一种基于二硒化钯/薄锗肖特基结的颜色探测系统及其制备方法

文档序号:26751246发布日期:2021-09-25 02:33阅读:267来源:国知局
一种基于二硒化钯/薄锗肖特基结的颜色探测系统及其制备方法

1.本发明属于光电探测技术领域,具体涉及一种颜色探测系统及其制备方法。


背景技术:

2.通常所说的颜色实际上是色相、亮度和从光源或表面反射的饱和度的组合。从生物学分析的角度来看,色觉产生于不同类型的感受器的存在,每种感受器对不同的峰值波长的光敏感。因此,人类的眼睛感知到三种不同的波长(红、绿、蓝),人类的大脑根据色调和强度来投射颜色,而色调是颜色的最佳代表。受此启发,光谱科学诞生了,并在近几十年中逐渐引起人们的关注。由于光谱检测可以提供关于一个场景的丰富信息,一系列用于光谱检测的光电器件出现了,它们被称为颜色探测器,进而发展到如今的波长传感器,它不仅能区分各种光的颜色,还能确定每种光对应的波长。随着技术的飞速发展,波长检测逐渐成为现代技术的基本支柱之一。能够检测从紫外(uv)

可见到近红外(nir)区域的宽带不同照明的波长传感器已经在包括人工智能系统、成像传感器、安全保护、光通信和自动车辆在内的广泛领域中找到了广泛的应用。例如,利用微腔结构控制红光、绿光和蓝光的吸收,实现了波长检测器对真实图像的再现,对视觉系统具有重要意义。此外,由波长检测器组成的监控系统可以通过检测目标物体的颜色和位置的移动来精确地监控目标物体,这可以进一步优化安全系统的精确定位和跟踪。
3.得益于光电器件的迅速发展,近几十年来,人们开发了多种不同几何结构的波长探测器,以实现对波长的可靠检测。第一种也是最具代表性的技术是使用滤色器阵列(cfa)分别检测红、绿和蓝(rgb)的相对份额,然后通过参考cie(国际照明委员会)1931颜色空间将rgb值转换为入射光的波长。该技术的特点是使用滤波器,检测范围在380

700nm。另一种波长检测策略主要依赖于横向场检测器(tfds),它能够区分400

900nm范围内不同波长的光子。通常,这种特殊的方法主要意味着电场能够收集设备的活动层内的光载体。通过采用bdj(埋入式双pn结)或btj(埋入式三pn结)结构,入射光在400

950nm的波长也可以由介质主导的垂直叠加策略的光学导纳确定,波长检测误差约为5

10nm。尽管取得了上述巨大成就,但不可否认的是,这些技术都有其自身的缺点:(1)器件几何结构相对复杂。这些器件的制作往往需要将大量的光学元件和光电探测器与不同的光敏材料集成在一起,这必然导致器件制作过程复杂、制作成本高。(2)探测范围较窄。上述大部分波长探测器主要用于探测可见光范围,虽然现在已有报道声称在近红外范围内检测到波长,但是从实际应用的角度来看,其是以牺牲分辨率为代价的,远远不能令人满意。
4.鉴于此,本发明提出了一种新概念的波长检测器,它能够分辨波长范围为530~1650nm的光谱,该器件由两个水平放置的二硒化钯/薄锗肖特基结光电探测器构成。锗作为一种与硅同族、重要的半导体材料,室温下禁带宽度为0.66ev,对1300

1550nm波长的近红外光有非常强的吸收率。但是,由于锗的厚度过大,不适合与各种形状和大小的基础设施集成,给光电探测器的发展带来了很大的不便。基于对轻量级和灵活性的更高要求,超薄锗片
慢慢进入研究中。此外对于扩散长度较短的少数载流子来说,使用较薄的锗衬底有助于减少电子

空穴复合,也是其的一种优势。目前普遍研究的是由单个超薄锗片组成的光电探测器,研究角度过于局限、研究范围过于狭窄,制约了锗基光电探测器的进一步发展和广泛应用。另一方面,单一的光电探测器只能实现光信号的探测,无法实现对光波长的识别,严重阻碍了其在科学研究、工业生产和人民生活中的广泛应用。


技术实现要素:

5.为了避免上述现有技术所存在的不足之处,本发明提供了一种基于二硒化钯/薄锗肖特基结的颜色探测系统,该系统可以有效识别被探测光的波长。
6.本发明为实现目的,采用如下技术方案:
7.一种基于二硒化钯/薄锗肖特基结的颜色探测系统,其特点在于:由两个上下平行放置的相同的二硒化钯/薄锗肖特基结颜色探测单元构成;在所述二硒化钯/薄锗肖特基结颜色探测单元中设置有n

型薄锗片与二硒化钯薄膜的肖特基结;
8.当光从上颜色探测单元的上方,向下逐层照射所述颜色探测系统时,上颜色探测单元与下颜色探测单元的电流比随被探测光波长的增大而减小,从而可根据电流比识别被探测光的波长。
9.每个所述颜色探测单元的结构为:包括作为基底的n

型薄锗片;在所述n

型薄锗片下表面涂抹有n

型薄锗片接触电极;在所述n

型薄锗片上表面的外周覆盖有绝缘层;在所述绝缘层上铺设有二硒化钯薄膜,所述二硒化钯薄膜一部分与绝缘层接触,剩余部分与n

型薄锗片上表面中间未覆盖绝缘层的部分接触;在所述二硒化钯薄膜表面设置有二硒化钯接触电极,所述二硒化钯接触电极位于所述绝缘层正上方的位置;在所述二硒化钯接触电极的上表面点有银浆;所述n

型薄锗片接触电极与所述n

型薄锗片为欧姆接触,所述n

型薄锗片与所述二硒化钯薄膜形成肖特基结,所述二硒化钯薄膜与所述二硒化钯接触电极为欧姆接触。
10.进一步地,n

型薄锗片接触电极为in

ga合金电极。
11.进一步地,所述n

型薄锗片采用厚度为150

200μm、电阻率为0.1

6ω/cm的n

型轻掺杂锗片。
12.进一步地,所述绝缘层以二氧化硅、氮化硅、氧化铝或者氧化铪为材料,所述绝缘层的厚度为50

300nm。
13.进一步地,所述二硒化钯薄膜的厚度为15

40nm。
14.进一步地,所述二硒化钯接触电极为ti/au电极。
15.本发明所述颜色探测系统的制备方法,包括如下步骤:
16.步骤1、将n

型薄锗片放在质量浓度为5%

10%的氢氟酸溶液或boe刻蚀液中刻蚀20

40s,去除表面的自然氧化层,取出后进行清洗并干燥;
17.步骤2、通过原子层沉积系统,在经步骤1处理后的n

型薄锗片的上表面沉积一层绝缘层;
18.步骤3、对经步骤2处理后带有绝缘层的n

型薄锗片进行光刻、刻蚀,使中间的绝缘层被刻掉,仅保留n

型薄锗片上表面外周的绝缘层,在n

型薄锗片上表面的中心形成一个裸露锗的窗口;
19.步骤4、将二硒化钯薄膜铺设到带有窗口的n

型薄锗片上,使二硒化钯薄膜一部分位于窗口内、一部分位于绝缘层上;
20.步骤5、采用电子束沉积系统在所述二硒化钯薄膜上设置二硒化钯接触电极,并使二硒化钯接触电极位于绝缘层正上方的位置;
21.步骤6、在二硒化钯接触电极的上表面点上银浆;
22.步骤7、采用涂抹的方法在所述n

型薄锗片的下表面设置n

型薄锗片接触电极;
23.步骤8、按照步骤1~7相同的方法,制备另外一个结构相同的颜色探测单元,将两颜色探测单元上下平行放置,即获得颜色探测系统。
24.与已有技术相比,本发明的有益效果体现在:
25.1、本发明设计了一种基于二硒化钯/薄锗肖特基结的颜色探测系统,该系统是由两个平行放置的相同的二硒化钯/薄锗肖特基结颜色探测单元组合而成,系统可探测的波长范围包括530

1650nm,跨越了整个可见光区域又涉及一部分近红外波段,且该系统具有准确性和重复性高的优点。
26.2、本发明的颜色探测系统制备工艺简单、成本低廉。
附图说明
27.图1为本发明单个二硒化钯/薄锗肖特基结颜色探测单元的结构示意图;图中标号:1为n

型薄锗片;2为n

型薄锗片接触电极;3为绝缘层;4为二硒化钯薄膜;5为二硒化钯接触电极;6为银浆。
28.图2为本发明由两个二硒化钯/薄锗肖特基结颜色探测单元构成的颜色探测系统的示意图;
29.图3为本发明实施例1所得颜色探测系统的单个颜色探测单元在黑暗下的电流

电压特性曲线和半对数尺度下的电流

电压特性曲线,从图中看出单个颜色探测单元具有明显的光电响应特性及整流效应。
30.图4为本发明实施例1所得颜色探测系统在波长为300~1700nm、强度为1mw/cm2的光照下,在温度300k、0v偏压的检测条件下,上颜色探测单元(图中i
p1
)和下颜色探测单元(图中i p2
)的光电流

波长特性曲线(图4(a)、4(b))。
31.图5为本发明实施例1所得颜色探测系统的光电流比(i p1
/i p2
)

波长曲线。
具体实施方式
32.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合实施例对本发明的具体实施方式做详细的说明。以下内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
33.实施例1
34.如图2所示,本实施例基于二硒化钯/薄锗肖特基结的颜色探测系统,包括两个上下平行放置的相同的二硒化钯/薄锗肖特基结颜色探测单元。
35.如图1所示,每个所述颜色探测单元的结构为:包括作为基底的n

型薄锗片1;在n

型薄锗片1下表面涂抹有n

型薄锗片接触电极2;在n

型薄锗片1上表面的外周覆盖有绝缘层3;在绝缘层3上铺设有二硒化钯薄膜4,二硒化钯薄膜4一部分与绝缘层3接触,剩余部分与n

型薄锗片1上表面中间未覆盖绝缘层3的部分接触;在二硒化钯薄膜4表面设置有二硒化钯接触电极5,二硒化钯接触电极5位于绝缘层3正上方的位置;在二硒化钯接触电极5的上表面点有银浆6;n

型薄锗片接触电极2与n

型薄锗片1为欧姆接触,n

型薄锗片1与二硒化钯薄膜4形成肖特基结,二硒化钯薄膜4与二硒化钯接触电极5为欧姆接触。
36.具体的,本实施例中:n

型薄锗片采用厚度为150

200μm、电阻率为0.1

6ω/cm的n

型轻掺杂锗片;绝缘层为50nm厚的al2o3;二硒化钯薄膜的厚度为35nm;二硒化钯接触电极为10nm ti/50nm au电极;n

型薄锗片接触电极为in

ga合金电极。
37.本实施例颜色探测系统的制备方法,包括如下步骤:
38.步骤1、将n

型薄锗片放在boe刻蚀液中刻蚀30s,去除表面的自然氧化层,取出后进行清洗并干燥。
39.步骤2、通过原子层沉积系统(ald),在经步骤1处理后的n

型薄锗片的上表面沉积一层50nm厚的al2o3绝缘层。
40.步骤3、对经步骤2处理后带有绝缘层的n

型薄锗片进行光刻、刻蚀(刻蚀液为hcl:h2o=1:1混合,刻蚀时间6h),使中间的绝缘层被刻掉,仅保留n

型薄锗片上表面外周的绝缘层,在n

型薄锗片上表面的中心形成一个裸露锗的1.8mm
×
2.0mm窗口。
41.步骤4、将二硒化钯薄膜铺设到带有窗口的n

型薄锗片上,使二硒化钯薄膜一部分位于窗口内、一部分位于绝缘层上。
42.步骤5、采用电子束沉积系统在二硒化钯薄膜上沉积10nm ti/50nm au作为二硒化钯接触电极,并使二硒化钯接触电极位于绝缘层正上方的位置。
43.步骤6、在二硒化钯接触电极的上表面点上银浆。
44.步骤7、采用涂抹的方法在n

型薄锗片的下表面设置in

ga合金电极作为n

型薄锗片接触电极。
45.步骤8、按照步骤1~7相同的方法,制备另外一个结构相同的颜色探测单元,将两颜色探测单元上下平行叠放,即获得颜色探测系统。
46.图3为本实施例所得单个颜色探测单元在黑暗下的电流

电压特性曲线和半对数尺度下的电流

电压特性曲线,从图中看出单个颜色探测单元具有明显的光电响应特性及整流效应。
47.图4为本实施例所得颜色探测系统在波长为300~1700nm、强度为1mw/cm2的光照下,在温度300k、0v偏压的检测条件下,上颜色探测单元(图中i
p1
)和下颜色探测单元(图中i p2
)的光电流

波长特性曲线(图4(a)、4(b))。
48.图5为本实施例所得颜色探测系统的光电流比(i p1
/i p2
)

波长曲线。从图中可以看出,当光从上颜色探测单元的上方,向下逐层照射颜色探测系统时,上颜色探测单元的光电流在1550nm达到峰值,透过的光照射在下颜色探测单元,下颜色探测单元在波长530nm左右开始有响应。但在530nm

1650nm范围,上颜色探测单元与下颜色探测单元的电流比,随被探测光波长的增大而单调减小,从而可根据电流比识别被探测光的波长。通过调控n

型薄锗片与二硒化钯薄膜的厚度还可实现探测光波长范围的调控。
49.以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1