移动终端及高隔离天线对的制作方法

文档序号:28165877发布日期:2021-12-24 22:23阅读:89来源:国知局
移动终端及高隔离天线对的制作方法

1.本技术涉及移动通信领域,尤其涉及一种移动终端及高隔离天线对。


背景技术:

2.现有的天线装置通过对特定形状的辐射体(例如线天线、槽天线)进行馈电、激励出cm(common mode,共模)天线模式和dm(differential mode,差模)天线模式。例如,可以通过对线天线辐射体进行直接馈电,以在线天线辐射体上激励出cm天线模式。现有技术中一般使用两个馈源分别提供等幅同相的射频信号,并将等幅同相的射频信号馈入线天线辐射体,以实现直接馈电。但是,在工程实现的过程中,由于结构以及材料的差异,很难获得完全相同的两个馈源,以提供等幅同相的射频信号,导致天线装置的辐射效率和带宽潜力降低。


技术实现要素:

3.本技术提供一种移动终端及高隔离天线对。本技术提供的移动终端包括激励源和辐射体,激励源通过耦合馈电的方式对特定形状的辐射体(例如线天线、槽天线)进行馈电、并激励出多个天线模式。本技术的移动终端采用单点馈电的方式向激励源馈电,并通过激励源对辐射体进行耦合馈电,降低了馈电难度,并提升移动终端的辐射效率和带宽潜力。
4.一方面,本技术提供一种移动终端。移动终端包括壳体、辐射体、激励体以及馈源。其中,壳体采用导电材料,壳体的侧部设有缺口,缺口的开口位于壳体的外表面。辐射体至少部分位于缺口且固定安装于缺口。激励体位于辐射体的内侧、且与辐射体之间存在间隙,激励体固定安装于缺口,激励体包括馈点,激励体连接壳体。馈源的正极连接激励体的馈点,馈源的负极连接壳体;馈源能够将电信号从馈点馈入激励体和壳体,并在激励体和壳体周围产生交变磁场或交变电场,辐射体能够共振并放大交变磁场或交变电场,并产生感应电流。
5.在本实现方式中,馈源能够将电信号从馈点馈入壳体和激励体,增加了交变电场或交变磁场的强度。交变电场或交变磁场的强度增加能够提升激励出的感应电流的强度,从而增加移动终端辐射出去的射频信号的强度,提升移动终端的辐射性能。
6.一种可能的实现方式中,激励体从辐射体的中部通过耦合馈电的方式将电信号馈入辐射体,辐射体形成线天线,线天线的两端与壳体之间均形成间隙。
7.在本实现方式中,辐射体两端之间的部分都可以看作是辐射体的中部。激励体的馈点对应于辐射体的中部。示例性的,辐射体的中部距辐射体的两端的距离相等,以产生对称分布的辐射场型,并提升辐射体的辐射效率,且第一感应电流和第二感应电流的频率相同。
8.一种可能的实现方式中,线天线包括第一部分和第二部分,第一部分为辐射体的中部至辐射体的一端的部分,第二部分为辐射体的中部至辐射体的另一端的部分,激励体包括面状导体或线型导体,面状导体或线型导体通过耦合馈电的方式在第一部分中激励出
第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相反。
9.在本实现方式中,第一部分和第二部分共同构成辐射枝节,面状导体或线型导体在线天线上激励出耦合馈电的cm线天线模式。
10.一种可能的实现方式中,线天线包括第一部分和第二部分,第一部分为辐射体的中部至辐射体的一端的部分,第二部分为辐射体的中部至辐射体的另一端的部分,第一部分和第二部分共同构成辐射枝节,激励体还包括环状导体,环状导体的两端与壳体连接,环状导体的中间部分与壳体之间存在间隙,环状导体通过耦合馈电的方式在第一部分中激励出第五感应电流、且在第二部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相同;或
11.激励体通过直接馈电的方式在第一部分中激励出第五感应电流、且在第二部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相同。
12.在本实现方式中,面状导体或线型导体在线天线上激励出耦合馈电的cm线天线模式,同时环状导体在线天线上激励出耦合馈电的dm线天线模式,形成高隔离的天线对。
13.一种可能的实现方式中,激励体包括环状导体,环状导体的两端与壳体连接,环状导体的中间部分与壳体之间存在间隙,环状导体通过耦合馈电的方式在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相同。
14.在本实现方式中,环状导体在线天线上激励出耦合馈电的dm线天线模式。
15.一种可能的实现方式中,激励体从辐射体的中部通过耦合馈电的方式将电信号馈入辐射体,辐射体形成槽天线,槽天线通过在壳体上开槽形成,辐射体的两端与壳体连接,槽天线包括第三部分和第四部分,第三部分为辐射体的中部至辐射体的一端的部分,第四部分为辐射体的中部至辐射体的另一端的部分。
16.在本实现方式中,辐射体的中部距辐射体的两端的距离相等,以产生对称分布的辐射场型,并提升辐射体的辐射效率,且第三感应电流和第四感应电流的频率相同。
17.一种可能的实现方式中,激励体包括面状导体或线型导体,面状导体或线型导体通过耦合馈电的方式在第三部分中激励出第三感应电流、且在第四部分中激励出第四感应电流,第三感应电流和第四感应电流的方向相反。
18.在本实现方式中,面状导体或线型导体在槽天线上激励出耦合馈电的dm槽天线模式。
19.一种可能的实现方式中,激励体还包括环状导体,环状导体的两端与壳体连接,环状导体的中间部分与壳体之间存在间隙,环状导体通过耦合馈电的方式在第三部分中激励出第五感应电流、且在第四部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相同;或
20.激励体通过直接馈电的方式在第三部分中激励出第五感应电流、且在第四部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相同。
21.在本实现方式中,面状导体或线型导体在槽天线上激励出耦合馈电的dm槽天线模式,同时环状导体在槽天线上激励出耦合馈电的cm槽天线模式,形成高隔离天线对。
22.一种可能的实现方式中,激励体采用环状导体,环状导体的两端与壳体连接,环状
导体的中间部分与壳体之间存在间隙,环状导体通过耦合馈电的方式在第三部分中激励出第三感应电流、且在第四部分中激励出第四感应电流,第三感应电流和第四感应电流的方向相同。
23.在本实现方式中,环状导体在槽天线上激励出耦合馈电的cm槽天线模式。
24.一种可能的实现方式中,辐射体还形成线天线,线天线的两端与壳体之间均形成间隙,线天线包括第一部分和第二部分,第一部分为辐射体的中部至辐射体的一端的部分,第二部分为辐射体的中部至辐射体的另一端的部分;
25.面状导体或线型导体通过耦合馈电的方式在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相反;或
26.激励体通过直接馈电的方式在第一部分中激励出第五感应电流、且在第二部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相反。
27.在本实现方式中,面状导体或线型导体在槽天线上激励出耦合馈电的dm槽天线模式,同时面状导体或线型导体在线天线上激励出耦合馈电的cm线天线模式,形成高隔离天线对。
28.一种可能的实现方式中,辐射体还形成线天线,线天线的两端与壳体之间均形成间隙,线天线包括第一部分和第二部分,第一部分为辐射体的中部至辐射体的一端的部分,第二部分为辐射体的中部至辐射体的另一端的部分;
29.环状导体通过耦合馈电的方式在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相同;或
30.激励体通过直接馈电的方式在第一部分中激励出第五感应电流、且在第二部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相同。
31.在本实现方式中,环状导体在槽天线上激励出耦合馈电的cm槽天线模式,同时环状导体在线天线上激励出耦合馈电的dm线天线模式,形成高隔离天线对。
32.一种可能的实现方式中,馈点距环状导体的两端的距离相等,激励体还包括电容,电容位于环状导体和壳体之间、且连接环状导体与壳体;
33.电容与环状导体的第一段连接,或与环状导体的第三段连接;或
34.电容的数量为两个,两个电容分别与环状导体的第一段和环状导体的第三段连接。
35.在本实现方式中,在环状导体与壳体之间增加电容,能够增加环状导体产生的交变磁场的磁场强度,从而增加了激励体在辐射体上激励出的感应电流的强度,并进一步增加了辐射体的辐射效率。
36.一种可能的实现方式中,馈点位于环状导体的端部。
37.一种可能的实现方式中,激励体还包括连接件,连接件包括电容或电感,连接件位于环状导体和壳体之间、且连接环状导体与导电部;馈点与连接件分别位于环状导体的两端。
38.在本实现方式中,在环状导体与壳体之间增加电容或电感,能够增加环状导体产生的交变磁场的磁场强度,从而增加了激励体在辐射体上激励出的感应电流的强度,并进一步增加了辐射体的辐射效率。
39.一种可能的实现方式中,激励体还包括电容,电容距环状导体的第二段的两端的
距离相等。
40.在本实现方式中,在环状导体与壳体之间增加电容,能够增加环状导体产生的交变磁场的磁场强度,从而增加了激励体在辐射体上激励出的感应电流的强度,并进一步增加了辐射体的辐射效率。
41.一种可能的实现方式中,环状导体还包括与环状导体的第二段平行的第四段和第五段,其中,环状导体的第四段的一端连接环状导体的第三段,另一端连接壳体,环状导体的第五段的一端连接环状导体的第一段,另一端连接壳体,馈点位于环状导体的端部。
42.在本实现方式中,环状导体的长度增加,从而增加了激励体产生的交变磁场的磁场强度,并进一步增加了辐射体的辐射效率。
43.一种可能的实现方式中,激励体还包括连接件,连接件位于环状导体的端部和壳体、且连接环状导体与壳体,馈点和连接件分别位于环状导体的两端。
44.一种可能的实现方式中,激励体还包括电容,电容位于环状导体的第二段的中部;或
45.激励体还包括多个电容,多个电容分别位于环状导体的第二段的中部、以及环状导体的第二段的两端。
46.另一方面,本技术还提供一种高隔离天线对,应用于移动终端。在本实现方式中,cm线天线模式呈现垂直极化,dm线天线模式呈现水平极化。又因垂直极化的天线模式和水平极化的天线模式之间隔离性好,将cm线天线模式的天线结构和dm线天线模式的天线结构进行共体设计,能够构成正交模式,从而获得高隔离的天线对。
47.一种可能的实现方式中,高隔离天线对包括辐射体、cm模式激励体和dm模式激励体,cm模式激励体和dm模式激励体间隔设置;
48.cm模式激励体和dm模式激励体从辐射体的中部通过耦合馈电的方式将电信号馈入辐射体,辐射体形成线天线,线天线包括第一部分和第二部分,第一部分为辐射体的中部至辐射体的一端的部分,第二部分为辐射体的中部至辐射体的另一端的部分;
49.cm模式激励体通过直接馈电的方式在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相反;或
50.cm模式激励体与辐射体之间存在间隙,cm模式激励体包括面状导体或线型导体,面状导体或线型导体通过耦合馈电的方式在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相反;
51.dm模式激励体与辐射体之间存在间隙,dm模式激励体包括环状导体,环状导体通过耦合馈电的方式在第一部分中激励出第五感应电流、且在第二部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相同。
52.在本实现方式中,面状导体或线型导体在线天线上激励出耦合馈电的cm线天线模式,同时环状导体在线天线上激励出耦合馈电的dm线天线模式,形成高隔离的天线对。
53.一种可能的实现方式中,高隔离天线对包括辐射体、cm模式激励体和dm模式激励体,cm模式激励体和dm模式激励体间隔设置;
54.cm模式激励体和dm模式激励体从辐射体的中部通过耦合馈电的方式将电信号馈入辐射体,辐射体形成线天线,线天线包括第一部分和第二部分,第一部分为辐射体的中部至辐射体的一端的部分,第二部分为辐射体的中部至辐射体的另一端的部分;
55.cm模式激励体与辐射体之间存在间隙,cm模式激励体包括面状导体或线型导体,面状导体或线型导体通过耦合馈电的方式在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相反;
56.dm模式激励体通过直接馈电的方式在第一部分中激励出第五感应电流、且在第二部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相同。
57.在本实现方式中,面状导体或线型导体在线天线上激励出耦合馈电的cm线天线模式,同时激励体在线天线上激励出dm线天线模式,形成高隔离的天线对。
58.一种可能的实现方式中,高隔离天线对包括辐射体、cm模式激励体和dm模式激励体,cm模式激励体和dm模式激励体间隔设置;
59.cm模式激励体和dm模式激励体从辐射体的中部通过耦合馈电的方式将电信号馈入辐射体,辐射体形成槽天线,槽天线通过在壳体上开槽形成,辐射体的两端与壳体连接,槽天线包括第三部分和第四部分,第三部分为辐射体的中部至辐射体的一端的部分,第四部分为辐射体的中部至辐射体的另一端的部分;
60.cm模式激励体与辐射体之间存在间隙,cm模式激励体采用环状导体,环状导体通过耦合馈电的方式在第三部分中激励出第三感应电流、且在第四部分中激励出第四感应电流,第三感应电流和第四感应电流的方向相同;
61.dm模式激励体通过直接馈电的方式在第三部分中激励出第五感应电流、且在第四部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相反;或
62.dm模式激励体与辐射体之间存在间隙,dm模式激励体包括面状导体或线型导体,面状导体或线型导体通过耦合馈电的方式在第三部分中激励出第五感应电流、且在第四部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相反。
63.在本实现方式中,面状导体或线型导体在槽天线上激励出耦合馈电的dm槽天线模式,同时环状导体在槽天线上激励出耦合馈电的cm槽天线模式,形成高隔离天线对。
64.一种可能的实现方式中,高隔离天线对包括辐射体、cm模式激励体和dm模式激励体,cm模式激励体和dm模式激励体间隔设置;
65.cm模式激励体和dm模式激励体从辐射体的中部通过耦合馈电的方式将电信号馈入辐射体,辐射体形成槽天线,槽天线通过在壳体上开槽形成,辐射体的两端与壳体连接,槽天线包括第三部分和第四部分,第三部分为辐射体的中部至辐射体的一端的部分,第四部分为辐射体的中部至辐射体的另一端的部分;
66.cm模式激励体通过直接馈电的方式在第三部分中激励出第三感应电流、且在第四部分中激励出第四感应电流,第三感应电流和第四感应电流的方向相同;
67.dm模式激励体与辐射体之间存在间隙,dm模式激励体包括面状导体或线型导体,面状导体或线型导体通过耦合馈电的方式在第三部分中激励出第五感应电流、且在第四部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相反。
68.在本实现方式中,激励体在槽天线上激励出dm槽天线模式,同时环状导体在槽天线上激励出耦合馈电的cm槽天线模式,形成高隔离天线对。
附图说明
69.图1是本技术提供的移动终端在一些实施例中的结构示意图;
70.图2是本技术提供的移动终端的结构分解示意图;
71.图3是图2所示壳体在一些实施例中的结构示意图;
72.图4a是应用本技术提供的一种耦合馈电的线天线结构的移动终端的部分结构分解示意图,图4a所示的耦合馈电的线天线结构产生线天线cm模式;
73.图4b是图4a所示移动终端部分结构的电流分布示意图;
74.图4c是图4a所示移动终端部分结构中的电场分布示意图;
75.图4d是图4a所示移动终端部分结构中的磁场分布示意图;
76.图4e是现有技术中的直接馈电的cm线天线结构中的电流分布示意图;
77.图5a是应用本技术提供的一种耦合馈电的线天线结构的移动终端的部分结构分解示意图,图5a所示的耦合馈电的线天线结构产生线天线dm模式;
78.图5b是图5a所示移动终端部分结构的电流分布示意图;
79.图5c是图5a所示移动终端部分结构中的电场分布示意图;
80.图5d是图5a所示移动终端部分结构中的磁场分布示意图;
81.图5e是现有技术中的直接馈电的dm线天线结构中的电流分布示意图;
82.图6a是应用本技术提供的一种耦合馈电的槽天线结构的移动终端的部分结构分解示意图,图6a所示的耦合馈电的槽天线结构产生槽天线cm模式;
83.图6b是图6a所示移动终端部分结构的电流分布示意图;
84.图6c是图6a所示移动终端部分结构中的电场分布示意图;
85.图6d是图6a所示移动终端部分结构中的磁场分布示意图;
86.图6e是现有技术中的直接馈电的cm槽天线结构中的电流分布示意图;
87.图7a是应用本技术提供的一种耦合馈电的槽天线结构的移动终端的部分结构分解示意图,图7a所示的耦合馈电的槽天线结构产生槽天线dm模式;
88.图7b是图7a所示移动终端部分结构的电流分布示意图;
89.图7c是图7a所示移动终端部分结构中的电场分布示意图;
90.图7d是图7a所示移动终端部分结构中的磁场分布示意图;
91.图7e是现有技术中的直接馈电的dm槽天线结构中的电流分布示意图;
92.图8a是应用本技术提供的一种高隔离天线对的移动终端在一些实施例中的部分结构分解示意图;
93.图8b是图8a所示的高隔离天线对的cm模式的天线辐射方向图;
94.图8c是图8a所示的高隔离天线对的dm模式的天线辐射方向图;
95.图8d是图8a所示高隔离天线对的s

参数图;
96.图9a是本技术提供的高隔离天线对在另一些实施例中的结构示意图;
97.图9b是图9a所示高隔离天线对在另一角度的部分结构示意图;
98.图9c是图9a所示高隔离天线对的s

参数图;
99.图9d是本技术提供的高隔离天线对在还一些实施例中的结构示意图;
100.图9e是本技术提供的高隔离天线对在又一些实施例中的结构示意图;
101.图9f是本技术提供的高隔离天线对在再一些实施例中的结构示意图;
102.图9g是本技术提供的高隔离天线对在多一些实施例中的结构示意图;
103.图10a是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端在其他一些
实施例中的部分结构示意图;
104.图10b是图5a所示的天线装置和图10a所示的天线装置的天线辐射效率图;
105.图11是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端在还一些实施例中的部分结构示意图;
106.图12是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端在再一些实施例中的部分结构示意图;
107.图13是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端在又一些实施例中的部分结构示意图;
108.图14是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端在多一些实施例中的部分结构示意图;
109.图15是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端在另一些实施例中的部分结构示意图;
110.图16是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端在更多一些实施例中的部分结构示意图。
具体实施方式
111.下面结合本技术实施例中的附图对本技术实施例进行描述。其中,本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,a和/或b,可以表示:单独存在a,同时存在a和b,单独存在b这三种情况。此外,在本技术实施例的描述中,除非另有说明,“多个”是指两个或多于两个。“以上”包括本数,例如,两个以上包括两个。
112.请参阅图1,图1是本技术提供的移动终端100在一些实施例中的结构示意图。示例性的,移动终端100可以是手机、平板、笔记本电脑、可穿戴设备、销售点终端(point of sales terminal,简称为pos机)、车载电脑等电子产品。本技术实施例以移动终端100是手机为例进行说明。
113.示例性的,移动终端100可以采用通信技术来实现通信功能,例如:蓝牙(bluetooth,bt)通信技术、全球定位系统(global positioning system,gps)通信技术、无线保真(wirelessfidelity,wi

fi)通信技术、全球移动通讯系统(global system for mobile communications,gsm)通信技术、宽频码分多址(wideband code division multiple access,wcdma)通信技术、长期演进(long term evolution,lte)通信技术、5g通信技术、sub

6g通信技术以及未来其他通信技术等。示例性的,移动终端100可以采用一种通信技术,也可以采用多种通信技术,本技术对此不作限定。
114.示例性的,移动终端100可以包括显示屏1、壳体2以及后盖3。其中,显示屏1和后盖3可以相背地固定安装于壳体2两侧。
115.示例性的,壳体2可以采用金属等导电材料。在本技术中,壳体2可以用作电子元件的接地板。移动终端100中的电子元件可以通过与壳体2电连接实现接地,避免电子元件漏电以及受到大电流冲击造成损害等问题。在其他一些实施例中,壳体2也可以采用金属与塑料的复合材料,以在保障接地性能的同时减轻壳体2的重量,本技术对此不作限定。
116.示例性的,后盖3用于保护移动终端100的内部结构。后盖3可以采用金属材料,也可以采用玻璃、陶瓷、塑料等材料。
processing unit,cpu)等。
129.示例性的,辐射体41可以采用导电材料,例如金属、导电橡胶、导电塑料等。
130.在本实施例中,激励体42可以作为天线的馈电枝节,通过耦合馈电的形式把射频信号馈入辐射体41。辐射体41可以作为天线的本体结构,把激励体42耦合的射频信号辐射出去。
131.在本实施例中,辐射体41的外表面410和电介质22的外表面可以平滑过渡,且辐射体41的外表面410、电介质22的外表面与壳体2的外表面20一起共同组成了移动终端100的外观的侧面,以满足移动终端100的id设计,保证移动终端100的美观性,以及用户的握持手感。
132.在本技术中,辐射体41设置在壳体2的侧边,能够避免受到移动终端100的其他工作元件的影响,减少信号的噪声。此外,辐射体41的外表面410组成移动终端100的外观,也即辐射体41的外表面410接触移动终端100的外部,还可以避免受到其他结构的遮挡,提升射频信号的收发性能。在其他一些实施例中,辐射体41还可以位于移动终端100的整机内腔,本技术对此不作限定。
133.示例性的,激励体42与辐射体41之间的间隙43的数值可以小于2mm,例如1mm,0.1mm,0.05mm等,以保证激励体42与辐射体41之间具有一定的耦合,从而能够对辐射体41进行馈电。可以理解地,间隙43越小,激励体42与辐射体41之间的耦合越强。此外,本技术提供的天线装置4尺寸小,占据壳体2的体积小,有利于移动终端100的小型化。
134.本技术提供了天线装置4的多种设计方案,以下将对多种天线装置4的设计方案进行具体介绍。
135.请参阅图4a,图4a是应用本技术提供的一种耦合馈电的线天线结构的移动终端100a的部分结构分解示意图,图4a所示的耦合馈电的线天线结构产生线天线cm模式。
136.在第一实施例中,移动终端100a可以包括壳体2a、辐射体41a和激励体42a,壳体2可以设有缺口21a。辐射体41a和激励体42a可以位于壳体2a的侧边、且固定安装于壳体2a。辐射体41a的至少部分结构可以位于缺口21a。激励体42a可以位于辐射体41a的内侧、且与辐射体41a之间存在间隙43a。壳体2a还可以包括电介质22a。电介质22a与辐射体41a和激励体42a一起,共同填充缺口21a。本实施例中的移动终端100a的结构以及结构之间的连接关系可以参考如图3所示的移动终端100,在此仅对区别进行描述。
137.在本实施例中,辐射体41a的两端与壳体2a之间均形成间隙。辐射体41a可以形成线天线。示例性的,射频信号可以通过辐射体41a的外表面410a辐射出去。辐射体41a的外表面410a可以为曲面,以符合金属id设计,并保证移动终端100a的美观性和握持手感。
138.在本实施例中,激励体42a可以采用导电材料,从而在激励体42a周围产生均匀的交变电场。
139.示例性的,激励体42a可以包括面状导体421a。可理解地,面状导体为呈面状的导体。具体地,面状导体421a与辐射体41a的外表面410a相对的表面为平面。在其他一些实施例中,面状导体421a也可以采用曲面结构,也即面状导体421a与辐射体41a的外表面410a相对的表面为曲面,本技术对此不作限定。
140.在其他一些实施例中,激励导体421a也可以采用线型导体(图未示)。可理解地,线型导体为呈条状的导体。
141.示例性的,激励体42a还可以包括连接线422a。连接线422a的一端与面状导体421a连接,另一端与缺口21a的第一侧壁211a连接,也即与壳体2a连接,以实现接地。在本技术中,缺口21a的第一侧壁211a为缺口21a面向壳体2的外表面20a的侧壁。示例性的,壳体2a可以采用金属等导电材料,连接线422a通过与壳体2a连接以接地,避免激励体42a外部环境中的杂波对激励体42a上传播的电信号造成干扰,降低电信号中的噪声,提升电信号的传播质量。
142.示例性的,连接线422a可以与面状导体421a的侧边连接,连接线422a也可以与面状导体421a的中部区域连接。
143.示例性的,连接线422a可以采用微带线、同轴线等射频传输线,以提升电信号的传输效率,并能够避免受到外界环境的干扰,减少电信号中的噪声。在其他一些实施例中,连接线422a也可以采用金属片或金属线等结构,本技术对此不作限定。示例性的,激励体42a可以具有馈点423a。馈点423a可以位于连接线422a远离面状导体421a的另一端。
144.在其他一些实施例中,激励体42a也可以不包括连接线422a,此时,馈点423a可以位于面状导体421a的中部,也可以位于偏离面状导体421a中部的其他区域。
145.示例性的,移动终端100a还可以包括馈源(图未示)。馈源与馈点423a连接,用于提供电信号,并将电信号通过馈点423a馈入激励体42a。
146.请参阅图4b,图4b是图4a所示移动终端100a部分结构的电流分布示意图。其中,箭头的大小表示电流的强弱,箭头从大到小表示电流从强到弱。
147.示例性的,激励体42a从辐射体41a的中部通过耦合馈电的方式将电信号馈入辐射体41a。辐射体41a两端之间的部分都可以看作是辐射体41a的中部。激励体42a的馈点423a对应于辐射体41a的中部。
148.示例性的,辐射体41a可以形成线天线,线天线可以包括第一部分411a和第二部分412a。第一部分411a为辐射体41a的中部至辐射体41a的一端的部分,第二部分412a为辐射体41a的中部至辐射体41a的另一端的部分。
149.在第一实施例中,激励体42a通过电场耦合的方式对辐射体41a馈电,这个耦合馈电,可以替代等幅同相的cm馈电,以将电信号传输至辐射体41a。产生天线模式同样为线天线cm模式。馈源的正极可以和馈点423a连接,馈源的负极可以连接壳体2、以实现接地。电流从馈点423a流向激励体42a,从而在激励体42a的周围产生交变电场(图未示)。交变电场分别向辐射体41a的第一部分411a和第二部分412a提供等幅同相的激励信号。第一部分411a和第二部分412a在等幅同相的激励信号的作用下分别产生第一感应电流和第二感应电流,且第一感应电流和第二感应电流的方向相反。此时,辐射体41a的工作模式为线天线的cm模式,在第一实施例中的天线装置4a的结构为耦合激励的cm线天线结构。
150.示例性的,辐射体41a的中部距辐射体41a的两端的距离相等,此时,第一部分411a与第二部分412a的长度相等。在本实施例中,辐射体41a可以沿直线延伸,第一部分411a与第二部分412a的长度相等,以产生对称分布的辐射场型,并提升辐射体41a的辐射效率,且第一感应电流和第二感应电流的频率相同。在其他一些实施例中,辐射体41a也可以沿曲线延伸。
151.在本技术中,图4b所示的电流分布为cm线天线模式的电流分布。辐射体41a的第一部分411a和第二部分412a共同构成辐射枝节。
152.请一并参阅图4c和图4d,图4c是图4a所示移动终端100a部分结构中的电场分布示意图,图4d是图4a所示移动终端100a部分结构中的磁场分布示意图。其中,图4c中虚线箭头的方向表示电场的方向,虚线箭头的疏密表示电场的强弱。图4d中圆圈中心加点的图形以及圆圈中心加叉的图形表示磁感线的方向,图形的大小则表示磁场的强弱。具体地,圆圈中心加点的图形表示磁感线从纸面内侧垂直射出纸面外侧,圆圈中心加叉的图形表示磁感线从纸面外侧垂直射入纸面内侧。
153.在第一实施例中,辐射体41a向外辐射电磁波,也即在辐射体41a与壳体2a之间的电介质22a以及移动终端100a外部的空间内产生电场和磁场。如图4c所示,当辐射体41a处于cm模式时,电场在辐射体41a的馈点423a两侧呈同向分布,且电场的电场强度从辐射体41a的馈点423a向辐射体41a的两端增强。在本实施例中,位于辐射体41a的馈点423a两侧的电场线同向相斥,使得位于辐射体41a的馈点423a两侧的电场线向远离辐射体41a的方向延伸,以使cm线天线模式的电场呈现垂直极化。
154.此外,如图4d所示,当辐射体41a处于cm线天线模式时,磁感线在辐射体41a的馈点423a两侧呈反向分布,以使磁感线在平行于辐射体41a的外表面410a的平面内呈圈状分布。磁场的磁场强度从辐射体41a的馈点423a向辐射体41a的两端减弱。
155.在本技术中,图4c所示的电场以及图4d所示的磁场是辐射体41a的两个部分作为1/4波长天线产生的,且图4c所示的电场分布为cm线天线模式的电场分布,图4d所示的磁场分布为cm线天线模式的磁场分布。
156.请一并参阅图4b和图4e。图4e是现有技术中的直接馈电的cm线天线结构中的电流分布示意图。
157.请参阅图4e,可以通过对称馈电的方式在采用条形辐射体上激励出cm模式,也即从辐射体41a的馈点423a向第一部分411a和第二部分412a分别馈入两路等幅同相的射频信号。现有技术中一般采用直接对称馈电的方式在线天线上激励出cm模式,也即通过两个馈源来提供两路等幅同相的射频信号。但是,在工程实现的过程中,由于结构以及材料的差异,很难获得完全相同的两个馈源,从而难以提供等幅同相的射频信号。
158.请参阅图4b,而第一实施例中的耦合馈电的cm线天线结构则采用单点馈电的方式向激励体42a馈电,并通过激励体42a对辐射体41a进行耦合馈电,降低了馈电难度,并提升辐射体41a的辐射效率和带宽潜力。
159.请参阅图5a,图5a是应用本技术提供的一种耦合馈电的线天线结构的移动终端100b的部分结构分解示意图,图5a所示的耦合馈电的线天线结构产生线天线dm模式。
160.在第二实施例中,移动终端100b可以包括壳体2b、辐射体41b和激励体42b,壳体2b可以设有缺口21b。辐射体41b和激励体42b可以位于壳体2b的侧边、且固定安装于壳体2b。辐射体41b的至少部分结构可以位于缺口21b。激励体42b可以位于辐射体41b的内侧、且与辐射体41b之间存在间隙。本实施例中的移动终端100b的结构以及结构之间的连接关系可以参考如图3所示的移动终端100,在此仅对区别进行描述。
161.在本实施例中,辐射体41b可以形成线天线。线天线的具体结构以及与其他结构的连接关系可以参考第一实施例,在此不再赘述。
162.在本实施例中,激励体42b可以包括环状导体421b,从而在激励体42b周围产生均匀的交变磁场。环状导体421b的两端可以与壳体2b连接,以实现接地;环状导体421b的中间
部分可以与壳体2b之间存在间隙。示例性的,环状导体421b可以位于缺口21b的第一侧壁211b的侧边,也可以位于缺口21b的第一侧壁211b的中部,本技术对此不作限定。可理解地,第一侧壁211b的中部为第一侧壁211b的侧边内侧的部分。
163.示例性的,激励体42b还可以包括馈点423b,馈点423b距环状导体421b两端的距离可以相等。移动终端100b还可以包括馈源(图未示)。馈源将电信号从馈点423b馈入激励体42b,在激励体42b上产生交变电流。交变电流在激励体42b的周围产生交变磁场。辐射体41b在交变磁场的激励下产生感应电流,感应电流的模式为线天线dm模式。之后,辐射体41b将感应电流转变为射频信号,并将射频信号辐射出去。
164.请参阅图5b,图5b是图5a所示移动终端100b部分结构的电流分布示意图。其中,箭头的大小表示电流的强弱,箭头从大到小表示电流从强到弱。
165.在第二实施例中,激励体42b通过磁场耦合的方式对辐射体41b进行馈电,激励起线天线dm模式。这样激励的方式可以替代现有技术里的dm反对称馈电,以将电信号传输至辐射体41b。具体地,馈源的正极可以和馈点423b连接,馈源的负极可以连接壳体2、以实现接地。电流从馈点423b流向激励体42b,从而在激励体42b的周围产生交变磁场(图未示)。此时,辐射体41b的工作模式为线天线的dm模式,在第二实施例中的天线装置4b的结构为耦合激励的dm线天线结构。
166.当辐射体41b处于dm模式时,辐射体41b上的感应电流的强度从辐射体41b的馈点423b向两端减弱。此外,激励体42b上的交变电流的强度从激励体42b的馈点423b向两端减弱,使得激励体42b周围的交变磁场的磁场强度从激励体42b馈点423b向两端减弱。因此,激励体42b周围的交变磁场的磁场强度的强弱分布与辐射体41b上的感应电流的强度的强弱分布匹配,从而激励体42b周围的交变磁场能够在辐射体41b上激励出dm模式的感应电流,并使得辐射体41b处于dm模式。
167.在本技术中,图5b所示的电流分布为dm线天线模式的电流分布。辐射体41b的第一部分411b和第二部分412b共同构成辐射枝节。
168.示例性的,壳体2b中的电信号分布在激励体42b周围。电信号从远离馈点423b处流向馈点423b、且电信号在馈点423b处最强,并随着与馈点423b距离的增加而减弱。因此,壳体2b周围产生的交变电场的电场强度的强弱分布与辐射体41b上的感应电流的强度的强弱分布匹配,从而能够激励体42b周围均产生交变的电场叠加,增加了交变电场的耦合能力。
169.示例性的,环状导体421b可以采用框形结构。框型结构包括依次连接的第一段4211b、第二段4212b和第三段4213b。其中,第二段4212b可以平行于辐射体41b的延伸方向,第一段4211b和第三段4213b可分别位于第二段4212b的两端。在本技术中,馈点423b距环状导体421b的第二段4212b的两端的距离可以相等。
170.示例性的,环状导体421b的第一段4211b、以及第二段4212b位于第一段4211b与馈点423b之间的部分可以采用微带线、同轴线等射频传输线结构。射频传输线结构可以用于将来自馈源的电信号传入馈点423b,并由馈点423b馈入激励体42b,使得激励体42b上的交变电流的强度从激励体42b的馈点423b向两端减弱,从而在辐射体41b上激励出dm模式。
171.示例性的,环状导体421b的第二段4212b的长度可以大于1mm,例如10mm,19mm,30mm等,以保证辐射体41的辐射效率,降低阻抗匹配难度。
172.在其他一些实施例中,环状导体421b还可以采用圆环形结构、椭圆环形结构或其
他不规则形状结构,本技术对此不作限定。
173.请一并参阅图5c和图5d,图5c是图5a所示移动终端100b部分结构中的电场分布示意图,图5d是图5a所示移动终端100b部分结构中的磁场分布示意图。其中,图5c中虚线箭头的方向表示电场的方向,虚线箭头的疏密表示电场的强弱。图5d中圆圈中心加点的图形以及圆圈中心加叉的图形表示磁感线的方向,图形的大小则表示磁场的强弱。具体地,圆圈中心加点的图形表示磁感线从纸面内侧垂直射出纸面外侧,圆圈中心加叉的图形表示磁感线从纸面外侧垂直射入纸面内侧。
174.在第二实施例中,如图5c所示,当辐射体41b处于dm模式时,电场在辐射体41b的馈点423b两侧呈反向分布,且电场的电场强度从辐射体41b的馈点423b向辐射体41b的两端增强。
175.在本实施例中,位于辐射体41b的馈点423b两侧的电场线反向相吸,使得位于辐射体41b的馈点423b两侧的电场线在馈点423b处首尾连接,从而产生与辐射体41b的延伸方向平行的电场线,以使dm线天线模式呈现水平极化。
176.此外,壳体2b的外表面20b附近也有电场分布,且壳体2b的外表面20b附近的电场与相邻的辐射体41b的外表面410b附近的电场反向,从而在壳体2b与辐射体41b之间的间隙附近产生与辐射体41b的延伸方向平行的电场线,增加了耦合激励的dm模式的水平极化的强度,提升辐射效率。
177.此外,如图5d所示,磁感线在辐射体41b的馈点423b两侧呈同向分布。示例性的,磁感线从辐射体41b靠近壳体2b的一侧射出,并从辐射体41b远离壳体2b的一侧射入,以使磁感线在垂直于辐射体41b的延伸方向的平面内呈圈状分布。磁场的磁场强度从辐射体41b的馈点423b向辐射体41b的两端减弱。
178.在本技术中,图5c所示的电场以及图5d所示的磁场是辐射体41b的两个部分作为1/2波长天线产生的,且图5c所示的电场分布为dm线天线模式的电场分布,图5d所示的磁场分布为dm线天线模式的磁场分布。
179.请一并参阅图5b和图5e。图5e是现有技术中的直接馈电的dm线天线结构中的电流分布示意图。
180.请参阅图5e,可以通过反对称馈电的方式在条形辐射体的辐射体41b上激励出dm模式,也即从辐射体41b的馈点423b向第一部分411b和第二部分412b分别馈入两路等幅反相的射频信号。现有技术中一般采用直接反对称馈电的方式在线天线上激励出dm模式,也即通过两个馈源来提供两路等幅反相的射频信号,馈电结构复杂。
181.请参阅图5b,而第一实施例中的耦合馈电的dm线天线结构则采用单点馈电的方式向激励体42b馈电,并通过激励体42b对辐射体41b进行耦合馈电,降低了馈电难度,并提升辐射体41b的辐射效率和带宽潜力。
182.请参阅图6a,图6a是应用本技术提供的一种耦合馈电的槽天线结构的移动终端100c的部分结构分解示意图,图6a所示的耦合馈电的槽天线结构产生槽天线cm模式。
183.在第三实施例中,移动终端100c可以包括壳体2c、辐射体41c和激励体42c,壳体2c可以设有缺口21c。辐射体41c和激励体42c可以位于壳体2c的侧边、且固定安装于壳体2c。辐射体41c的至少部分结构可以位于缺口21c。激励体42c可以位于辐射体41c的内侧、且与辐射体41c之间存在间隙。本实施例中的移动终端100c的结构以及结构之间的连接关系可
以参考如图3所示的移动终端100,在此仅对区别进行描述。
184.在本实施例中,辐射体41c可以形成槽天线。槽天线可通过在壳体2上开槽形成,槽的第一侧有开口,开口可位于第一侧的中间位置。
185.示例性的,激励体42c从辐射体41c的中部通过耦合馈电的方式将电信号馈入辐射体41c。辐射体41c两端之间的部分都可以看作是辐射体41c的中部。激励体42c的馈点423c对应于辐射体41c的中部。
186.示例性的,辐射体41c的两端可以和壳体2c连接。槽天线可以包括第三部分413c和第四部分414c。第三部分413c为辐射体41c的中部至辐射体41c的一端的部分,第四部分414c为辐射体41c的中部至辐射体41c的另一端的部分。
187.示例性的,第三部分413c与第四部分414c之间可以存在并联电容424c。在其他一些实施例中,第三部分413c和第四部分414c之间也可以不存在间隙,本技术对此不作限定。
188.示例性的,第三部分413c的一端与缺口21c的第二侧壁212c连接,第三部分413c的另一端与第四部分414c的一端存在间隙,第四部分414c的另一端与缺口21c的第三侧壁213c连接。
189.在本实施例中,激励体42c可以包括环状导体421c,且激励体42c的具体结构以及与其他结构的连接关系可以参考第二实施例,在此不再赘述。
190.请参阅图6b,图6b是图6a所示移动终端100c部分结构的电流分布示意图。其中,箭头的大小表示电流的强弱,箭头从大到小表示电流从强到弱。
191.在第三实施例中,激励体42c通过磁场耦合的方式对辐射体41c进行耦合馈电。这种馈电方式是与现有技术槽天线cm激励的反对称馈电相同,是可以替代的。以将电信号传输至辐射体41c。具体地,馈源的正极可以和馈点423c连接,馈源的负极可以连接壳体2c、以实现接地。电流从馈点423c流向激励体42c,从而在激励体42c的周围产生交变磁场(图未示)。耦合馈电可以理解为分别向辐射体41c的第三部分413c和第四部分414c提供等幅反相的激励信号。第三部分413c和第四部分414c在等幅反相的激励信号的作用下分别产生第三感应电流和第四感应电流,且第三感应电流和第四感应电流的方向相同。此时,辐射体41c的工作模式为槽天线的cm模式,在第三实施例中的天线装置4c的结构为耦合激励的cm槽天线结构。
192.当辐射体41c处于槽天线cm模式时,辐射体41c上的感应电流的强度从辐射体41c的馈点423c向两端增强。此外,激励体42c上的交变电流的强度从激励体42c的馈点423c向两端减弱,使得激励体42c周围的交变磁场的磁场强度从激励体42c馈点423c向两端减弱。因此,激励体42c周围的交变磁场的磁场强度的强弱分布与辐射体41c上的感应电流的强度的强弱分布匹配,从而激励体42c周围的交变磁场能够在辐射体41c上激励出cm模式的感应电流,并使得辐射体41c处于cm模式。
193.在本技术中,图6b所示的电流分布为cm槽天线模式的电流分布。
194.示例性的,辐射体41c的中部距辐射体41c的两端的距离相等,此时,第三部分413c和第四部分414c的长度相等。在本实施例中,辐射体41c可以沿直线延伸,第三部分413c和第四部分414c的长度相等,以产生对称分布的辐射场型,并提升辐射体41c的辐射效率,且第三感应电流和第四感应电流的频率相同。
195.请一并参阅图6c和图6d,图6c是图6a所示移动终端100c部分结构中的电场分布示
意图,图6d是图6a所示移动终端100c部分结构中的磁场分布示意图。其中,图6c中虚线箭头的方向表示电场的方向,虚线箭头的疏密表示电场的强弱。图6d中圆圈中心加点的图形以及圆圈中心加叉的图形表示磁感线的方向,图形的大小则表示磁场的强弱。具体地,圆圈中心加点的图形表示磁感线从纸面内侧垂直射出纸面外侧,圆圈中心加叉的图形表示磁感线从纸面外侧垂直射入纸面内侧。
196.在第三实施例中,如图6c所示,当辐射体41c处于cm模式时,电场在辐射体41c的馈点423c两侧呈反向分布,且电场的电场强度从辐射体41c的馈点423c向辐射体41c的两端减弱。
197.在本实施例中,位于辐射体41c的馈点423c两侧的电场线反向相吸,使得位于辐射体41c的馈点423c两侧的电场线在馈点423c处首尾连接,从而产生与辐射体41c的延伸方向平行的电场线,以使cm槽天线模式呈现水平极化。
198.此外,如图6d所示,磁感线在辐射体41c的馈点423c两侧呈反向分布,以使磁感线在垂直于辐射体41c延伸方向的平面内呈圈状分布。磁场的磁场强度从辐射体41c的馈点423c向辐射体41c的两端减弱。
199.在本技术中,图6c所示的电场以及图6d所示的磁场是辐射体41c的两个部分作为1/4波长天线产生的,且图6c所示的电场分布为cm槽天线模式的电场分布,图6d所示的磁场分布为cm槽天线模式的磁场分布。
200.请一并参阅图6b和图6e。图6e是现有技术中的直接馈电的cm槽天线结构中的电流分布示意图。
201.请参阅图6e,可以通过反对称馈电的方式在采用槽形辐射体的辐射体41c上激励出cm模式,也即从辐射体41c的馈点423c向第三部分413c和第四部分414c分别馈入两路等幅反相的射频信号。现有技术中一般采用直接反对称馈电的方式在辐射体41c上激励出cm模式,也即通过两个馈源来提供两路等幅反相的射频信号,馈电结构复杂。
202.请参阅图6b,而第三实施例中的耦合馈电的cm槽天线结构则采用单点馈电的方式向激励体42c馈电,并通过激励体42c对辐射体41c进行耦合馈电,降低了馈电难度,并提升辐射体41c的辐射效率和带宽潜力。
203.请参阅图7a,图7a是应用本技术提供的一种耦合馈电的槽天线结构的移动终端100d的部分结构分解示意图,图7a所示的耦合馈电的槽天线结构产生槽天线dm模式。
204.在第四实施例中,移动终端100d可以包括壳体2d、辐射体41d和激励体42d,壳体2d可以设有缺口21d。辐射体41d和激励体42d可以位于壳体2d的侧边、且固定安装于壳体2d。辐射体41d的至少部分结构可以位于缺口21d。激励体42d可以位于辐射体41d的内侧、且与辐射体41d之间存在间隙。本实施例中的移动终端100d的结构以及结构之间的连接关系可以参考如图3所示的移动终端100,在此仅对区别进行描述。
205.在本实施例中,辐射体41c可以形成槽天线。槽天线可通过在壳体2上开槽形成。
206.在本实施例中,激励体42d可以包括线型导体421d和馈点423d。示例性的,激励体42d还可以采用图4a所示的面状导体421a。如图7a所示,馈点423d可以位于线型导体421d的中部。具体地,馈点423d距线型导体421d的两端的距离可以相等,也可以不相等,本技术对此不作限定。在本实施例中,馈源的正极可以与馈点423d连接,馈源的负极可以连接壳体2d,以实现接地。在本实施例中,线型导体421d的具体结构以及与其他结构的连接关系可以
参考第三实施例,在此不再赘述。
207.请参阅图7b,图7b是图7a所示移动终端100d部分结构的电流分布示意图。其中,箭头的大小表示电流的强弱,箭头从大到小表示电流从强到弱。
208.示例性的,辐射体41d可以分为长度相等的第三部分413d和第四部分414d。
209.在第四实施例中,激励体42d通过电场耦合的方式对辐射体41d进行馈电,可以等效成dm对称馈电,以将电信号传输至辐射体41d。具体地,交变电场分别向辐射体41d的第三部分413d和第四部分414d提供等幅同相的激励信号。第三部分413d和第四部分414d等幅同相的激励信号的作用下分别产生第三感应电流和第四感应电流,且第三感应电流和第四感应电流的方向相反。此时,辐射体41d的工作模式为槽天线的dm模式,在第四实施例中的天线装置4d的结构为耦合激励的dm槽天线结构。
210.当辐射体41d处于dm模式时,辐射体41d上的感应电流的强度从辐射体41d的馈点423d向两端增强。此外,激励体42d周围的交变磁场的磁场强度的强弱分布与辐射体41d上的感应电流的强度的强弱分布匹配,从而激励体42d周围的交变磁场能够在辐射体41d上激励出dm模式的感应电流,并使得辐射体41d处于dm模式。
211.在本技术中,图7b所示的电流分布为dm槽天线模式的电流分布。
212.请一并参阅图7c和图7d,图7c是图7a所示移动终端100d部分结构中的电场分布示意图,图7d是图7a所示移动终端100d部分结构中的磁场分布示意图。其中,图7c中虚线箭头的方向表示电场的方向,虚线箭头的疏密表示电场的强弱。图7d中圆圈中心加点的图形以及圆圈中心加叉的图形表示磁感线的方向,图形的大小则表示磁场的强弱。具体地,圆圈中心加点的图形表示磁感线从纸面内侧垂直射出纸面外侧,圆圈中心加叉的图形表示磁感线从纸面外侧垂直射入纸面内侧。
213.在第四实施例中,辐射体41d向外辐射电磁波,也即在辐射体41d与壳体2d之间的电介质22d以及移动终端100d外部的空间内产生电场和磁场。如图7c所示,当辐射体41d处于dm槽天线模式时,电场在辐射体41d的馈点423d两侧呈同向分布,且电场的电场强度从辐射体41d的馈点423d向辐射体41d的两端增强。
214.在本实施例中,位于辐射体41d的馈点423d两侧的电场线同向相斥,使得位于辐射体41d的馈点423d两侧的电场线向远离辐射体41d的方向延伸,以使dm槽天线模式的电场呈现垂直极化。
215.此外,如图7d所示,当辐射体41d处于dm槽天线模式时,磁感线在辐射体41d的馈点423d两侧呈反向分布,以使磁感线在平行于辐射体41d的外表面410d的平面内呈圈状分布。磁场的磁场强度从辐射体41d的馈点423d向辐射体41d的两端减弱。
216.在本技术中,图7c所示的电场以及图7d所示的磁场是辐射体41d的两个部分作为1/2波长天线产生的,且图7c所示的电场分布为dm槽天线模式的电场分布,图7d所示的磁场分布为dm槽天线模式的磁场分布。
217.请一并参阅图7d和图7e。图7e是现有技术中的直接馈电的dm槽天线结构中的电流分布示意图。
218.请参阅图7e,可以通过对称馈电的方式在采用槽形辐射体上激励出dm模式,也即从馈点423d向第三部分413d和第四部分414d分别馈入两路等幅同相的射频信号。现有技术中一般采用直接对称馈电的方式在槽天线上激励出dm模式,也即通过两个馈源来提供两路
等幅同相的射频信号。但是,在工程实现的过程中,由于结构以及材料的差异,很难获得完全相同的两个馈源,从而难以提供等幅同相的射频信号。
219.请参阅图7d,而第四实施例中的耦合馈电的dm线天线结构则采用单点馈电的方式向激励体42d馈电,并通过激励体42d对辐射体41d进行耦合馈电,降低了馈电难度,并提升辐射体41d的辐射效率和带宽潜力。
220.请一并参阅图4d、图5d、图6d以及图7d,示例性的,辐射体41可以形成线天线或槽天线。可以分别采用不同的激励体42,对线天线或槽天线进行耦合馈电,从而在线天线或槽天线上激励出多种天线模式,例如:如图4d所示的耦合馈电的cm线天线模式、如图5d所示的耦合馈电的dm线天线模式、如图6d所示的耦合馈电的cm槽天线模式以及如图7d所示的耦合馈电的dm槽天线模式。可理解地,辐射体41也可以采用具有其他形状的导体,例如倒f形导体等,本技术对此不作限定。
221.本技术还可以将图4a、图5a、图6a以及图7a所示的不同天线结构、以及现有技术中的天线结构进行共体设计或组合设计,形成高隔离天线对。
222.请一并参阅图4c和图5d。从图4c所示的cm线天线模式的电场分布可以看出,cm线天线模式呈现垂直极化;且从图5d所示的dm线天线模式的电场分布可以看出,dm线天线模式呈现水平极化。又因垂直极化的天线模式和水平极化的天线模式之间隔离性好,将cm线天线模式的天线结构和dm线天线模式的天线结构进行共体设计,能够构成正交模式,从而获得高隔离的天线对。
223.请参阅图8a,图8a是应用本技术提供的一种高隔离天线对的移动终端100e在一些实施例中的部分结构分解示意图。示例性的,本技术可以将图4a所示的耦合馈电的cm线天线结构和图5a所示的耦合馈电的dm线天线结构进行共体设计,得到图8a所示的高隔离天线对。
224.在第五实施例中,移动终端100e可以包括壳体2e、辐射体51e和激励体52e,壳体2e可以设有缺口21e。辐射体51e和激励体52e可以位于壳体2e的侧边、且固定安装于壳体2e。辐射体51e的至少部分结构可以位于缺口21e。激励体52e可以位于辐射体51e的内侧、且与辐射体51e之间存在间隙。本实施例中的移动终端100e的结构以及结构之间的连接关系可以参考如图3所示的移动终端100,在此仅对区别进行描述。
225.示例性的,激励体52e可以包括cm模式激励体5210e和dm模式激励体5220e。示例性的,cm模式激励体5210e和dm模式激励体5220e间隔设置。
226.在本实施例中,cm模式激励体5210e和dm模式激励体5220e可以从辐射体51e的中部将电信号通过耦合馈电的方式馈入辐射体51e。辐射体51e可以形成线天线。线天线包括第一部分(图未示)和第二部分(图未示)。第一部分为辐射体51e的中部至辐射体51e的一端的部分,第二部分为辐射体51e的中部至辐射体51e的另一端的部分。线天线的结构和与其他结构的连接关系可以参考如图4a所示的第一实施例中的辐射体41a,在此不再赘述。
227.其中,cm模式激励体5210e可以包括面状导体或线形导体。面状导体或线形导体也可以通过耦合馈电的方式,在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相反,从而在辐射体51e上激励出cm模式的电场和磁场。面状导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图4a所示的第一实施例中的激励体42a的结构;线形导体的具体结构以及与其他结构
之间的位置关系和连接关系、可以参考如图4a所示的第一实施例中的激励体42a的结构,并根据第一实施例进行适应性设计,在此不再赘述。
228.在本实施例中,dm模式激励体5220e可以与辐射体之间存在间隙。dm模式激励体5220e可以包括环状导体和馈点523e,馈点523e距环状导体的两端的距离可以相等。环状导体可以通过耦合馈电的方式,在第一部分中激励出第五感应电流、且在第二部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相同,从而在辐射体51e激励出dm模式的电场和磁场。具体地,环状导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图5a所示的第二实施例中的激励体42b的结构,并根据第二实施例进行适应性设计,在此不再赘述。
229.请一并参阅图8b、图8c和图8d,图8b是图8a所示的高隔离天线对的cm模式的天线辐射方向图,图8c是图8a所示的高隔离天线对的dm模式的天线辐射方向图,图8d是图8a所示高隔离天线对的s

参数图。图8d中示出了cm模式的线天线的s

参数,dm模式的线天线的s

参数,以及高隔离天线对的隔离度。
230.其中,如图8b和图8c所示,cm模式的天线辐射呈现垂直极化,dm模式的天线辐射呈现水平极化,因此,图8a所示的天线对具有高隔离的特性,以适用于移动终端100e的mino天线,并提升mino天线的收发性能。
231.示例性的,辐射体41e的中部距辐射体41e的两端的距离相等,此时,第一部分与第二部分的长度相等。在本实施例中,辐射体41e可以沿直线延伸,第一部分与第二部分的长度相等,以使得辐射体51e上激励出的cm模式的辐射场和dm模式的辐射场对称分布,从而增加cm天线模式和dm天线模式的正交性,进一步提升高隔离天线对的隔离度。
232.如图8d所示,cm模式的线天线的s

参数与dm模式的线天线的s

参数接近,说明cm模式的线天线与dm模式的线天线的天线性能匹配。并且高隔离天线对的隔离度较高。
233.请一并参阅图9a和图9b,图9a是本技术提供的高隔离天线对在另一些实施例中的结构示意图,图9b是图9a所示高隔离天线对在另一角度的部分结构示意图。
234.在其他一些实施例中,辐射体51e可以形成线天线。高隔离天线对的cm模式激励体5210e可以通过直接馈电的方式,在辐射体51e上激励出cm模式。高隔离天线对的dm模式激励体5210e可以通过耦合馈电的方式,在辐射体51e上激励出dm模式。
235.其中,cm模式激励体5210e可以通过直接馈电的方式,向辐射体51e的第一部分和第二部分分别馈入两路等幅同相的射频信号。在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相反,从而在辐射体51e上激励出cm模式的电场和磁场。具体地,cm模式激励体5210e可以包括馈线5211e和第一馈点5212e。馈线5211e一端连接辐射体51e,另一端连接缺口21e的第一侧壁211e。第一馈点5212e位于馈线5211e远离辐射体51e的另一端。馈源可以从第一馈点5212e处将电信号经过馈线5211e馈入辐射体51e,并在辐射体51e上激励出cm模式的电场和磁场。
236.在本实施例中,dm模式激励体5220e可以与辐射体之间存在间隙。dm模式激励体5220e可以包括环状导体521e和第二馈点523e,第二馈点523e距环状导体521e的两端的距离可以相等。环状导体521e可以通过耦合馈电的方式,在第一部分中激励出第五感应电流、且在第二部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相同,从而在辐射体51e激励出dm模式的电场和磁场。具体地,环状导体的具体结构以及与其他结构之间
的位置关系和连接关系、可以参考如图5a所示的第二实施例中的激励体42b的结构,并根据第二实施例进行适应性设计,在此不再赘述。
237.请参阅图9c,图9c是图9a所示高隔离天线对的s

参数图;图9c中示出了cm模式的线天线的s

参数,dm模式的线天线的s

参数,以及高隔离天线对的隔离度。cm模式的线天线的s

参数与dm模式的线天线的s

参数接近,说明cm模式的线天线与dm模式的线天线的天线性能匹配。并且高隔离天线对的隔离度较高。
238.请参阅图9d,图9d是本技术提供的高隔离天线对在还一些实施例中的结构示意图。在其他一些实施例中,辐射体51e可以形成线天线。高隔离天线对的cm模式激励体5210e也可以通过直接馈电的方式,在辐射体51e上激励出cm模式。
239.在本实施例中,高隔离天线对的cm模式激励体5120e可以参考图8a所示的耦合馈电的cm模式激励体5120e,在此不再赘述。高隔离天线对的dm模式激励体5220e也可以通过直接馈电的方式,向辐射体51e的第一部分和第二部分分别馈入两路等幅反相的射频信号,在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相同,从而在辐射体51e上激励出dm模式的电场和磁场。具体地,dm模式激励体5220e还可以包括馈线和馈点523e。馈线一端连接辐射体51e,另一端连接馈点523e。馈点523e位于馈线远离辐射体51e的另一端。馈源可以从馈点523e处将电信号经过馈线馈入辐射体51e,对辐射体51e进行直接馈电。
240.请参阅图9e,图9e是本技术提供的高隔离天线对在又一些实施例中的结构示意图。在其他一些实施例中,高隔离天线对的辐射体51e还可以形成槽天线,本技术对此不作限定。槽天线可通过在壳体2e上开槽形成,槽的第一侧有开口,开口可位于第一侧的中间位置。槽天线也可以不具有开口。
241.示例性的,辐射体51e的两端可以和壳体2e连接。槽天线可以包括第三部分和第四部分。第三部分为辐射体51e的中部至辐射体51e的一端的部分,第四部分为辐射体51e的中部至辐射体51e的另一端的部分。
242.槽天线的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图6a所示的第三实施例中的辐射体41c的结构,并根据第三实施例进行适应性设计,在此不再赘述。
243.在本实施例中,cm模式激励体5220e与辐射体51e之间存在间隙。cm模式激励体可以采用环状导体。环状导体也可以通过耦合馈电的方式,在第三部分中激励出第三感应电流、且在第四部分中激励出第四感应电流,第三感应电流和第四感应电流的方向相同,从而在辐射体51e上激励出cm模式的电场和磁场。环状导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图6a所示的第三实施例中的激励体42c的结构,并根据第三实施例,在此不再赘述。
244.在本实施例中,dm模式激励体(图未示)也可以与辐射体51e之间存在间隙。dm模式激励体可以包括面状导体或线形导体。面状导体或线形导体也可以通过耦合馈电的方式,在第三部分中激励出第五感应电流、且在第四部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相反,从而在辐射体51e上激励出dm模式的电场和磁场。面状导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图4a所示的第一实施例中的激励体42a的结构;线形导体的具体结构以及与其他结构之间的位置关系和连接关系、
可以参考如图7a所示的第四实施例中的激励体42d的结构,并根据第一实施例和第四实施例进行适应性设计,在此不再赘述。
245.请参阅图9f,图9f是本技术提供的高隔离天线对在再一些实施例中的结构示意图。在其他一些实施例中,高隔离天线对的辐射体51e还可以形成槽天线,cm模式激励体5220e可以通过直接馈电的方式,向辐射体51e的第一部分和第二部分分别馈入两路等幅同反的射频信号,在第三部分中激励出第三感应电流、且在第四部分中激励出第四感应电流,第三感应电流和第四感应电流的方向相同,从而在辐射体51e上激励出cm模式的电场和磁场。具体地,cm模式激励体可以包括馈线和馈点。馈线一端连接辐射体51e,另一端连接壳体2e。第一馈点位于馈线远离辐射体51e的另一端。馈源可以从第一馈点处将电信号经过馈线馈入辐射体51e,并在辐射体51e上激励出cm模式的电场和磁场。
246.dm模式激励体5210e可以采用如图7a所示的面状导体或线形导体,通过耦合馈电的方式在辐射体51e上激励出dm模式,在此不再赘述。
247.请参阅图9g,图9g是本技术提供的高隔离天线对在多一些实施例中的结构示意图。在其他一些实施例中,高隔离天线对的辐射体51e还可以形成槽天线,在本实施例中,dm模式激励体5210e可以通过直接馈电的方式,向辐射体51e的第一部分和第二部分分别馈入两路等幅同相的射频信号,在第三部分中激励出第五感应电流、且在第四部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相反,从而在辐射体51e上激励出dm模式的电场和磁场。具体地,dm模式激励体5210e可以包括馈线和馈点。馈线一端连接辐射体51e,另一端连接缺口的第一侧壁。第一馈点位于馈线远离辐射体51e的另一端。馈源可以从第一馈点处将电信号经过馈线馈入辐射体51e,并在辐射体51e上激励出dm模式的电场和磁场。
248.在本实施例中,cm模式激励体5220e与辐射体51e之间存在间隙。cm模式激励体可以采用环状导体。环状导体也可以通过耦合馈电的方式,在第三部分中激励出第三感应电流、且在第四部分中激励出第四感应电流,第三感应电流和第四感应电流的方向相同,从而在辐射体51e上激励出cm模式的电场和磁场。环状导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图6a所示的第三实施例中的激励体42c的结构,并根据第三实施例,在此不再赘述。
249.可理解地,辐射体51e也可以包括具有其他形状的导体,例如倒f形导体等,本技术对此不作限定。在本实施例中,cm模式激励体和dm模式激励体需根据辐射体51e的结构变化进行适应性调整,以在辐射体51e上激励出cm天线模式和dm天线模式。
250.示例性的,高隔离天线对也可以包括间隔设置的第一辐射体51e和第二辐射体51e(图未示)。第一辐射体51e和第二辐射体51e可以分别对应cm模式激励体和dm模式激励体。其中,cm模式激励体和dm模式激励体的结构需根据辐射体51e的结构进行适应性调整,以使得cm模式激励体在第一辐射体51e上激励出cm模式,并使得dm模式激励体在第二辐射体51e上激励出dm模式。
251.一些实施例中,第一辐射体51e可以形成线天线,且第二辐射体51e可以形成槽天线。
252.线天线的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图4a所示的第一实施例中的辐射体41a的结构,并根据第一实施例进行适应性设计;槽天线的具
体结构以及与其他结构之间的位置关系和连接关系、可以参考如图6a所示的第三实施例中的辐射体41c的结构,并根据第三实施例进行适应性设计,在此不再赘述。
253.此时,cm模式激励体可以通过直接馈电的方式,在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相反,从而在辐射体51e上激励出cm模式的电场和磁场。具体地,cm模式激励体可以包括馈线和第一馈点。馈线一端连接辐射体51e,另一端连接缺口的第一侧壁。第一馈点位于馈线远离辐射体51e的另一端。馈源可以从第一馈点处将电信号经过馈线馈入辐射体51e,并在辐射体51e上激励出cm模式的电场和磁场。
254.此外,cm模式激励体(图未示)也可以与辐射体51e之间存在间隙。cm模式激励体可以包括面状导体或线形导体。面状导体或线形导体也可以通过耦合馈电的方式,第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相反,从而在辐射体51e上激励出cm模式的电场和磁场。面状导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图4a所示的第一实施例中的激励体42a的结构;线形导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图7a所示的第四实施例中的激励体42d的结构,并根据第一实施例和第四实施例进行适应性设计,在此不再赘述。
255.此时,dm模式激励体(图未示)可以通过直接馈电的方式,在第三部分中激励出第五感应电流、且在第四部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相反,从而在辐射体51e上激励出dm模式的电场和磁场。具体地,dm模式激励体可以包括馈线和馈点。馈线一端连接辐射体51e,另一端连接缺口的第一侧壁。第一馈点位于馈线远离辐射体51e的另一端。馈源可以从第一馈点处将电信号经过馈线馈入辐射体51e,并在辐射体51e上激励出dm模式的电场和磁场。
256.此外,dm模式激励体(图未示)可以与辐射体51e之间存在间隙。dm模式激励体可以包括面状导体或线形导体。面状导体或线形导体也可以通过耦合馈电的方式,在第三部分中激励出第五感应电流、且在第四部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相反,从而在辐射体51e上激励出dm模式的电场和磁场。面状导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图4a所示的第一实施例中的激励体42a的结构;线形导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图7a所示的第四实施例中的激励体42d的结构,并根据第一实施例和第四实施例进行适应性设计,在此不再赘述。
257.在其他一些实施例中,第一辐射体51e可以形成槽天线且第二辐射体51e可以形成线天线。线天线的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图4a所示的第一实施例中的辐射体41a的结构,并根据第一实施例进行适应性设计;槽天线的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图6a所示的第三实施例中的辐射体41c的结构,并根据第三实施例进行适应性设计,在此不再赘述。
258.此时,cm模式激励体(图未示)可以通过直接馈电的方式,在第三部分中激励出第三感应电流、且在第四部分中激励出第四感应电流,第三感应电流和第四感应电流的方向相同,从而在辐射体51e上激励出cm模式的电场和磁场。具体地,cm模式激励体可以包括馈线和馈点。馈线一端连接辐射体51e,另一端连接缺口的第一侧壁。第一馈点位于馈线远离
辐射体51e的另一端。馈源可以从第一馈点处将电信号经过馈线馈入辐射体51e,并在辐射体51e上激励出cm模式的电场和磁场。
259.此外,cm模式激励体(图未示)也可以与辐射体51e之间存在间隙。cm模式激励体可以采用环状导体。环状导体也可以通过耦合馈电的方式,在第三部分中激励出第三感应电流、且在第四部分中激励出第四感应电流,第三感应电流和第四感应电流的方向相同,从而在辐射体51e上激励出cm模式的电场和磁场。环状导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图6a所示的第三实施例中的激励体42c的结构,并根据第三实施例,在此不再赘述。
260.在本实施例中,dm模式激励体(图未示)可以通过直接馈电的方式,在第一部分中激励出第一感应电流、且在第二部分中激励出第二感应电流,第一感应电流和第二感应电流的方向相同,从而在辐射体51e上激励出dm模式的电场和磁场。具体地,dm模式激励体还可以包括馈线和馈点(图未示)。馈线一端连接辐射体51e,另一端连接缺口的第一侧壁。馈点位于馈线远离辐射体51e的另一端。馈源可以从馈点处将电信号经过馈线馈入辐射体51e,对辐射体51e进行直接馈电。
261.此外,dm模式激励体也可以与辐射体51e之间存在间隙。dm模式激励体可以包括环状导体和第二馈点。环状导体可以通过耦合馈电的方式,在第一部分中激励出第五感应电流、且在第二部分中激励出第六感应电流,第五感应电流和第六感应电流的方向相同,从而在辐射体51e激励出dm模式的电场和磁场。具体地,环状导体的具体结构以及与其他结构之间的位置关系和连接关系、可以参考如图5a所示的第二实施例中的激励体42b的结构,并根据第二实施例进行适应性设计,在此不再赘述。
262.请参阅图10a,图10a是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端100f在其他一些实施例中的部分结构示意图。
263.在第六实施例中,移动终端100f的具体结构可以参阅第二实施例,在此仅对区别进行说明。
264.示例性的,激励体42f还可以包括电容424f。电容424f可以位于环状导体421f和缺口21f的第一侧壁211f之间、且连接环状导体421f与壳体2f,以实现接地。
265.示例性的,电容424f可以与环状导体421f的第一段4211f连接,也可以与环状导体421f的第三段4213f连接。在其他一些实施例中,电容424f的数量可以为两个,两个电容424f可以分别与环状导体421f的第一段4211f和环状导体421f的第三段4213f连接。
266.请一并参阅图5a、图10a和图10b,图10b是图5a所示的天线装置4b和图10a所示的天线装置4b的天线辐射效率图。其中,图10b的纵坐标为天线辐射效率,单位为db;图10b的纵坐标为天线辐射频率,单位为ghz。图10b中的“无电容”曲线表示图5a所示的天线装置4b的天线辐射效率随天线的辐射频率的变化趋势;图10b中的“有电容”曲线表示图10a所示的天线装置4f的天线辐射效率随天线的辐射频率的变化趋势。
267.可以理解地,在环状导体421f与壳体2之间增加电容424f,能够增加环状导体421f产生的交变磁场的磁场强度,从而增加了激励体42f在辐射体41f上激励出的感应电流的强度,并进一步增加了辐射体41f的辐射效率。
268.从图10b也可以看出,图5a所示的天线装置4b和图10a所示的天线装置4f在2ghz至3ghz的频率范围内的辐射效率均较高。此外,由于在环状导体421f与壳体2之间增加电容
424f,图10a所示的天线装置4f的辐射效率高于5a所示的天线装置4b。
269.示例性的,电容424f的数值可以小于或等于12pf,例如1pf、2pf等,本技术对此不作限定。
270.请参阅图11,图11是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端100s在还一些实施例中的部分结构示意图。
271.在第七实施例中,移动终端100s的具体结构可以参阅第二实施例,在此仅对区别进行说明。
272.在本实施例中,馈点423s可以位于环状导体421s的端部,也即馈点423s可以位于环状导体421s的第一段4211s远离环状导体421s的第二段4212s的端部,也可以位于环状导体421s的第三段4213s远离环状导体421s的第二段4212s的端部。
273.请参阅图12,图12是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端100h在再一些实施例中的部分结构示意图。
274.在第八实施例中,移动终端100h的具体结构可以参阅第二实施例,在此仅对区别进行说明。
275.在本实施例中,馈点423h可以位于环状导体421h的端部。激励体42h还可以包括连接件425h。连接件425h可以位于环状导体421h和缺口21h的第一侧壁211h之间、且连接环状导体421h与壳体2h。馈点423h与连接件425h可以分别位于环状导体421h的两端。
276.示例性的,馈点423h可以位于环状导体421h的第一段4211h远离环状导体421h的第二段4212h的端部。连接件425h可以位于环状导体421h的第三段4213h和缺口21h的第一侧壁211h之间、且连接环状导体421h的第三段4213h与壳体2h,以实现接地。
277.在其他一些实施例中,馈点423h也可以位于环状导体421h的第三段4213h远离环状导体421h的第二段4212h的端部,连接件425h可以位于环状导体421h的第一段4211h和缺口21h的第一侧壁211h之间、且连接环状导体421h的第一段4211h与壳体2h,以实现接地。
278.示例性的,连接件425h可以包括电容,也可以包括电感,本技术对此不作限定。
279.可以理解地,在环状导体421h与壳体2之间增加电容,能够增加环状导体421h产生的交变磁场的磁场强度,从而增加了激励体42h在辐射体41h上激励出的感应电流的强度,并进一步增加了辐射体41h的辐射效率。
280.请参阅图13,图13是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端100i在又一些实施例中的部分结构示意图。
281.在第九实施例中,移动终端100i的具体结构可以参阅第二实施例,在此仅对区别进行说明。
282.在本实施例中,馈点423i可以位于环状导体421i的端部,也即馈点423i可以位于环状导体421i的第一段4211i远离环状导体421i的第二段4212i的端部,也可以位于环状导体421i的第三段4213i远离环状导体421i的第二段4212i的端部。
283.示例性的,激励体42i还可以包括电容424i。电容424i距环状导体421i的第二段4212i的两端的距离可以相等。可以理解地,在环状导体421i上增加电容424i,能够增加环状导体421i产生的交变磁场的磁场强度,从而增加了激励体42i在辐射体41i上激励出的感应电流的强度,并进一步增加了辐射体41i的辐射效率。
284.请参阅图14,图14是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端
100j在多一些实施例中的部分结构示意图。
285.在第十实施例中,移动终端100j的具体结构可以参阅第二实施例,在此仅对区别进行说明。
286.示例性的,激励体42j的环状导体421j还可以包括与第二段4212j平行的第四段4214j和第五段5215j。其中,环状导体421j的第四段4214j的一端连接环状导体421j的第三段4213j,另一端连接缺口21j的第一侧壁211j;环状导体421j的第五段4215j的一端连接环状导体421j的第一段4211j,另一端连接缺口21j的第一侧壁211j。
287.在本实施例中,馈点423j可以位于环状导体421j的端部,激励体42j还可以包括连接件425j。连接件425j可以位于环状导体421j和缺口21j的第一侧壁211j之间、且连接环状导体421j与壳体2j。馈点423j与连接件425j可以分别位于环状导体421j的两端。
288.示例性的,馈点423j可以位于环状导体421j的第四段4214j远离环状导体421j的第三段4213j的端部。连接件425j可以位于环状导体421j的第五段4215j和缺口21j的第一侧壁211j之间、且连接环状导体421j的第五段4215j与壳体2j,以实现接地。
289.在其他一些实施例中,馈点423j也可以位于环状导体421j的第五段4215j远离环状导体421j的第一段4211j的端部,连接件425j可以位于环状导体421j的第五段4215j和缺口21j的第一侧壁211j之间、且连接环状导体421j的第五段4215j与壳体2j,以实现接地。
290.示例性的,连接件425j可以包括电容,也可以包括电感,本技术对此不作限定。
291.可以理解地,在环状导体421j与壳体2之间增加电容,能够增加环状导体421j产生的交变磁场的磁场强度,从而增加了激励体42j在辐射体41j上激励出的感应电流的强度,并进一步增加了辐射体41j的辐射效率。
292.在本技术中,环状导体421j的长度增加,从而增加了激励体42j产生的交变磁场的磁场强度,并进一步增加了辐射体41j的辐射效率。
293.请参阅图15,图15是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端100q在另一些实施例中的部分结构示意图。
294.在第十一实施例中,移动终端100q的具体结构可以参阅第二实施例,在此仅对区别进行说明。
295.示例性的,激励体42q的环状导体421q还可以包括与第二段4212q平行的第四段4214q和第五段5215q。其中,环状导体421q的第四段4214q的一端连接环状导体421q的第三段4213q,另一端连接缺口21q的第一侧壁211q;环状导体421q的第五段4215q的一端连接环状导体421q的第一段4211q,另一端连接缺口21q的第一侧壁211q。
296.在本实施例中,馈点423q可以位于环状导体421q的端部,激励体42q还可以包括连接件425q。连接件425q可以位于环状导体421q和缺口21q的第一侧壁211q之间、且连接环状导体421q与壳体2q。馈点423q与连接件425q可以分别位于环状导体421q的两端。
297.在本实施例中,馈点423q可以位于环状导体421q的第四段4214q远离环状导体421q的第三段4213q的端部。连接件425q可以位于环状导体421q的第五段4215q和缺口21q的第一侧壁211q之间、且连接环状导体421q的第五段4215q与壳体2q,以实现接地。
298.在其他一些实施例中,馈点423q也可以位于环状导体421q的第五段4215q远离环状导体421q的第一段4211q的端部,连接件425q可以位于环状导体421q的第五段4215q和缺口21q的第一侧壁211q之间、且连接环状导体421q的第五段4215q与壳体2q,以实现接地。
299.示例性的,连接件425q可以包括电容,也可以包括电感,本技术对此不作限定。
300.示例性的,激励体42q还可以包括电容424q。电容424q距环状导体421q的第二段4212q的两端的距离可以相等。
301.可以理解地,在环状导体421q上增加电容,能够增加环状导体421q产生的交变磁场的磁场强度,从而增加了激励体42q在辐射体41q上激励出的感应电流的强度,并进一步增加了辐射体41q的辐射效率。
302.在本技术中,环状导体421q的长度增加,从而增加了激励体42q产生的交变磁场的磁场强度,并进一步增加了辐射体41q的辐射效率。
303.请参阅图16,图16是应用本技术提供的一种耦合馈电的dm线天线结构的移动终端100n在更多一些实施例中的部分结构示意图。
304.在第十二实施例中,移动终端100n的具体结构可以参阅第二实施例,在此仅对区别进行说明。
305.示例性的,激励体42n的环状导体421n还可以包括与第二段4212n平行的第四段4214n和第五段5215n。其中,环状导体421n的第四段4214n的一端连接环状导体421n的第三段4213n,另一端连接缺口21n的第一侧壁211n;环状导体421n的第五段4215n的一端连接环状导体421n的第一段4211n,另一端连接缺口21n的第一侧壁211n。
306.在本实施例中,馈点423n可以位于环状导体421n的端部,在本实施例中,馈点423n可以位于环状导体421n的端部,激励体42n还可以包括连接件425n。连接件425n可以位于环状导体421n和缺口21n的第一侧壁211n之间、且连接环状导体421n与壳体2n。馈点423n与连接件425n可以分别位于环状导体421n的两端。
307.在本实施例中,馈点423n可以位于环状导体421n的第四段4214n远离环状导体421n的第三段4213n的端部。激励体42n还可以包括连接件425n,连接件425n可以位于环状导体421n的第五段4215n和缺口21n的第一侧壁211n之间、且连接环状导体421n的第五段4215n与壳体2n,以实现接地。
308.在其他一些实施例中,馈点423n也可以位于环状导体421n的第五段4215n远离环状导体421n的第一段4211n的端部,连接件425n可以位于环状导体421n的第五段4215n和缺口21n的第一侧壁211n之间、且连接环状导体421n的第五段4215n与壳体2n,以实现接地。
309.示例性的,连接件425n可以包括电容,也可以包括电感,本技术对此不作限定。
310.示例性的,激励体42n还可以包括多个电容424n,例如三个。多个电容424n可以分别位于环状导体421n的第二段4212n的中部、以及第二段4212n的两端。可理解地,环状导体421n的第二段4212n两端之间的部分都可以看作是第二段4212n的中部。具体地,电容424n距环状导体421n的第二段4212n的两端的距离可以相等,也可以不相等。
311.可以理解地,在环状导体421n上增加电容,能够增加环状导体421n产生的交变磁场的磁场强度,从而增加了激励体42n在辐射体41n上激励出的感应电流的强度,并进一步增加了辐射体41n的辐射效率。
312.在本技术中,环状导体421n的长度增加,从而增加了激励体42n产生的交变磁场的磁场强度,并进一步增加了辐射体41n的辐射效率。
313.以上描述,仅为本技术的具体实施方式,但本技术的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本技术揭露的技术范围内,可轻易想到变化或替换,都应涵
盖在本技术的保护范围之内;在不冲突的情况下,本技术的实施例及实施例中的特征可以相互组合。因此,本技术的保护范围应以权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1