来自显示基板的显示侧的光通过以到达摄像头、距离传感器,以实现光感应,从而实现图像拍摄、距离感应等功能;例如,第一开口201a所对应的区域中,在显示基板背侧(即与显示侧相对的一侧)可设置摄像头、距离传感器等器件,摄像头、距离传感器等至少部分通过第一开口201a暴露。
57.例如来自边框区204的各种信号线延伸穿过显示区域201,当遇到第一开口区域
201a时,这些信号线穿过第一开口周边区域203a而绕过第一开口201a,然后再进入显示区域201中,以给途经的子像素提供电信号(例如扫描信号、数据信号等),由此,可不在第一开口201a中设置这些信号线,以增大第一开口201a的光透过率。
58.显示区域201包括第一显示区域2011和第二显示区域2012。第一显示区域2011位于第一开口区域202a的第一侧,第二显示区域2012位于第一开口区域202a的第二侧,该第一侧与该第二侧在第一方向r1(图中的水平方向)上彼此相对。例如,第一显示区域2011、第一开口周边区域203a和第二显示区域2012沿第一方向r1依次排列。第一显示区域2011和第二显示区域2012构成的整体包括第一像素阵列。例如,第一像素阵列包括多个呈阵列排布的像素,每个像素包括多个子像素,每个子像素包括像素电路。
59.以图2b中的第一信号线2301为例,例如显示基板包括多条第一信号线 2301/2302/2303/2304/2305/2306,第一信号线2301配置为给第一像素阵列提供第一显示信号,且沿第一方向r1依次穿过第一显示区域2011、第一开口周边区域203a和第二显示区域2012,从而电连接位于第一开口201a的相对两侧的第一显示区域2011和第二显示区域2012中的子像素,例如为第一显示区域2011和第二显示区域2012中与第一开口周边区域203a中处于同一水平位置的多个像素的子像素提供第一显示信号。在各实施例中,该第一显示信号例如可以是栅扫描信号、发光控制信号或者复位电压信号等任何形式的电信号。例如,多条第一信号线2301/2302/2303/2304/2305/2306可以为显示区域第一显示区域2011和第二显示区域2012中的像素电路提供扫描信号、发光控制信号、复位电压信号等中的一种或多种。
60.例如,如图2a和图2b所示,显示基板20还包括第三显示区域2013。例如,第三显示区域2013包括在第二方向r2上位于第一显示区域2011和第二显示区域2012的第一侧的第一部分2013c以及在第二方向r2上位于第一显示区域2011和第二显示区域2012的第二侧的第二部分2013d,第一显示区域2011和第二显示区域2012的第一侧与第一显示区域2011和第二显示区域2012的第二侧在第二方向r2上彼此相对;第一部分2013c和第二部分2013d均与第一显示区域2011和第二显示区域2012相接。
61.例如,第三显示区域2013的第一部分2013c的在第二方向r2上彼此相对的两个边缘2013a和2013b,分别与第一显示区域2011的沿第二方向 r2延伸且远离第一开口201a的边缘2011a、以及第二显示区域201的沿第二方向r2延伸且远离第一开口201a的边缘2012a对齐。第三显示区域2013 包括多行多列像素。显示基板20还包括多条第三信号线2307,多条第三信号线2307位于第三显示区域2013的第一部分2013c和第二部分2013d中。图2a和图2b示出一条位于第三显示区域2013的第一部分2031a的第三信号线2307,以作为示例。第三信号线2307配置为分别给第三显示区域2013 的多行像素提供第三扫描信号且沿第一方向r1延伸;例如,在本实施例中,第二信号线24沿第二方向r2依次穿过第三显示区域2013的第二部分 2013d、第一开口周边区域203a和第三显示区域2013的第一部分2013c,且配置为给第三显示区域2013的多列像素提供第二显示信号。
62.第三显示区域2013也包括多个像素,每个像素包括多个子像素,每个子像素包括像素电路。第三显示区域2013的每个像素可与第一显示区域和第二显示区域的每个像素的结构相同。例如,在一些实施例中,第三显示区域2013中的多行多列的子像素中的每一行像素所包括的像素数量基本相同。此时,多条第三信号线2037分别电连接的像素的数量基本
相同,因此多条第三信号线2037具有基本相同的负载。例如,多行多列的像素中的每一行像素所包括的像素数量多于第一像素阵列的第一像素行包括的像素数量、多于第一像素阵列的第二像素行包括的像素数量。例如,经过负载补偿后的每条第一信号线2301/2302/2303/2304的负载与多条第三信号线2037的负载基本相同,进而每条第一信号线2301/2302/2303/2304与每条第三信号线2037 传输信号的速度基本相同,传输给子像素的像素电路的实际显示信号与设计值之间的偏差基本一致,由此可以保持显示区域201的显示一致性,提高显示基板20的显示效果。
63.如图2b所示,例如,显示基板20还包括第一电源线vdd,第一电源线vdd连接第一电压端,且配置为给一个或多个子像素的像素电路提供第一电源电压。例如,第一电源线vdd包括沿第一方向r1延伸的多条第一子走线2421/2422和沿第二方向r2延伸的多条第二子走线2423/2424。多条第一子走线2421/2422中的第一部分第一子走线2421在第一开口区域202a 断开,多条第一子走线2421/2422中的第二部分第一子走线2422贯穿第三显示区域。例如,在图2b中,第一子走线2422沿第一方向r1贯穿第三显示区域2013的第一部分2013c。多条第二子走线2423/2424中的第一部分第二子走线2423在第一开口区域202a断开,多条第二子走线2423/2424中的第二部分第二子走线2424依次贯穿第一显示区域2011和第三显示区域2013,例如,在本实施例中依次贯穿第三显示区域2013的第二部分2013d、第一显示区域2011和第三显示区域2013的第一部分2013c。或者,第二子走线 2424依次贯穿第二显示区域2012和第三显示区域2013,例如在本实施例中依次贯穿第三显示区域2013的第二部分2013d、第二显示区域2012和第三显示区域2013的第一部分2013c。第一部分第一子走线2421与第二部分第二子走线2424中的至少一条第二子走线2424分别在第一显示区域2011和第二显示区域2012电连接,第一部分第二子走线2423与第二部分第一子走线2422中的至少一条第一子走线2422在第三显示区域2013电连接,以给第一像素阵列和第二像素阵列的各行各列的子像素均提供第一电源电压。
64.本公开至少一实施例提供的显示基板的第一开口区域的平面形状不限于是圆形,例如也可以为矩形、椭圆形等规则图形,或者为跑道形(例如如图15)、水滴形等不规则图形。这些情形下,第一信号线和第二信号线的设置原则和技术效果与上述圆形的示例的相同或类似。
65.开口间区域2014、第一开口周边区域203a和第二开口周边区域203b 三者中的至少一者包括第一虚拟子像素,例如,如图2c所示,本实施例以开口间区域2014包括第一虚拟子像素11为例,即第一虚拟子像素11位于图2c中局部a中,后文将详细介绍第一虚拟子像素的结构。当然,第一虚拟子像素11也可以位于第一开口周边区域203a或/和第二开口周边区域 203b中。
66.下面对显示区域中的子像素,例如图2c中的局部b和局部c中的子像素12,的结构进行介绍。
67.图3a为显示基板的显示区域中的子像素的一种截面示意图。如图3a 所示,显示基板20的显示区域201的每个子像素的像素电路包括晶体管,以薄膜晶体管(tft)为例进行描述,以及发光元件180和存储电容cst。薄膜晶体管包括有源层120、栅极121和源漏极122/123;存储电容cst包括第一极板ce1和第二电容极板ce2。发光元件180包括阴极183、阳极 181以及阴极183和阳极181之间的发光层182,阳极181与薄膜晶体管tft 的源漏极122/123
中之一,例如漏极123,电连接。例如,该发光元件例如可以为有机发光二极管(oled)或量子点发光二极管(qled),相应地,发光层182为有机发光层或量子点发光层。
68.例如,如图3a所示,显示区域201还包括位于有源层120与栅极121 之间的第一栅绝缘层151、位于栅极121上方的第二栅绝缘层152以及层间绝缘层160,第二栅绝缘层152位于第一极板ce1和第二电容极板ce2之间,使得第一极板ce1、第二栅绝缘层152和第二电容极板ce2构成存储电容cst。层间绝缘层160覆盖在第二电容极板ce2上。
69.例如,如图3a所示,显示区域201还包括覆盖像素电路的绝缘层113 (例如钝化层)和第一平坦化层112。显示区域201还包括用于限定多个子像素的像素界定层170以及像素界定层170上的隔垫物(未示出)等结构。如图3a所示,在一些实施例中,绝缘层113位于源漏极122/123上方(例如钝化层,由氧化硅、氮化硅或者氮氧化硅等材料形成),绝缘层113上方设置有第一平坦化层112,阳极181通过贯穿第一平坦化层112和绝缘层113 的过孔与漏极123电连接。
70.例如,如图3a所示,显示基板20的第一开口周边区域203a还包括封装层291、292和293。显示区域201还包括封装层190,封装层190包括多个封装子层191/192/193。当然,封装层190不限于3层,还可以为2层,或者4层、5层或者更多层。例如,第一封装层291与封装层190中的第一封装子层191同层设置,第二封装层292与封装层190中的第二封装子层192 同层设置,第三封装层293与封装层190中的第三封装子层193同层设置,例如,第一封装层291和第三封装层293均可以包括无机封装材料,例如包括氧化硅、氮化硅或者氮氧化硅等,第二封装层292可以包括有机材料,例如包括树脂材料等。显示区域201和第一开口周边区域203a多层封装结构可以达到更好的封装效果,以防止水汽或氧气等杂质渗入显示基板20内部。
71.在一些实施例中,如图3a所示,显示基板还包括位于衬底基板210上的缓冲层111,缓冲层111作为过渡层,可以防止衬底基板210中的有害物质侵入显示基板20的内部,又可以增加显示基板20中的膜层在衬底基板210 上的附着力。例如,缓冲层111的材料可以包括氧化硅、氮化硅、氮氧化硅等绝缘材料形成的单层或多层结构。
72.图3b为显示基板的显示区域中的子像素的另一种截面示意图。与图3a 所示的显示区域不同的是,图3b示出的显示区域中,发光元件180的阳极 181通过转接电极171与薄膜晶体管tft的漏极123电连接。此时,转接电极171上覆盖有第二平坦化层114,例如,在第一平坦化层112上方覆盖有第二平坦化层114。
73.例如,在其他实施例中,显示基板的显示区域也可以不具有绝缘层113 和第二平坦化层114。
74.例如,本公开的至少一个实施例中,衬底基板210可以为玻璃基板、石英基板、金属基板或树脂类基板等。例如,衬底基板210的材料可以包括有机材料,例如该有机材料可以为聚酰亚胺、聚碳酸酯、聚丙烯酸酯、聚醚酰亚胺、聚醚砜、聚对苯二甲酸乙二醇酯和聚萘二甲酸乙二醇酯等树脂类材料。例如,衬底基板210可以为柔性基板或非柔性基板,本公开的实施例对此不作限制。
75.例如,第一栅绝缘层151、第二栅绝缘层152、层间绝缘层160、第一平坦化层112、像素界定层170以及隔垫物中任一的材料可以包括氧化硅、氮化硅、氮氧化硅等无机绝缘材料,或者可以包括聚酰亚胺、聚酞亚胺、聚酞胺、丙烯酸树脂、苯并环丁烯或酚醛树脂等有机
绝缘材料。本公开的实施例对第一栅绝缘层151、第二栅绝缘层152、层间绝缘层160、第一平坦化层 112、像素界定层170以及隔垫物的材料均不做具体限定。例如,第一栅绝缘层151、第二栅绝缘层152、层间绝缘层160、第一平坦化层112、第二平坦化层114、像素界定层170以及隔垫物的材料可以彼此相同或部分相同,也可以彼此不相同,本公开的实施例对此不作限制。
76.例如,如图2b所示,显示基板20还可以包括位于第一开口周边区域 203a中且至少部分围绕第一开口201a的阻隔墙28。例如,在垂直于衬底基板210的方向上,阻隔墙28与第一信号线和第二信号线至少部分重叠。阻隔墙28能够在第一开口周边区域203a提供阻隔和支撑作用,维持第一开口201a的稳定以及保护第一开口201a中的摄像头等光电传感器件,同时阻挡水汽、氧等有害杂质经由第一开口201a扩散到显示区域中,由此防止了有害杂质导致显示区域中的像素电路劣化。
77.图4a为本公开一实施例提供的一种显示基板中的第一虚拟像素电路的平面布局示意图,例如该第一虚拟像素电路为图2c中的局部a;图4b为沿图4a中的a2

b2线的截面示意图,图4c

4g为本公开一实施例提供的一种显示基板的第一虚拟像素电路的各层的示意图。
78.结合图2a

2c和图4a

4b,第一信号线2301的第一部分2301a穿过第一虚拟子像素11,第一虚拟子像素11包括虚拟像素电路,虚拟像素电路包括第一补偿电容com1,第一补偿电容com1包括:第一极板ce11和第二极板ce12。第一补偿电容com1的第一极板ce11与第一信号线2301的第一部分2301a同层设置且与第一信号线2301电连接,且与存储电容cst的第二极板ce2同层设置;第一补偿电容com1的第二极板ce12与第一补偿电容com1的第一极板ce11异层设置且绝缘。第一补偿电容com1的第二极板ce12在衬底基板210上的正投影与第一补偿电容com1的第一极板ce11在衬底基板210上的正投影至少部分重叠。第一补偿电容com1补偿了第一信号线2301上的负载,从而减小由于不同行像素的像素数量不同而导致连接不同行像素的第一信号线的负载不同而造成的显示差异,使第一显示区域2011和第二显示区域2012的显示效果与显示区域201中不设置有第一开口区域202a的像素行的显示效果一致,提升显示质量。并且,由于第一极板ce11与存储电容cst的第二极板ce2同层设置,从而,第一极板ce11不仅能够与位于其上方(远离衬底基板的方向)的金属层层形成补偿电容,而且还可以与其下方(靠近衬底基板的方向)的半导体层形成补偿电容。如果第一极板ce11与上述栅极121同层设置,则会与半导体层层形成tft。
79.例如,如图4b和图4e所示,第一补偿电容com1的第一极板ce11 与第一信号线2301一体成型。
80.例如,如图4b所示,第一补偿电容com1的第二极板ce12的材料包括半导体材料且为导体,且与上述有源层120同层设置。例如,第一补偿电容com1的第二极板ce12的材料包括与有源层120相同的材料,例如包括 a

si、多晶硅等。例如,给第一补偿电容com1的第二极板ce12进行重掺杂以增强其导电性使其成为导体。例如可在对有源层120进行掺杂的同时进行,由于第一补偿电容com1的第二极板ce12不会被遮挡而实现重掺杂。例如,掺杂材料为硼(b)。给第二极板ce12施加电压信号,半导体材料相当于导体,因此可以作为电容极板,而且充分利用了已有的层,其可以与有源层120通过同一次构图工艺同时形成。同一次构图工艺指采用同一个掩模板经过同一次曝光以进行构图。
81.如图4a

4b所示,虚拟像素电路还包括第二补偿电容com2,第二补偿电容com2包括第一极板ce21和第二极板ce22。第一补偿电容com1的第一极板ce21复用作第二补偿电容com2的第一极板ce21;第二极板 ce22与第二补偿电容com2的第一极板ce21异层设置且绝缘,且与上述源漏极122/123同层设置。第二补偿电容com2的第二极板ce22在衬底基板210上的正投影与第二补偿电容ce22的第一极板ce21在衬底基板210 上的正投影至少部分重叠。第二补偿电容进一步补偿了第一信号线2301上的负载,从而减小由于不同行像素的像素数量不同而导致连接不同行像素的第一信号线的负载不同而造成的显示差异,使第一显示区域2011和第二显示区域2012的显示效果与显示区域201中不设置有第一开口区域202a的像素行的显示效果一致,提升显示质量。同时,利用了已有的层,即源漏极 122/123所在的导电层,可以与源漏极122/123通过对同一膜层进行一次构图工艺形成,简化显示极板的制作工艺,节省成本。
82.例如,第二补偿电容com2的第二极板ce22与第一补偿电容com1 的第二极板ce12电连接,从而第一补偿电容与第二补偿电容并联,提供更有效的补偿和更大的补偿范围。
83.图4h为本公开一实施例提供的另一种显示基板的第一补偿电容的第一极板的示意图。如图4h所示,第一补偿电容com1的第一极板ce11包括第一延伸部21和第二延伸部22。第一延伸部21与第一信号线2303的第一部分2301a连接,自第一信号线2303的第一部分2301a延伸且位于第一信号线2303的第一部分2301a在第二方向r2上的第一侧,第二方向r2与第一方向r1相交,例如垂直但不限于此;第二延伸部22与第一信号线2303 的第一部分2301a连接,自第一信号线2303的第一部分2301a延伸且位于第一信号线2303的第一部分2301a在第二方向r2上与第一侧相对的第二侧。由此,可以加大第一补偿电容的第一极板的面积,从而可根据需要提供更大的补偿范围。
84.例如,第一延伸部21、第二延伸部22和第一信号线2303的第一部分 2301a一体成型。
85.例如,显示基板还包括第一电源线。第一电源线连接第一电压端,配置为给上述像素电路提供第一电源电压,且与存储电容cst的第二极板ce2 连接,第一电源线包括:沿第一方向延伸的多条第一子走线,以及沿第二方向延伸的多条第二子走线,且多条第二子走线与多条第一子走线电连接。多条第二子走线中的第一部分第二子走线2424穿过开口间区域2014且穿过第一虚拟子像素11。如图4f所示,第二补偿电容com2的第二极板ce22包括第一部分ce221和第二部分ce222,第一部分第二子走线2424与第二补偿电容的第二极板的第一部分ce221同层设置且电连接以作为第二补偿电容的第二极板的第二部分ce222,且第一部分第二子走线2424与第一补偿电容com1的第二极板ce12电连接,由此实现第二补偿电容com2的第二极板ce22与第一补偿电容com1的第二极板ce12电连接。
86.例如,第一部分第二子走线2424与第二补偿电容com2的第二极板 ce22一体成型。
87.图4i为沿图4a中的a3

b3线的截面示意图。例如,如图4i所示,显示基板20还包括:位于第一补偿电容com1的第二极板ce12与上述栅极 121之间的第一绝缘层151(例如为上述第一栅绝缘层)、位于栅极121与第一补偿电容com1的第一极板ce11之间的第二绝缘层152(例如为上述第二栅绝缘层),以及位于第一补偿电容com1的第一极板ce11与第二补偿电容com2的第二极板ce22之间的第三绝缘层160(例如为上述层间绝缘层)。第一部分第二子走线2424通过贯穿第一绝缘层151、第二绝缘层 152和第三绝缘层160且暴露第一补偿电
容com1的第二极板ce12的第一过孔vh10与第一补偿电容com1的第二极板ce12电连接。
88.例如,如图2c所示,显示基板20还包括多条第二信号线24。多条第二信号线24配置为给所述多个子像素提供第二显示信号。多条第二信号线24中的第一部分第二信号线2411沿第二方向r2穿过开口间区域2014且穿过第一虚拟子像素11。结合图4b,第一部分第二信号线2411位于第二补偿电容com2的第二极板ce22的远离衬底基板210的一侧。结合图4a和图 4b,第二补偿电容com2的第二极板ce22的第一部分21具有镂空区域h1,穿过该第二补偿电容com2的第二极板ce22所在的第一虚拟子像素11的第一部分第二信号线2411在衬底基板210上的正投影与镂空区域h1至少部分重叠,以减小第一部分第二信号线2411与第二补偿电容com2的第二极板ce22的交叠面积,减小两者交叠所形成的电容,从而减小第一部分第二信号线2411的负载。
89.例如,结合图4a和图4b,第二补偿电容com2的第二极板ce22具有多个所述镂空区域h1/h2,本实施例以包括两个镂空区域h1为例,多个镂空区域沿第二方向r2彼此间隔排列。由此,可根据不同的需要分梯度调节第一部分第二信号线2411的负载。
90.例如,结合图4a和图4f,多个镂空区域包括相邻的第一镂空区域h1 和第二镂空区域h2,第一镂空区域h1的在第二方向r2上的长度与第二镂空区域h2的在第二方向r2上的长度不同,可根据第一部分第二信号线2411 的不同部分的负载大小不同,而有区别地调节第一部分第二信号线2411的负载。
91.例如,结合图4a和图4f,第二补偿电容com2的第二极板ce22的位于第一镂空区域h1与第二镂空区域h2之间的部分p沿第一方向r1是连续的;第二补偿电容com2的第二极板ce22包括在第二方向r2上彼此相对的第一边缘和第二边缘,第一边缘和第二边缘中的至少之一被镂空区域断开。
92.例如,第一信号线包括栅扫描信号线和复位信号线。例如,第一信号线 2303为栅扫描信号线,配置为给子像素提供栅扫描信号,对应地,第一显示信号为栅扫描信号;第一信号线2301为复位信号线,配置为给子像素提供复位电压信号,对应地,第一显示信号为复位电压信号。例如,第二信号线 24为数据线,配置为给子像素提供用于控制子像素的发光灰度的数据信号。
93.例如,在一些实施例中,在一个第一虚拟子像素11中,第一补偿电容 com1的第二极板ce12的覆盖整个第一虚拟子像素11,第一补偿电容 com1的第一极板ce11在衬底基板210上的正投影位于第一补偿电容com1的第二极板ce12在衬底基板210上的正投影内。第一补偿电容com1 的大小小于所述第二补偿电容com2的大小。并且,可以根据需要调节第一补偿电容com1和第二补偿电容com2的各个极板的有效尺寸以调节第一补偿电容com1和第二补偿电容com2的大小。
94.例如,如图2a和2b所示,显示区域201包括第一显示区域2011和第二显示区域2012。第一显示区域2011位于第一开口区域202a的远离开口间区域2014的一侧;第二显示区域2012位于第二开口区域202b的远离开口间区域2014的一侧。第一显示区域2011和第二显示区域2012均包括多个像素。如图4j所示,第一显示区域2011和第二显示区域2012构成的整体包括沿第一方向r1延伸的多个像素行,如图中的第一行、第二行、第三行
……
,该多个像素行被第一开口区域202a、开口间区域2014和第二开口区域202b三者构成的整体断开。例如,第一行像素的像素数量与第二行像素的像素数量不相同,对应于第一行像素的第
一虚拟像素行中的第一补偿电容的数量与对应于第二行像素的第二虚拟像素行中的第一补偿电容的数量不相同,以使不同行像素的第一信号线的负载均匀化。
95.如图2b所示,第一信号线2303沿第一方向r1依次穿过第一显示区域 2011、第一开口周边区域203a、开口间区域2014、第二开口周边区域203b 和第二显示区域2012,第一信号线2303还包括穿过第一显示区域2011的第二部分2303b和穿过第二显示区域2012的第三部分2303c,第二部分2303b 和第三部分2303c与栅极121同层设置。因此,第二部分2303b和第一部分2303a需要换层,第一部分2303a和第三部分2303c需要换层。
96.图5a为图2c中的局部c的放大示意图,图5b

5d分别为图2c中的局部d、局部e和局部f的放大示意图,图5e为第一信号线和第二信号线进行换层的区域的放大示意图,图5f

5h分别为沿图5e中的a4

b4线、 a5

b5线和a6

b6线的截面示意图。
97.结合图5a

5b和图5e,显示基板20还包括第一连接结构,例如,第一连接结构包括第一子连接结构311和第二子连接结构312。例如,第一连接结构311/312位于第一开口周边区域203a,例如位于第一开口周边区域203a 与第一显示区域2011的交界处,且与第一信号线的第二部分2303b/2301b 和第一信号线的第一部分2303a/2301a均异层设置,第一信号线的第二部分 2303b/2301b与第一连接结构311/312电连接,第一信号线的第一部分2303a/2301a与第一连接结构311/312电连接,实现第一信号线2303/2301 由第一显示区2011进入第一开口周边区域203a时的换层。
98.例如,第一信号线2303为栅扫描信号线、第一信号线2301为复位信号线。结合图5e与图5f,复位信号线的第二部分2301b与复位信号线的第一部分2301a异层设置,复位信号线的第二部分2301b通过过孔vh11与第二子连接结构312电连接,复位信号线的第一部分2301a通过过孔vh12与第二子连接结构312电连接,从而实现复位信号线的第二部分2301b与复位信号线的第一部分2301a电连接,从而实现复位信号线2301经过换层后而围绕第一开口布线。
99.类似地,结合图5e与图5g,栅扫描信号线的第二部分2303b与栅扫描信号线的第一部分2303a异层设置,栅扫描信号线的第二部分2303b通过过孔vh13与第一子连接结构311电连接,栅扫描信号线的第一部分2303a 通过过孔vh14与第一子连接结构311电连接,从而实现栅扫描信号线的第二部分2303b与栅扫描信号线的第一部分2303a电连接,从而实现栅扫描信号线2303经过换层后而围绕第一开口布线。
100.例如,第一连接结构和第二连接结构与源漏极122/123同层设置。
101.显示基板20还包括第二连接结构。例如第二连接结构位于第二开口周边区域203b,例如位于第二开口周边区域203b与第一显示区域的交界处。且与第一信号线的第一部分2303a/2301a和第一信号线的第三部分 2303c/2301c均异层设置;第一信号线的第一部分2303a/2301a与第二连接结构(图未示出)电连接,第一信号线的第三部分2303c/2301c与第二连接结构电连接,实现第一信号线2303的再一次换层,即第一信号线2303由第二开口周边区域203b进入第二显示区2012时的换层。例如,第二连接结构包括第三子连接结构和第四子连接结构,分别对应于栅扫描信号线2303和复位信号线2301分别设置,以分别用于实现栅扫描信号线2303和复位信号线2301的再一次换层。例如,第三子连接结构和第四子连接结构的设置可参考上述第一子连接结构和第二子连接结构的设置方式。例如,在一些实施例中第三子连接结构和第四子连接结构,与第一子连接结构和第二子连接结构基本
对称。
102.例如,如图5e所示,给同一行子像素12提供栅扫描信号的第一栅线gln和第二栅线gln

1通过同一个第一子连接结构311进行换层,以节省空间。例如,给多行子像素提供复位电压信号的复位信号线可通过同一个第二连接结构312进行换层,以节省空间。例如该同一个第二连接结构312沿第一显示区域与第一开口周边区域的交界区呈折线走线,以合理利用空间,给设置其他结构例如第一连接结构和第二连接结构留出充足的空间。当然,在其他实施例中,也可通过彼此分隔开的多个第二连接结构312进行换层。
103.结合图5c

5d和图5e,一部分第二信号线2410由显示区域进入第一开口周边区域(对于第二开口也是如此,以第一开口为例),始终位于上述源漏极122/123的远离衬底基板210的一侧,不进行换层。一部分第二信号线 2412由显示区域进入第一开口周边区域(对于第二开口也是如此,以第一开口为例),第二信号线2412包括穿过显示区域的第一部分2412a与穿过第一开口周边区域203a的第二部分2412b,第二信号线2412的第一部分 2412a位于上述源漏极122/123的远离衬底基板210的一侧,第二信号线2412 的第二部分2412b与源漏极122/123同层设置。因此,第二信号线2412需要进行换层。
104.结合图5e和图5h,第二信号线2412的第一部分2412a通过穿过绝缘层113的过孔vh15直接与第二信号线2412的第二部分2412b,无需再设置额外的连接电极,以简化制作工艺。
105.例如不换层的数据线2410与进行换层的数据线2412在第一方向上相邻。
106.图6为本公开一实施例提供的一种阵列基板中的像素电路的等效电路图,图7a为本公开一实施例提供的一种阵列基板中的像素电路的平面布局示意图。图7a以相邻的两个子像素中的像素电路的层结构为例。
107.下文中的数据线1为上述第二信号线24的一种示例。
108.多个子像素1030的每个包括像素电路,像素电路包括发光器件、存储电容cst、驱动晶体管t1(下文又称第一晶体管)和数据写入晶体管t2(下文又称第二晶体管),以及数据线1和第一连接结构cp1。驱动晶体管t1 和数据写入晶体管的每个包括有源层、栅极、第一极和第二极,驱动晶体管 t1配置为控制所述发光器件发光,例如控制驱动发光器件发光的驱动电流。数据线1与数据写入晶体管t2的第一极连接且配置为给数据写入晶体管t2 提供用于控制子像素1030的显示灰度的数据信号。数据写入晶体管t2配置为响应于施加在数据写入晶体管t2的栅极的第一扫描信号而将数据信号写入驱动晶体管t1的栅极。第一连接结构cp1与驱动晶体管t1的栅极以及存储电容cst的第一极板连接,第一连接结构cp1与数据线1异层设置,即第一连接结构cp1与数据线1分别设置于不同的层,且在垂直于衬底基板 210的方向上第一连接结构cp1与数据线1之间存在绝缘层。在图6和图7a 所示的像素电路中,如果第一连接结构cp1与数据线1同层设置,则这两者之间的间距较小,将会导致在横向上,第一连接结构cp1与数据线1之间形成较大的寄生电容,尤其是在高分辨率显示面板中,这种现象尤其严重。该寄生电容将会直接导致显示效果不理想。且第一连接结构cp1与数据线1 之间形成的寄生电容不稳定,因为在显示过程中,数据线1上的数据信号是不断变化的,随着该数据信号被写入驱动晶体管t1的栅极,即该数据信号被写入图6中的n1节点,从而引起n1节点信号的跳变,从而影响流过n1 节点的电流的波动,影响显示效果。而第一连接结构cp1是图6中的n1节点所对应的实际结构,因此,在本公开实施例提供的阵列基板中,
将第一连接结构cp1与数据线1异层设置可以减小或避免两者之间形成该寄生电容,从而可改善或避免由此给显示效果造成的不良影响,达到更加理想的显示效果。
109.需要说明的是,由于像素的阵列排列,对应于同一个子像素1030的数据线1与第一连接结构cp1之间会形成上述寄生电容(以下用寄生电容1 代表),分别对应于相邻的两个子像素中的数据线1与第一连接结构cp1 之间也会形成上述寄生电容(以下用寄生电容2代表)。经模拟试验,在第一连接结构cp1与数据线1同层设置的情况下,寄生电容1的值可达 0.07971ff,寄生电容2的值可达0.05627ff,两者对n1节点产生的串扰程度为0.678%。串扰程度的值越大,说明形成的干扰越大,对显示造成的不良影响也越大。
110.在本公开实施例提供的阵列基板中,寄生电容1的值约为0.0321ff,寄生电容2的值可达0.0242ff,两者对n1节点产生的串扰程度为0.218%。由此可见,本公开实施例提供的阵列基板中的寄生电容1和寄生电容2的值相对于将两者同层设置的情况有明显下降,对n1节点产生的串扰程度明显下降,从而对显示造成的不良影响具有明显改善作用。
111.如图6所示,在一些实施例中,像素电路包括多个薄膜晶体管:第一晶体管t1、第二晶体管t2、第三晶体管t3、第四晶体管t4、第五晶体管t5、第六晶体管t6和第七晶体管t7、连接到多个薄膜晶体管t1、t2、t3、t4、 t5、t6和t7的多条信号线和存储电容cst,也即,该实施例中像素电路为 7t1c结构。相应地,多条信号线包括栅线gln/gln

1(即扫描信号线)、发光控制线em、复位信号线rl、数据线dat和第一电源线vdd。栅线 gln/gln

1可包括第一栅线gln和第二栅线gln

1。例如,第一栅线gln 用于传输栅极扫描信号,第二栅线gln

1用于传输复位电压信号发光控制线 em用于传输发光控制信号,例如连接到第一发光控制端em1和第二发光控制端em2。第五晶体管t5的栅极与第一发光控制端em1连接,或作为第一发光控制端em1,以接收第一发光控制信号;第六晶体管t6的栅极与第二发光控制端em2连接,或作为第二发光控制端em2,以接收第二发光控制信号。
112.需要说明的是,本公开实施例包括但并不限于上述7t1c结构的像素电路,像素电路也可采用其他类型的电路结构,例如7t2c结构或者9t2c结构等,本公开实施例对此不作限制。
113.例如,如图6所示,第一薄膜晶体管t1的第一栅极与第三薄膜晶体管 t3的第三漏极d3和第四薄膜晶体管t4的第四漏极d4电连接。第一薄膜晶体管t1的第一源极s1与第二薄膜晶体管t2的第二漏极d2和第五薄膜晶体管t5的第五漏极d5电连接。第一薄膜晶体管t1的第一漏极d1与第三薄膜晶体管t3的第三源极s3和第六薄膜晶体管t6的第六源极s6电连接。
114.例如,如图6所示,第二薄膜晶体管t2的第二栅极被配置为与第一栅线gln电连接,以接收栅极扫描信号;第二薄膜晶体管t2的第二源极s2 被配置为与数据线dat电连接,以接收数据信号;第二薄膜晶体管t2的第二漏极d2与第一薄膜晶体管t1的第一源极s1电连接。
115.例如,如图6所示,第三薄膜晶体管t3的第三栅极被配置为与第一栅线gln电连接,第三薄膜晶体管t3的第三源极s3与第一薄膜晶体管t1的第一漏电极d1电连接,第三薄膜晶体管t3的第三漏极d3与第一薄膜晶体管t1的第一栅极电连接。
116.例如,如图6所示,第四薄膜晶体管t4的第四栅极被配置为与第二栅线gln

1电连接以接收复位电压信号,第四薄膜晶体管t4的第四源极s4 被配置为与复位信号线rl电连接以接收复位电压信号,第四薄膜晶体管t4 的第四漏极d4与第一薄膜晶体管t1的第一栅
极电连接。
117.例如,如图6所示,第五薄膜晶体管t5的第五栅极被配置为与发光控制线em电连接以接收发光控制信号,第五薄膜晶体管t5的第五源极s5被配置为与第一电源线vdd电连接以接收第一电源信号,第五薄膜晶体管t5 的第五漏极d5与第一薄膜晶体管t1的第一源极s1电连接。
118.例如,如图6所示,第六薄膜晶体管t6的第六栅极被配置为与发光控制线em电连接以接收发光控制信号,第六薄膜晶体管t6的第六源极s6与第一薄膜晶体管t1的第一漏极d1电连接,第六薄膜晶体管t6的第六漏极 d6与发光器件(例如图6所示发光器件180)的第一显示电极(例如图6 所示的阳极181)电连接。图7a

7c中的薄膜晶体管tft即第六薄膜晶体管 t6。
119.例如,如图6所示,第七薄膜晶体管t7的第七栅极被配置为与第二栅线gln

1电连接以接收复位电压信号,第七薄膜晶体管t7的第七源极s7 与发光器件的第一显示电极(例如图6所示的阳极181)电连接,第七薄膜晶体管t7的第七漏极d7被配置为与复位信号线rl电连接以接收复位电压信号。例如,第七薄膜晶体管t7的第七漏极d7可以通过连接到第四薄膜晶体管t4的第四源极s4以实现与复位信号线rl电连接。
120.在本实施例中,第四晶体管t4和第七晶体管t7为复位晶体管,配置为给子像素提供复位信号。
121.需要说明的是,上述的复位电压信号和上述的复位电压信号可为同一信号。
122.需要说明的是,本公开的实施例中采用的晶体管可以为薄膜晶体管或场效应晶体管或其他特性相同的开关器件,薄膜晶体管可以包括氧化物半导体薄膜晶体管、非晶硅薄膜晶体管或多晶硅薄膜晶体管等。在本公开实施例中,任何一个晶体管的第一极为源极,则第二极为漏极;或者,任何一个晶体管的第一极为漏极,则第二极为源极。各个晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在物理结构上可以是没有区别的,本公开的实施例中全部或部分晶体管的源极和漏极根据需要是可以互换的。
123.图7b

7f为本公开一实施例提供的一种阵列基板的像素电路的各层的示意图,图8a为沿图7a中的a

a’线的一种截面示意图。
124.在一些实施例中,如图7a所示,像素电路包括上述的薄膜晶体管t3、t4、t5、t6和t7、存储电容cst、连接到多个薄膜晶体管t1、t2、t3、 t4、t5、t6和t7的第一栅线gln、第二栅线gln

1、发光控制线em、复位信号线rl、数据线dat和第一电源线vdd。
125.下面,结合图7a

7f和图8a对本公开实施例的像素电路的结构的具体特征进行说明。
126.如图7a和图8a所示,数据线1和第一连接结构cp1均沿第一方向延伸,且第一连接结构cp1在衬底基板210上的正投影与数据线1在衬底基板 210上的正投影在横向r2上至少部分彼此相对,这种结构利于像素电路结构的紧凑,在这种情况下,如果数据线1与第一连接结构cp1同层设置,两者之间的寄生电容现象将尤为明显,这种设置不仅能够改善或避免上述寄生电容,还能够实现像素电路结构的紧凑,利于实现阵列基板的高分辨率。横向r2平行于衬底基板210且垂直于第一方向r1。
127.例如,第一连接结构cp1在衬底基板210上的正投影与数据线1在衬底基板210上的正投影之间的距离(第一连接结构cp1在衬底基板210上的正投影的靠近数据线1在衬底基
板210上的正投影的边到数据线1在衬底基板 210上的正投影的靠近第一连接结构cp1在衬底基板210上的正投影的边的最大距离)小于一个子像素1030的在所述横向上的尺寸,以更加利于像素电路结构的紧凑,即使在第一连接结构cp1与数据线1在横向r2上的间距很小的情况下,也不会产生上述寄生电容现象。例如,对应于同一个子像素 1030的数据线1与第一连接结构cp1之间的距离小于一个子像素1030的在横向r2上的尺寸,且分别对应于相邻的两个子像素中的数据线1与第一连接结构cp1之间的距离小于一个子像素1030的在横向r2上的尺寸。例如,一个子像素1030的在所述横向r2上的尺寸为30μm~90μm。
128.进一步地,例如,第一连接结构cp1在衬底基板210上的正投影与数据线1在衬底基板210上的正投影之间存在间隔。或者,在一些实施例中,第一连接结构cp1在衬底基板210上的正投影与数据线1在衬底基板210上的正投影之间基本不存在间隔。即基本相接,利于在实现高分辨率,在这种情况下,本公开实施例提供的阵列基板同时能够防止上述寄生电容现象。
129.例如,像素电路包括半导体层、第一导电层、第二导电层和第三导电层。图7a示出了像素电路的半导体层、第一导电层、第二导电层和第三导电层的层叠位置关系的布局示意图。
130.图7b示出了像素电路的半导体层。例如,图7b所示的该半导体层包括第一薄膜晶体管t1的有源层a1、第二薄膜晶体管t2的有源层a2、第三薄膜晶体管t3的有源层a3、第四薄膜晶体管t4的有源层a4、第五薄膜晶体管t5的有源层a5、第六薄膜晶体管t6的有源层a6和第七薄膜晶体管 t7的有源层a7。如图7b所示,半导体层可采用半导体材料层通过构图工艺形成。半导体层可用于制作上述的,各个晶体管的有源层可包括源极区域、漏极区域以及源极区域和漏极区域之间的沟道区。例如,半导体层可采用非晶硅、多晶硅、氧化物半导体材料(例如,氧化铟镓锡(igzo))等制作。需要说明的是,上述的源极区域和漏极区域可为掺杂有n型杂质或p型杂质的区域。
131.在本公开一些实施例提供的阵列基板中,在上述的半导体层上形成有第一绝缘层。为了清楚起见,图7a、图7b

7k中未示出各个绝缘层。例如,结合图7b和图8a,像素电路的第一绝缘层151设置在第一导电层的远离衬底基板210的一侧。
132.图7c示出了像素电路的第一导电层,图7g示出了第一导电层与半导体层层叠后的示意图。第一导电层位于半导体层的远离衬底基板210的一侧。结合图7c、图7g和图8a,第一绝缘层151位于各个晶体管的有源层与第一导电层之间。例如,第一导电层包括存储电容cst的第一极板ce1、第一栅线gln、第二栅线gln

1、发光控制线em、以及第一薄膜晶体管t1 的栅极、第二薄膜晶体管t2的栅极、第三薄膜晶体管t3的栅极、第四薄膜晶体管t4的栅极、第五薄膜晶体管t5的栅极、第六薄膜晶体管t6的栅极和第七薄膜晶体管t7的栅极。因此,上述各个晶体管的有源层同层设置,且上述各个晶体管的栅极与存储电容cst的第一极板ce1同层设置,从而第一绝缘层151位于各个晶体管的有源层与各个晶体管的栅极和存储电容 cst的第一极板ce1之间。由此可见,驱动晶体管即第一晶体管t1的栅极 (或各个晶体管的栅极)和存储电容cst的第一极板ce1位于驱动晶体管的有源层(或各个晶体管的有源层)的远离衬底基板210的一侧。
133.结合图7a

图7c和图7g所示,第二薄膜晶体管t2的栅极、第四薄膜晶体管t4的栅极、第五薄膜晶体管t5的栅极、第六薄膜晶体管t6的栅极和第七薄膜晶体管t7的栅极分别
为第一栅线gln、第二栅线gln

1与半导体层交叠的部分。在一些实施例中,例如,第三薄膜晶体管t3可为双栅结构的薄膜晶体管,第三薄膜晶体管t3的一个栅极可为第一栅线gln与半导体层交叠的部分,第三薄膜晶体管t3的另一个栅极可为从第一栅线gln突出的突出部;第一薄膜晶体管t1的栅极可以与第一极板ce1一体成型,即第一极板ce1复用作第一薄膜晶体管t1的栅极。例如第四薄膜晶体管t4 可为双栅结构的薄膜晶体管,两个栅极分别为第二栅线gln

1与半导体层交叠的部分。
134.例如上述各个薄膜晶体管的栅极分别与相应的第一栅线gln或第二栅线gln

1一体成型。在本实施例中,第一栅线gln、第二栅线gln

1和各个薄膜晶体管的栅极与存储电容cst的第一极板ce1同层设置,可通过同一次构图工艺同时形成。
135.例如,如图7a所示,阵列基板100还包括第一电源线vdd,第一电源线连vdd接第一电压端以及存储电容cst的第二极板ce2,且配置为给发光控制晶体管即第一晶体管t1提供第一电压。例如,第一电源线vdd包括沿第一方向r1延伸的第一子走线21和沿第二方向延伸的第二子走线22,第一方向r1与第二方向相交,例如第二方向为横向r2。第一子走线21与第二子走线22电连接。
136.图7d示出了像素电路的第二导电层,图7h示出了第二导电层与半导体层层叠后的示意图。第二导电层位于第一导电层的远离衬底基板210的一侧。例如,结合图7d、图7h与图8a,像素电路的第二导电层包括存储电容cst的第二极板ce2、复位信号线rl和第二子走线22,由此可见第二子走线22与存储电容cst的第二极板ce2同层设置,且存储电容cst的第二极板ce2位于驱动晶体管即第一晶体管t1的栅极(或各个晶体管的栅极)和存储电容cst的第一极板ce1的远离所述有源层的一侧。例如,第二子走线22与存储电容cst的第二极板ce2一体成型,从而可通过同一构图工艺形成。第二极板ce2与第一极板ce1至少部分重叠以形成存储电容 cst。
137.例如,在一些实施例中,结合图7a和图7d,第二导电层还可包括遮光部791。遮光部791在衬底基板210上的正投影覆盖第二薄膜晶体管t2的至少部分有源层、第三薄膜晶体管t3的漏极和第四薄膜晶体管t4的漏极之间的有源层,从而防止外界光线对第二薄膜晶体管t2、第三薄膜晶体管t3 和第四薄膜晶体管t4的有源层产生影响。遮光部791可通过贯穿绝缘层中的过孔vh9与第一电源线vdd电连接,如图7a和图7d所示。
138.在本公开至少一实施例中,如图7a和图7k所示,例如,在一个子像素中,在横向r2上,第一连接结构cp1位于第一子走线21与数据线1(与第一连接结构cp1和第一子走线21属于同一个子像素的像素电路)之间。这种情况下,在横向上,第一连接结构cp1与数据线1之间不存在例如第一电源线这种沿第一方向r1延伸的结构,则第一连接结构cp1与数据线1之间的间距更小,将会导致在横向上,第一连接结构cp1与数据线1之间形成更为明显的寄生电容。因此这种情况下本技术实施例提供的阵列基板中,将第一连接结构cp1与数据线1异层设置具有更加明显的减小数据线1对第一连接结构cp1的信号干扰的效果。
139.另外,这种方案相比于第一子走线21位于第一连接结构cp1与数据线 (与第一连接结构cp1和第一子走线21属于同一个子像素的像素电路)之间的情况,第一连接结构cp1的在第一方向r1上的长度较小,第一连接结构cp1的在横向r2上的宽度也较小,因此,利用位于第二导电层还可包括上述遮光部791,以遮挡第二薄膜晶体管t2、第三薄膜晶体管t3和第四薄膜晶体管t4的有源层,可以利用第二导电层实现这一目的,从而简化阵列基板的制
作工艺。
140.例如,如图8a所示,阵列基板100还包括第二绝缘层152,第二绝缘层152位于存储电容cst的第一极板ce1与存储电容cst的第二极板ce2 之间,即位于第一导电层与第二导电层之间。为了清楚,图7b

7f中也未示出第二绝缘层152。
141.阵列基板100还包括第二电源线vss。例如第一电源线vdd为给像素电路提供高电压的电源线,第二电源线vss连接第二电压端第二电源线vss 为像素电路提供低电压(低于前述高电压)的电源线。在如图6所示的实施例中,第一电源线vdd提供恒定的第一电源电压,第一电源电压为正电压;第二电源线vss提供恒定的第二电源电压,第二电源电压可以为负电压等。例如,在一些示例中,第二电源电压可以为接地电压。
142.在一些实施例中,例如,如图8a所示,数据线1(data)位于第一连接结构cp1的远离衬底基板210的一侧。这种情况下,例如,图7e示出了像素电路的第三导电层,图7i示出了第三导电层与半导体层层叠后的示意图。第三导电层位于第二导电层的远离衬底基板1的一侧。例如,如图7e 和图7i所示,像素电路的第三导电层包括第一连接结构cp1和第一电源线 vdd的第一子走线21,即第一连接结构cp1与第一子走线21同层设置。如图8a所示,阵列基板100还包括第三绝缘层160,第三绝缘层160位于存储电容cst的第二极板ce2与第一连接结构cp1之间,即位于第二导电层与第三导电层之间。
143.例如,第一子走线21通过贯穿第三绝缘层160的过孔(例如过孔vh3) 与第二子走线22电连接。
144.例如,结合图7a、图7e和图8a和图8b,第三导电层还包括第二连接结构cp2、第三连接结构cp3和第四连接结构cp4。第一连接结构cp1的一端通过贯穿第二绝缘层152和第三绝缘层160且暴露部分存储电容cst 的第一极板ce1的过孔(例如过孔vh5)与存储电容cst的第一极板ce1 连接。第一连接结构cp1的另一端通过贯穿第一绝缘层151、第二绝缘层152 和第三绝缘层160的至少一个过孔(例如过孔vh4)与半导体层连接,例如与半导体层中对应第三薄膜晶体管t3的漏极区域相连。第二连接结构cp2 的一端通过贯穿第三绝缘层160的过孔(例如过孔vh6)与复位信号线rl 相连,第二连接结构cp2的另一端通过贯穿第一绝缘层151、第二绝缘层152 和第三绝缘层160的至少一个过孔(例如过孔vh7)与半导体层连接,例如与半导体层中的第七薄膜晶体管t7的源极区域和第四薄膜晶体管t4的源极区域相连。第三连接结构cp3通过贯穿第一绝缘层151、第二绝缘层152和第三绝缘层160的至少一个过孔(例如过孔vh8)与半导体层中的第六薄膜晶体管t6的漏极区域相连。第四连接结构cp4通过贯穿第一绝缘层151、第二绝缘层152和第三绝缘层160的至少一个过孔(例如过孔vh2)与半导体层中的第五薄膜晶体管t5的漏极区域相连。第五连接结构cp5通过贯穿第一绝缘层151、第二绝缘层152和第三绝缘层160且暴露部分半导体层的至少一个过孔(例如过孔vh1)与半导体层中的第三薄膜晶体管t3的漏极区域相连。
145.例如,图7f示出了像素电路的第四导电层,图7j示出了第四导电层与半导体层层叠后的示意图,图7k示出了第四导电层、第三导电层与半导体层层叠后的示意图。例如,结合图7a、图7e

图7f、图7j

图7k和图8a 所示,第四导电层位于第三导电层的远离衬底基板210的一侧。第四导电层包括数据线1(data)、第六连接结构cp6和第七连接结构cp7。阵列基板100还包括第四绝缘层113,第四绝缘层113位于第三导电层与第四导电层之间,即位于第一连接结构cp1与数据线1(data)之间。例如,第四绝缘层113为平坦层。过孔vh1还贯穿第四
绝缘层113而暴露至少部分第五连接结构cp5,数据线1(data)通过过孔vh1与第五连接结构cp5电连接,从而实现数据线1(data)与半导体层中的第三薄膜晶体管t3的漏极区域电连接。例如,第七连接结构cp7与数据线1直接接触以实现这两者电连接。由于数据线1的线宽较小例如明显小于第一子走线21的线宽,第七连接结构cp7能够加宽数据线1的需要与半导体层连接的部位,例如数据线1与第七连接结构cp7的构成的整体通过过孔vh1与第五连接结构cp5 电连接,从而实现数据线1(data)与半导体层中的第三薄膜晶体管t3的漏极区域电连接。例如,第七连接结构cp7与数据线1一体成型。例如,过孔vh2还贯穿第四绝缘层113而暴露至少部分第四连接结构cp4,第六连接结构cp6通过过孔vh2与第四连接结构cp4电连接,从而实现第六连接结构cp6与有源层中对应第五薄膜晶体管t5的漏极区域相连,以作为第五薄膜晶体管t5的漏极,例如第六连接结构cp6用于与发光器件的阳极(例如图6所示的阳极181)接。例如,在不同的子像素1030中,例如在图7a 所示的相邻的两个子像素1030中,第六连接结构cp6的形状、大小和位置未必完全相同,以适应对应有不同的子像素的阳极位置的需求。例如,在图 7a所示的左侧的子像素1030中的第六连接结构cp6的形状、大小和位置与右侧的子像素1030中的第六连接结构cp6的形状、大小和位置分别不相同。这是因为这两个子像素中的阳极的位置不同,的第六连接结构cp6的形状、大小和位置沿与第一方向r1和横向r2相交的方向延伸,其上端(非与第四连接结构cp4连接的一端)的位置如此是为了与位于该上端处的阳极相连。
146.例如,第四绝缘层113的在垂直于衬底基板210的方向上的厚度大于第一绝缘层151的在垂直于衬底基板210的方向上的厚度、第二绝缘层152的在垂直于衬底基板210的方向上的厚度、第三绝缘层160的在垂直于衬底基板210的方向上的厚度和第四绝缘层113的在垂直于衬底基板210的方向上的厚度三者中的至少之一。以增强第四绝缘层113的绝缘作用,更好地减小或避免数据线1与第一连接结构cp1之间的寄生电容。
147.例如第四绝缘层113的在垂直于衬底基板210的方向上的厚度为几微米,例如小于5μm~10μm,该厚度范围能够达到较好的减小或避免数据线1 与第一连接结构cp1之间的寄生电容的效果,且不会过度增厚阵列基板100 的尺寸。
148.在上述实施例中,第一子走线21与数据线1异层设置,由于相邻的在第一子走线21与数据线1之间的间距比较小,如此设计可避免第一子走线 21与数据线之间产生寄生电容,从而避免该寄生电容影响显示效果。例如,该相邻的第一子走线21与数据线1分别对应于相邻的两个子像素。
149.参考图7a和图8a,例如,第一连接结构cp1在衬底基板210上的正投影与数据线1在衬底基板210上的正投影不重叠,第一走线21在衬底基板210上的正投影与数据线1在衬底基板210上的正投影上不重叠。相比于以上信号线在垂直于衬底基板210的方向上有重叠的情况,本公开实施例的该方案能够更好地防止这些信号线上的信号之间的串扰。
150.例如,为了减小数据线和第一连接结构的电阻,例如数据线1和第一连接结构cp1的材料均为金属材料。例如形成数据线1的第四导电层采用包括三层金属的叠层结构ti/al/ti。
151.图8b为沿图7a中的b

b’线的一种截面示意图。多个子像素包括第一子像素和与所述第一子像素相邻的第二子像素。图7a示出了两个相邻的子像素,第一子像素为图7a中左侧的子像素,第二子像素为图7a中右侧的子像素,即第一子像素和第二子像素在横向上相
邻;当然,在其他实施例中,第一子像素和第二子像素也可以在纵向上相邻,其他结构的方向和位置适应性调整即可。结合图7a、图7g和图8b,第一复位晶体管t4包括有源层 a4、栅极(gln

1的与有源层a4重叠的部分)、第一电极(例如为源极) 和第二电极(例如为漏极);第二复位晶体管t7包括有源层a7、栅极(栅线gln

1的与有源层a7重叠的部分)、第一电极(例如为源极)和第二电极(例如为漏极)。第一复位晶体管t4复位晶体管的有源层包括沟道区(有源层a4的与栅线gln

1重叠的部分)和电极区e1。第二复位晶体管t7的有源层a7包括沟道区(有源层a7的与栅线gln

1重叠的部分)和电极区e1。第一复位晶体管t4和第二复位晶体管t7共用同一电极区e1。例如,第二连接结构cp2沿第一方向r1延伸,包括在第一方向r1上彼此相对的第一端和第二端;第二子像素的像素电路的第二连接结构cp2在横向r2上位于第一子像素的像素电路的第一复位晶体管t4的有源层的沟道区和第二复位晶体管t7的有源层的沟道区的靠近第一子像素的像素电路的数据线1的一侧。第二连接结构cp2的第一端通过过孔vh6与复位信号线rl电连接,第二连接结构cp2的第二端通过过孔vh7与第二子像素的像素电路的复位晶体管(t4和t7)的有源层的电极区e1电连接。从而,第二连接结构cp2 构成第一复位晶体管t4和第二复位晶体管t7的第一电极和第二电极。
152.结合图7a、图7g和图8b,第二子像素的像素电路的第一复位晶体管 t4和第二复位晶体管t7的有源层的电极区e1从第一子像素沿横向延伸到与其相邻的第二子像素中,且第二子像素的像素电路的第一复位晶体管t4 和第二复位晶体管t7的有源层的电极区e1在衬底基板上的正投影与属于第一子像素的像素电路的数据线1在衬底基板上的正投影至少部分重叠。即,该第一复位晶体管t4和该第二复位晶体管t7的有源层的电极区e1与该数据线1相交,以更充分灵活地利用有限的像素区域,形成所需要的便于实现与其他结构连接的半导体层图案。由于与该数据线1的投影交叠的有源层的电极区e1在垂直于衬底基板的方向上距离数据线1所在的第二导电层较远,所以这两者相交不会对彼此之间的信号产生干扰。
153.需要说明的是,在图7a、图7f、图7j和图7k分别示出了三条数据线 1,这三条数据线1分别属于三个相邻的子像素的像素电路;位于中间的数据线1属于第一子像素的像素电路,位于右侧的数据线1属于第二子像素的像素电路。
154.图9为图6所示像素电路的信号时序图。下面结合图9所示的信号时序图,对图6所示的像素电路的工作原理进行说明。例如,在此以图6中的第一发光控制线em1与第二发光控制线em2为同一条共用的发光控制线作为示例。在其他一些实施例中,第一发光控制线em1与第二发光控制线em2 也可以分别为不同的信号线,分别提供不同的第一发光控制信号和第二发光控制信号。
155.另外,在此以图9所示的晶体管均为p型晶体管为例。各个p型晶体管的栅极在接入低电平时导通,而在接入高电平时截止。以下实施例与此相同,不再赘述。
156.如图9所示,像素电路的工作过程包括三个阶段,分别为复位阶段p1、数据写入和补偿阶段p2以及发光阶段p3,图中示出了每个阶段中各个信号的时序波形。
157.在复位阶段p1,第二栅线gn

1提供复位信号rst,第四晶体管t4和第七晶体管t7被复位信号的低电平导通,将复位信号(低电平信号,例如可以接地或为其他低电平信号)施加至第一晶体管t1的第一栅极,并将复位信号施加至n4节点,即将发光元件180复位,从而可以使发光元件180在发光阶段p3之前显示为黑态不发光,改善采用该像素电路的显示装置的对比度等显示效果。同时,第二晶体管t2、第三晶体管t3、第五晶体管t5 和第六晶体管
t6被各自接入的高电平信号截止。
158.在数据写入和补偿阶段p2,第一栅线gln提供扫描信号gn

1,数据线 dat提供数据信号data,第二晶体管t2以及第三晶体管t3导通。同时,第四晶体管t4、第五晶体管t5、第六晶体管t6和第七晶体管t7被各自接入的高电平信号截止。数据信号data经过第二晶体管t2、第一晶体管t1 和第三晶体管t3后对第一节点n1进行充电(即对存储电容cst充电),也就是说第一节点n1的电位逐渐增大。容易理解,由于第二晶体管t2开启,第二节点n2的电位保持为vdata,同时根据第一晶体管t1的自身特性,当第一节点n1的电位增大到vdata+vth时,第一晶体管t1截止,充电过程结束。需要说明的是,vdata表示数据信号data的电压值,vth表示第一晶体管t1的阈值电压,由于在本实施例中,第一晶体管t1是以p型晶体管为例就行说明的,所以此处阈值电压vth可以是负值。
159.经过数据写入和补偿阶段p2后,第一节点n1和第三节点n3的电位均为vdata+vth,也就是说将带有数据信号data和阈值电压vth的电压信息被存储在存储电容cst中,以用于后续在发光阶段时,提供灰度显示数据和对第一晶体管t1自身的阈值电压进行补偿。
160.在发光阶段p3,发光控制线提供发光控制信号em,第五晶体管t5和第六晶体管t6被发光控制信号em的低电平导通。第二晶体管t2、第三晶体管t3、第四晶体管t4和第七晶体管t7被各自接入的高电平而截止。同时,第一节点n1的电位vdata+vth,第二节点n2的电位为vdd,所以在此阶段第一晶体管t1也保持导通。发光元件180的阳极和阴极分别接入了第一电源线vdd提供的第一电源电压(高电压)和第二电压vss(低电压),从而,发光元件180在流经第一晶体管t1的驱动电流的作用下发光。
161.例如,显示基板还包括:第三信号线,沿所述第一方向延伸,包括穿过所述第一开口周边区域、所述开口间区域和所述第二开口周边区域的第一部分,配置为给所述像素电路提供第三显示信号。所述第三信号线的第一部分与所述栅极同层设置;例如第三显示信号为发光驱动扫描信号(em线)。
162.例如,显示基板还包括第二虚拟子像素,第二虚拟子像素包括如图16 所示的第二虚拟像素电路。所述第二虚拟像素电路包括虚拟半导体层,与所述有源层同层设置,与所述第一部分第二子走线电连接,其中,所述第三信号线的第一部分在所述衬底基板上的正投影与所述虚拟半导体层在所述衬底基板上的正投影至少部分重叠以形成第三补偿电容。
163.图16a为本公开一实施例提供的一种显示基板中的一个第二虚拟子像素(图中右侧的在虚拟子像素)中的第二虚拟像素电路的平面布局示意图;
164.图16b为沿图16a中的a3

b3线的截面示意图;图16c

图16f为本公开一实施例提供的一种显示基板的第二虚拟像素电路的各层的示意图。
165.在一些实施例中,例如,开口间区域2014还包括第二虚拟子像素,第二虚拟子像素包括第二虚拟像素电路,如图16a所示。第二虚拟像素电路包括第二补偿电容com10,第二补偿电容com10包括第一极板ce10和第二极板ce20。
166.图16d示出了第二虚拟像素电路的位于第一导电层的一种结构,图16e 示出了第二虚拟像素电路的位于第二导电层的结构。
167.结合图16a

图16b和图16d

图16e,第四补偿电容com10的第一极板ce10与第一信号线2301同层设置,例如均位于第一导电层,并且,第四补偿电容com10的第一极板ce10与第一信号线2301电连接。第一信号线 2301在衬底基板210上的正投影与第四补偿电容
com10的第二极板ce20 在衬底基板210上的正投影至少部分重叠。
168.如图16d所示,第四补偿电容com10的第一极ce10板包括:第二主体部分ce100和第三延伸部ce101。第二主体部分ce100位于第一信号线 2301的在第二方向r2上的第一侧;第三延伸部ce101自第二主体部分 ce100在第二方向r2上朝向第一信号线2301延伸,位于第一信号线2301 在第二方向上的第一侧,且位于第二主体部分ce100与第一信号线2301的之间,第二主体部分ce100通过第三延伸部ce101与第一信号线2301电连接。例如,第四补偿电容com10的第一极ce20板包括第四延伸部ce102,第四延伸部ce102自第一信号线2301朝向远离第二主体部分ce100的方向延伸,位于第一信号线2301的在第二方向r2上的第二侧且与第一信号线2301电连接,第一信号线2301的第二侧与第一信号线2301的第一侧相对,从而进一步增大第四补偿电容com10的第一极板ce10的面积,如果同时增大第四补偿电容com10的第二极板的面积,则可进一步增大第四补偿电容com10,满足对第一信号线的不同补偿程度的需求。
169.例如,第二主体部分ce100、第三延伸部ce101、第一信号线2301和第四延伸部ce102一体成型,从而可利用同一次构图工艺形成这些结构,简化显示基板的制作工艺。
170.结合图16a

图16b与图16e,第四补偿电容com10的第二极板ce20 包括第三主体部分ce200和第五延伸部ce201。第三主体部分ce200位于第一信号线2301的在第二方向r2上的第一侧;第五延伸部ce201自第三主体部分ce200在第二方向r2上朝向第一信号线2301延伸,第一信号线 2301在衬底基板210上的正投影与第五延伸部ce201在衬底基板210上的正投影至少部分重叠。
171.例如,如图16b所示,第四补偿电容com10的第一极板ce10在衬底基板210上的正投影位于第四补偿电容com10的第二极板ce20在所述衬底基板210上的正投影内,以最大化利用第四补偿电容com10的第一极板 ce10的面积,利用有限的空间形成所需的第四补偿电容的大小。
172.例如,如图16e所示,第四补偿电容com10的第二极板ce20的一部分7921可以与显示区像素电路中的遮光部的位置和图案相同,以保持刻蚀均一性。
173.例如,第二虚拟子像素包括第二虚拟半导体层,第二虚拟半导体层位于第四补偿电容的第一极板的靠近衬底基板的一侧。图16c示出了第二虚拟子像素的图案,第二虚拟子像素为图16c中右侧的在虚拟子像素a02。结合图 16a和图16c所示,第二虚拟半导体层包括间隔开以彼此不连接的第一部分 ap21和第二部分ap22;第一部分ap21位于第一信号线2301的第一侧,第二部分ap22位于第一信号线2301的第二侧;第一信号线2301在衬底基板210上的正投影与第一虚拟半导体层在衬底基板210上的正投影不重叠,从而第二虚拟像素电路中不存在真正的薄膜晶体管,不实现显示功能。例如,第四补偿电容com10在衬底基板210上的正投影与第一虚拟半导体层在衬底基板上的正投影不重叠。
174.图16f示出了第二虚拟像素电路的位于第三导电层的结构。结合图16a
‑ꢀ
图16b、图16e和图16f,第二虚拟像素电路包括第二转接电极cp10,第二转接电极cp10与第一虚拟像素电路的第一转接电极,以及显示区域的像素电路的第一连接部cp1同层设置,例如均位于第三导电层,且与第四补偿电容com10的第二极板ce20电连接,例如,第二转接电极cp10通过过孔 vh40和过孔vh50与第四补偿电容com10的第二极板ce20电连接,以保持此处与显示基板的显示区域等其他位置的刻蚀均一性。
175.例如,结合图16a

图16b与图16e,第四补偿电容com10的第二极板 ce20通过过孔vh40和过孔vh50与第一电源线vdd连接,例如与第一电源线vdd的第一走线2424连接,以给第四补偿电容com10的第二极板 ce20提供第一电源电压,以形成第四补偿电容com10。
176.例如,第二虚拟半导体层的第二部分ap22均配置为通过第二虚拟像素电路被寄予电信号;第一虚拟半导体层的第一部分ap21在第一方向r1上具有彼此相对的第一端p21和第二端p22,第二端p22配置为通过第二虚拟像素电路被寄予所述电信号,第一端p21与第二端p22连接,从而可将来自第二端p2的电信号传输给第一端p21,防止由于第一端p21无信号输入导致的信号漂移。例如,如图16a所示,第二端p22与第一电源线vdd的第二子走线2424电连接,例如通过过孔vh20电连接,从而将来自第一电源线vdd的第二子走线2424的第一电源电压传输给第二端p22和第一端p21。该第一电源线vdd的结构不限于图16a

16f中的情况,只要将第一电源线 vdd与第二端p22连接即可。
177.例如,如图16a所示,所述第三信号线例如发光扫描信号线em的第一部分在衬底基板210上的正投影与虚拟半导体层在衬底基板210上的正投影至少部分重叠以形成第三补偿电容,以对第三信号线的负载进行补偿,获得更加均匀的显示效果。
178.当然,第二虚拟像素结构不限于是图16a

16f所示的情况,图16a

16f 中,数据线与源漏极122/123同层。例如,当数据线位于源漏极122/123的远离衬底基板的一侧时,也可以设置上述虚拟半导体层与第三信号线例如发光扫描信号线em重叠,以形成第三补偿电容。本公开实施例对此不作限定。
179.在如图2b和图2c所示的实施例中,第二开口区域202b与第一开口区域202a沿第一方向r1排列,由此,开口间区域2014在第一方向r1上位于第一开口区域202a和第二开口区域202b之间。第一显示区域2011位于第一开口区域202a的远离开口间区域2014的一侧,第二显示区域2012位于第二开口区域202b的远离开口间区域2014的一侧。这种情况下,第一显示区域2011位于第一开口区域202a的第一侧,第二显示区域2012位于第二开口区域201b的第二侧。即,第一显示区域、第一开口区域、开口间区域、第二开口区域和第二显示区域沿所述第一方向依次排列。分别对于第一开口区域202a和第二开口区域201b来说,仍然满足第一显示区域2011位于第一开口区域202a的第一侧,第二显示区域2012位于第一开口区域202a 的第二侧,该第一侧与该第二侧在第一方向r1上彼此相对。第一信号线23 沿第一方向r1依次穿过第一显示区域2011、第一开口周边区域203a、开口间区域2014、第二开口周边区域203b和第二显示区域2012。
180.如图2b所示,第一信号线2301包括位于第一开口周边区域203a的第一引线部e1a1/e2a2(即,以一条第一信号线为例,例如第一引线部为图2b 中的直线段e1a1和直线段e2a2)和位于第一开口周边区域203a的横向绕线部a1a2(即横向绕线部为图2b中的曲线段a1a2);横向绕线部a1a2 部分围绕第一开口201a设置。第二信号线24配置为给第一像素阵列提供第二显示信号,沿与第一方向r1相交的第二方向r2穿过第一开口周边区域 203a,包括位于第一开口周边区域203a的纵向绕线部c1c2,即纵向绕线部为图2b中的曲线段c1c2;纵向绕线部c1c2部分围绕第一开口201a设置。第一引线部e1a1/e2a2在衬底基板上的正投影与第二信号线24在衬底基板上的正投影分别具有第一重叠区s1/s2,即两者交叉处的区域。横向绕线部a1a2在衬底基板上的正投影与纵向绕线部c1c2在衬底基板上的正投影具有第二重叠区,例如这两者在a1c1段和d1a2段重叠,第二重叠区为 a1c1和d1a2所代表的区
域。如此,由于第一重叠区和第二重叠区的形成,在垂直于衬底基板的方向上彼此重叠的第一信号线2301与第二信号线24之间形成补偿电容,补偿了第一信号线上的负载,从而减小由于第一像素阵列中不同行像素的像素数量不同而导致连接不同行像素的第一信号线的负载不同而造成的显示差异,使第一显示区域2011和第二显示区域2012的显示效果与显示区域201中不设置有第一开口区域202a的像素行的显示效果一致,提升显示质量。同时,上述走线方式还能够减小第一信号线与第二信号线的排布空间,尽可能减小当第一开口周边区域203a占用的面积。因此,例如当通过第一开口区域202a实现屏下摄像功能时减小第一开口区域202a对该区域显示效果的影响,或者,在其他实施例中,当第一开口周边区域203a位于边框区204中时,也可减小边框区204的宽度,进而有助于实现显示基板20的窄边框、大屏化设计。例如,如图2b所示,第一信号线 2301的引线部e1a1在衬底基板上的正投影与第二信号线24的纵向绕线部在衬底基板上的正投影具有第一重叠区。即,所述多条第一信号线中的每条沿所述第一方向依次穿过所述第一显示区域、所述第一开口周边区域和所述第二显示区域,且包括位于所述第一开口周边区域的第一引线部和横向绕线部,所述横向绕线部部分围绕所述第一开口设置,所述第一引线部与所述横向绕线部连接;所述多条第一信号线的横向绕线部在所述衬底基板上的正投影分别与所述多条第二信号线的所述部分的纵向绕线部在所述衬底基板上的正投影具有重叠区。
181.图17为本公开一实施例提供的一种显示基板中的一个第二虚拟子像素中的第二虚拟像素电路的平面布局示意图。图17与图16a的区别主要在于,数据线data位于源漏极122/123的远离衬底基板的一侧,且数据线data 在第一方向上与第一电源线vdd的相对位置不同。其他结构可参考图16a。
182.图10a是本公开一实施例提供的一种显示基板的第一开口区域的放大示意图。图10a和图2b

2c相比的区别在于,显示基板还包括第一浮置电极41/42。多条第二信号线的纵向绕线部中最靠近第一开口201a的纵向绕线部为边缘纵向绕线部2401/2402,第一浮置电极41/42与边缘纵向绕线部同层设置且位于边缘纵向绕线部2401/2402的靠近第一开口201a的一侧。第一浮置(floating)电极41/42与边缘纵向绕线部同层设置且位于边缘纵向绕线部2401/2402的靠近第一开口201a的一侧,由此,可以避免边缘纵向绕线部刻蚀性差异,增大刻蚀均一性。第一浮置电极不加载任何电信号,不会对其周围的其他信号线造成干扰。
183.例如,如图10所示,多个像素包括分别沿第二方向r2延伸的第一像素列和第二像素列;第一开口201a具有在第一方向r2上彼此相对的第一侧和第二侧,以及在第二方向r2上彼此相对的第三侧和第四侧。显示基板包括与第一开口201a对应设置的两条边缘纵向绕线部,两条边缘纵向绕线部包括:配置为给第一像素列提供第二显示信号的边缘纵向绕线部,给第一像素列提供所述第二显示信号的所述边缘纵向绕线部在所述第一开口的第一侧部分地围绕所述第一开口;配置为给第二像素列提供第二显示信号的边缘纵向绕线部,给第二像素列提供第二显示信号的边缘纵向绕线部在第一开口的第二侧部分地围绕所述第一开口;第一浮置电极包括:第一部分41和第二部分42。第一部分41位于给第一像素列提供第二显示信号的边缘纵向绕线部的靠近第一开口201a的一侧;第二部分42位于给第二像素列提供第二显示信号的边缘纵向绕线部的靠近第一开口201a的一侧。
184.例如,第一浮置电极与边缘纵向绕线部的线宽和延伸方向基本相同,以进一步增
大刻边缘纵向绕线部的蚀均一性。
185.例如,多条第二信号线中相邻两条第二信号线之间具有第一间隔,例如,相邻两条第二信号线的纵向绕线部之间具有第一间隔,第一浮置电极与边缘纵向绕线部之间的间隔与第一间隔基本相等,以进一步增大边缘纵向绕线部的刻蚀均一性。
186.例如,在一些实施例中,如图10a所示,第一浮置电极的第一部分41 与第一浮置电极的第二部分42彼此间隔开。在另一些实施例中,如图10b 和图10c所示,第一浮置电极的第一部分41与第一浮置电极的第二部分一体成型。
187.例如,如图10b所示,第一浮置电极的第一部分41与第一浮置电极的第二部分42构成的整体的平面形状为围绕第一开口201a的不封闭的环形,该不封闭的环形具有的开口可以更好地释放聚集的电荷,避免对周边信号线的信号干扰。当然,在一些实施例中,例如,如图10c所示,第一浮置电极的第一部分41与第一浮置电极的第二部分42构成的整体的平面形状也可以为封闭的环形。
188.图11是图10a中的局部h的放大示意图,图16是图11中的局部g的放大示意图,图13是图12中的局部i的放大示意图,图14是图12中的局部j的放大示意图。所述显示基板还包括第二浮置电极,多条第一信号线的横向绕线部中最靠近第一开口201a的横向绕线部为边缘横向绕线部,第二浮置电极与边缘横向绕线部同层设置且与第一浮置电极异层设置,第二浮置电极位于边缘横向绕线部的靠近第一开口的一侧,第二浮置电极在衬底基板 210上的正投影与第一浮置电极在衬底基板210上的正投影具有重叠区,由此,可以避免边缘横向绕线部刻蚀性差异,增大刻蚀均一性。与第一浮置电极类似,第二浮置电极与边缘横向绕线部的线宽和延伸方向基本相同,以进一步增大边缘横向绕线部的刻蚀均一性。
189.例如,多条第一信号线中相邻两条第二信号线之间具有第二间隔,例如,相邻两条第一信号线的横向绕线部之间具有第二间隔,第二浮置电极与边缘横向绕线部之间的间隔与第二间隔基本相等,以进一步增大边缘横向绕线部的刻蚀均一性。
190.例如,第一信号线包括多条栅扫描信号线和多条复位信号线。如图13 所示,栅扫描信号线2303a(这种情况下该部分为栅扫描信号线的第一部分 2303a)与复位信号线2301a(这种情况下该部分为栅扫描信号线的第一部分2301a)异层设置,并且,栅扫描信号线2303a的横向绕线部2303a

1 与复位信号线2301a的横向绕线部2301a

1在第二方向上交替排布。多条栅扫描信号线2303a中最靠近第一开口201a的栅扫描信号线2303a为边缘栅扫描信号线2303a

0,多条复位信号线2301a中最靠近第一开口201a的复位信号线为边缘复位信号线2301a

0。第二浮置电极包括:第一子浮置电极 511和第二子浮置电极512。第一子浮置电极511与栅扫描信号线同层设置且位于边缘栅扫描信号线2303a的靠近第一开口201a的一侧;第二子浮置电极512与复位信号线2301a

0同层设置且位于边缘复位信号线2301a

0的靠近第一开口201a的一侧;边缘栅扫描信号线2303a

0比边缘复位信号线 2301a

0远离第一开口201a,第一子浮置电极511比第二子浮置电极512 远离第一开口201a,第一浮置电极在衬底基板上的正投影至少与所第一子浮置电极具有重叠区,即可解决边缘复位信号线2301a

0和边缘复位信号线 2301a

0的刻蚀均一性问题。或者,边缘复位信号线2301a

0比边缘栅扫描信号线2303a

0远离第一开口201a,第二子浮置电极512比第一子浮置电极511远离第一开口201a,第一浮置电极在衬底基板上的正投影至少与第二子浮置电极具有重叠区,也可解决边缘复位信号线2301a

0和边缘复位信号线2301a

0的刻蚀均一性问题。
191.在一些实施例中,例如,如图13所示,多条第二信号线的所述部分包括第一部分第二信号线2410和第二部分第二信号线2412,第一部分第二信号线2410与第二部分第二信号线2412异层设置且在所述第一方向上交替排布,其所处的层请见之前的描述。第一部分第二信号线2410中最靠近所述第一开口的第二信号线为边缘第一子数据信号线,第二部分第二信号线2412 中最靠近第一开口的第二信号线为边缘第二子数据信号线;第一部分第二信号线中的每条第二信号线的纵向绕线部在衬底基板210上的正投影与一条栅扫描信号线的横向绕线部在衬底基板上的正投影具有重叠区,第二部分第二信号线中的每条第二信号线的纵向绕线部在所述衬底基板上的正投影与每条所述复位信号线的横向绕线部在所述衬底基板上的正投影具有重叠区;第一浮置电极包括:第三子浮置电极411和第四子浮置电极412。第三子浮置电极411与第一部分第二信号线2410同层设置且位于边缘第一子数据信号线的靠近第一开口的一侧;第四子浮置电极412与第二部分第二信号线2412 同层设置且位于边缘第二子数据信号线的靠近第一开口201a的一侧;第三子浮置电极411在衬底基板上的正投影与第一子浮置电极511具有重叠区,第四子浮置电极412在衬底基板上的正投影与第二子浮置电极512具有重叠区。
192.例如,第一部分第二信号线2410(此处指其纵向绕线部)与源漏极 122/123同层设置,述第二部分第二信号线2412(此处指其纵向绕线部)位于第一部分第二信号线2410的远离衬底基板的一侧;多条栅扫描信号线与所储电容的第二极板同层设置,多条复位信号线与所述存储电容cst的第一极板ce1同层设置;或者,所述多条栅扫描信号线与所述存储电容cst 的第一极板ce1同层设置,所述多条复位信号线与所述存储电容cst的第二极板ce2同层设置。
193.上述实施例中,栅扫描信号线和复位信号线在第一开口处均绕线设置,而非在第一开口处断开。
194.例如,在一些实施例中,所述多条第一信号线包括多条栅扫描信号线和多条复位信号线,所述栅扫描信号线与所述复位信号线异层设置;每条所述栅扫描信号线沿所述第一方向依次穿过所述第一显示区域、所述第一开口周边区域和所述第二显示区域,且包括位于所述第一开口周边区域的第一引线部和横向绕线部,其中,所述横向绕线部部分地围绕所述第一开口设置,所述第一引线部与所述横向绕线部连接;每条所述复位信号线包括:第一部分和第二部分。第一部分沿所述第一方向穿过所述第一显示区域;第二部分沿所述第一方向穿过所述第二显示区域,与所述第一部分被所述第一开口区域间隔。即,栅扫描信号线在第一开口处绕线,复位信号线在第一开口处断开。
195.例如,在一些实施例中,所述多条第一信号线包括多条栅扫描信号线和多条复位信号线,所述栅扫描信号线与所述复位信号线异层设置;每条所述复位信号线沿所述第一方向依次穿过所述第一显示区域、所述第一开口周边区域和所述第二显示区域,且包括位于所述第一开口周边区域的第一引线部和横向绕线部,其中,所述横向绕线部部分地围绕所述第一开口设置,所述第一引线部与所述横向绕线部连接;每条所述栅扫描信号线包括:第一部分和第二部分。该第一部分沿所述第一方向穿过所述第一显示区域;该第二部分沿所述第一方向穿过所述第二显示区域,与所述第一部分被所述第一开口区域间隔。即,复位信号线在第一开口处绕线,栅扫描信号线在第一开口处断开。
196.例如,在一些实施例中,所述多条第一信号线包括多条栅扫描信号线和多条复位
信号线,所述栅扫描信号线与所述复位信号线异层设置;每条所述栅扫描信号线包括:第一部分和第二部分。该第一部分沿所述第一方向穿过所述第一显示区域;该第二部分沿所述第一方向穿过所述第二显示区域,与所述第一部分被所述第一开口区域间隔;并且,每条所述复位信号线包括:第一部分和第二部分,该第一部分沿所述第一方向穿过所述第一显示区域;该第二部分沿所述第一方向穿过所述第二显示区域,与所述第一部分被所述第一开口区域间隔。即,栅扫描信号线和复位信号线在第一开口处均断开。
197.当栅扫描信号线和/或复位信号线在第一开口处断开时,可采用双边驱动的方式给断开的信号线分别从基板的在第一方向上的两侧加载驱动信号,具体参考常规技术。
198.例如,在一些实施例中,显示基板还可以包括外侧浮置电极。所述多条第二信号线的所述部分的纵向绕线部中最远离所述第一开口的纵向绕线部为外边缘纵向绕线部,所述外侧浮置电极与所述外边缘纵向绕线部同层设置且位于所述外边缘纵向绕线部的远离所述第一开口的一侧,以增大外边缘纵向绕线部的刻蚀均一性。
199.例如,多条第二信号线的所述部分的每条所述第二信号线还包括第二引线部。第二引线部沿所述第二方向延伸且与所述纵向绕线部连接,所述第二引线部的排布密度大于所述纵向绕线部的排布密度。所述第二引线部的线宽与所述纵向绕线部的线宽基本相等,由于排布密度的差异和刻蚀工艺的限制,制作工艺中使第二引线部的设计线宽小大于纵向绕线部的设计线宽,才能够使得形成的两者最终的线宽基本相等。或者,如果不做设计线宽的差异,则所述第二引线部的线宽小于所述纵向绕线部的线宽。
200.本公开至少一实施例提供一种显示装置,包括上述任一的显示基板。该显示装置例如可以为有机发光二极管显示装置、量子点发光二极管显示装置等具有显示功能的装置或其他类型的装置,本公开的实施例对此不作限制。
201.本公开实施例提供的显示装置的结构、功能及技术效果等可以参考上述本公开实施例提供的显示基板中的相应描述,在此不再赘述。
202.例如,本公开至少一实施例提供的显示装置可以为显示面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本公开的实施例对此不作限制。
203.以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1