1.本发明涉及高效太阳能电池领域,特别是涉及具有缓冲保护膜的异质结太阳能电池及其制备方法。
技术背景
2.同传统的单晶/多晶硅太阳能电池相比,异质结太阳能电池具有结构对称、制备工艺简单、流程短、硅片薄片化、温度系数低、无光致衰减等特点,而且其工艺温度低于250℃,因其超高效的光电转化率和发展提升潜力而备受关注。通常异质结太阳能电池主要涉及的工艺步骤为:在绒面化的晶体硅衬底正反两面沉积纳米级厚度的本征非晶硅,在本征非晶硅上沉积掺杂非晶硅,一面为n
‑
型掺杂非晶硅,一面为p
‑
型掺杂非晶硅,为了高效地导出电子,需要在掺杂非晶硅薄膜上制备透明导电薄膜,最后在透明导电薄膜外侧丝网印刷金属ag栅线。透明导电薄膜不仅仅需要良好的导电性,而且需要同时具有高透光性和减反射特性,另外,其功函数也需要与其接触的掺杂非晶硅薄膜相匹配,实现欧姆接触,通常,在异质结电池中,与p
‑
型非晶硅接触的透明导电材料需要较高的功函数,与n
‑
型非晶硅接触的透明导电材料通常需要具有较低的功函数。
3.目前制备异质结太阳能电池的主流技术,采用的是磁控溅射技术来制备透明导电薄膜,磁控溅射技术具有沉积速率高、靶材利用率高、沉积的薄膜密度高、硬度好等特点,其原理是在电场和磁场作用下,ar气体被电离产生ar+粒子,ar+粒子高速轰击靶材,靶材表面的原子脱离原晶格逸出,成为溅射粒子,溅射粒子高速运动到达衬底表面,并与氧原子发生反应而生成氧化物薄膜,受ar+粒子高速轰击产生的溅射粒子能量较高,有相当部分的溅射粒子能量大于100电子伏特,有的甚至高于150
‑
200电子伏特,这样当溅射粒子高速撞击衬底时,沉积在晶体硅衬底表面的非晶硅薄膜受到一定程度的损伤,进而损害异质结太阳能电池pn结性能,同时影响非晶硅薄膜对晶体硅衬底层的钝化效果,最终影响电池性能。
技术实现要素:
4.本发明的目的在于克服上述不足,提供具有缓冲保护膜的异质结太阳能电池及其制备方法,通过在掺杂非晶硅膜和透明导电层之间引入缓冲保护透明导电膜,降低在透明导电层磁控溅射沉积过程中对掺杂非晶硅薄膜的撞击损伤,保护异质结太阳能电池pn结性能,获得最优的异质结太阳能电池性能。
5.为了实现上述目的,本发明采用如下技术方案:具有缓冲保护膜的异质结太阳能电池,它包括晶体硅衬底,晶体硅衬底的正反两面均沉积有非晶硅本征层(不掺杂的非晶硅),每层非晶硅本征层的外侧分别沉积有n
‑
型掺杂非晶硅层和p
‑
型掺杂非晶硅层,n
‑
型掺杂非晶硅层和p
‑
型掺杂非晶硅层的外侧分别沉积有透明导电层,每层透明导电层的外侧均设有金属电极,其特征在于:所述p
‑
型掺杂非晶硅层和相邻的透明导电层之间设有缓冲保护透明导电膜。
6.在上述技术方案的基础上,有以下进一步的技术方案:
所述缓冲保护透明导电膜采用掺硼氧化锌bzo制成;所述透明导电层采用ito掺锡氧化铟制成;所述缓冲保护透明导电膜的厚度为10
‑
20nm,所述透明导电层的总厚度为70
‑
110nm;所述n
‑
型掺杂非晶硅层侧的透明导电层为至少一层的复合透明导电层;所述缓冲保护透明导电膜侧的透明导电层为至少一层的复合透明导电层。
7.所述缓冲保护透明导电膜可以采用化学气相沉积法制备,化学气相沉积方法包括不限于低压化学气相沉积(lpcvd)和金属有机化学气相沉积(mocvd)。
8.所述透明导电层的沉积工艺为磁控溅射(pvd),其磁控溅射方法包括不限于直流磁控溅射、中频磁控溅射、反应磁控溅射、脉冲直流磁控溅射和射频磁控溅射。
9.所述透明导电层为至少一层的复合透明导电层,制备下一层时磁控溅射功率逐层增加,使得制备的下一层厚度大于上一层厚度。
10.本发明还提供了一种具有缓冲保护膜的异质结太阳能电池的制备方法,包括以下步骤:第一步:选取晶体硅衬底进行制绒、清洗处理;第二步:通过等离子体增强化学气相沉积方法pecvd在晶体硅衬底正反两面沉积制备非晶硅本征层,厚度为5
‑
8nm;第三步:通过等离子体增强化学气相沉积方法pecvd在晶体硅衬底正面非晶硅本征层上沉积制备p
‑
型掺杂非晶硅层,厚度为8
–
16nm;第四步:通过等离子体增强化学气相沉积方法pecvd在晶体硅衬底反面非晶硅本征层上沉积制备n
‑
型掺杂非晶硅层,厚度为5
–
9nm;第五步:使用lpcvd方法在p
‑
型掺杂非晶硅层上沉积制备掺硼氧化锌缓冲保护透明导电膜,厚度为10
–
20nm;第六步:使用pvd方法在掺硼氧化锌薄膜上沉积制备掺锡氧化铟透明导电层,总厚度为70
–
100nm;第七步:使用pvd方法在n
‑
型掺杂非晶硅层上沉积制备掺锡氧化铟透明导电层,总厚度为80
–
110nm;第八步:通过丝网印刷在掺锡氧化铟ito透明导电层上形成金属ag电极;第九步:烧结固化使得金属ag电极和掺锡氧化铟透明导电层之间形成良好的欧姆接触。
11.与现有技术相比,本发明的有益效果是:本发明通过在p
‑
型掺杂非晶硅薄膜上采用lpcvd或mocvd技术沉积缓冲保护透明导电膜,极大地降低了在透明导电层磁控溅射沉积过程中对p
‑
型掺杂非晶硅薄膜的损伤,保护了异质结电池pn结性能,从而获得最优的异质结太阳能电池性能。
附图说明
12.图1为现有异质结太阳能电池的结构示意图;图2为本发明实施例一的异质结太阳能电池的结构示意图;图3为本发明实施例二的异质结太阳能电池的结构示意图;
图4为本发明实施例三的异质结太阳能电池的结构示意图;。
13.图中1、n晶体硅衬底,2、非晶硅本征层,3、n
‑
型掺杂非晶硅层,4、p
‑
型掺杂非晶硅层,5、缓冲保护透明导电膜,6、透明导电层,6.1、第一层透明导电膜,6.1、第二层透明导电膜,7、金属ag电极。
具体实施方式
14.实施例一:参见图2,本发明涉及的一种具有缓冲保护膜的异质结太阳能电池,它包括n晶体硅衬底1,晶体硅衬底的正反两面均沉积有非晶硅本征层2,非晶硅本征层2的外侧分别沉积有n
‑
型3和p
‑
型4掺杂非晶硅层,p
‑
型掺杂非晶硅层4的外侧沉积有缓冲保护透明导电膜5,缓冲保护透明导电膜5和n
‑
型掺杂非晶硅层3的外侧沉积有透明导电层6,所述透明导电层6的外侧设有金属ag电极7;所述缓冲保护透明导电膜为bzo掺硼氧化锌,所述透明导电层为ito掺锡氧化铟;所述bzo缓冲保护透明导电膜的沉积工艺为低压化学气相沉积lpcvd;所述ito透明导电层的沉积工艺为直流脉冲磁控溅射pvd。
15.上述具有缓冲保护膜的异质结太阳能电池的制备方法,包括以下步骤:(1)对尺寸为180mm、厚度为175微米的n
‑
型晶硅衬底1进行制绒、清洗处理;(2)通过pecvd在晶体硅衬底1正反两面沉积制备非晶硅本征层2,厚度为6nm;(3)通过pecvd在晶体硅衬底1正面非晶硅本征层2上沉积制备p
‑
型掺杂非晶硅层4,厚度为10nm;(4)通过pecvd在晶体硅衬底1反面非晶硅本征层2上沉积制备n
‑
型掺杂非晶硅层3,厚度为6nm;(5)使用lpcvd在p
‑
型掺杂非晶硅层4上制备bzo掺硼氧化锌缓冲保护透明导电膜5,厚度为10
‑
20nm,具体沉积方法为:将预热好的上述衬底送入bzo沉积反应腔室,各气体流量为二乙基锌dezn(250
‑
500sccm)、水蒸汽h2o(200
‑
600sccm)、硼烷b2h6(100
‑
220sccm),反应温度为170
‑
210 o
c,气压为80
‑
180pa,反应时间为0.5
‑
3min;硼烷b2h6在通入反应腔体前是经h2稀释过的,稀释浓度为硼烷b2h6体积的0.5
‑
5%;(6)使用pvd方法在一侧bzo掺硼氧化锌薄膜5和另一侧n
‑
型掺杂非晶硅3上,分别沉积制备ito掺锡氧化铟透明导电层6,厚度分别为90和100nm,具体pvd沉积工艺为:衬底温度180
‑
230
o
c, 沉积工艺气压0.4
‑
0.7pa,其中o2分压40
‑
80mpa,溅射电源为直流脉冲电源,靶材为ito旋转靶,靶材溅射功率密度2
‑
6kw/m;(7)通过丝网印刷在掺锡氧化铟透明导电层6上形成金属ag电极7;第八步:烧结固化使得金属ag电极7和ito掺锡氧化铟透明导电层6之间形成良好的欧姆接触;(8)测试电池的光电转化性能实施例2:参见图3,本发明涉及的具有缓冲保护膜的异质结太阳能电池,与实施例1不同的是,设置在所述n
‑
型掺杂非晶硅层3外侧的透明导电层6包含二层复合透明导电膜,依次分别为第一层透明导电膜6.1和第二层透明导电膜6.2,所述第一层透明导电膜6.1的靶材溅
射功率密度为0.5
‑
2kw/m,第一层透明导电膜6.1的厚度为15nm,所述第二层透明导电膜6.2的靶材溅射功率密度为2
‑
6kw/m,第二层透明导电膜6.2的厚度为85nm。
16.实施例3:参见图4,本发明涉及的具有缓冲保护膜的异质结太阳能电池,与实施例2不同的是,设置在所述缓冲保护透明导电膜5外侧的透明导电层6包含二层透明导电膜,依次分别为第一层透明导电膜6.1和第二层透明导电膜6.2,所述第一层透明导电膜6.1的靶材溅射功率密度为0.5
‑
2kw/m,第一层透明导电膜6.1的厚度为10
‑
15nm,所述第二层透明导电膜6.2的靶材溅射功率密度为2
‑
6kw/m,第二层透明导电膜6.2的厚度为75
‑
85nm。
17.本发明实施例数据与现有技术对比表 voc(mv)isc(ma/cm2)ff(%)eta(%)现有技术72937.828022.05实施例1733.538.3580.422.62实施例2733.738.4580.622.74实施例3733.838.5380.622.79将本发明的实施例数据与图1所示的现有技术对比,本发明与现有技术的异质结太阳能电池电性能对比见上表所示,电性能指标包括开路电压voc、短路电流isc和填充因子ff三个方面体现,本发明的异质结太阳能电池各项电性能指标均有不同程度的提升,最终可以看到本发明的异质结太阳能电池光电转换效率eta相比现有技术有绝对提升。
18.以上仅是本发明的具体应用实例,对本发明的保护范围不构成任何限制。