石墨烯锗硅量子点集成的复合结构探测器及其制备方法与流程

文档序号:29456917发布日期:2022-03-30 12:56阅读:200来源:国知局
石墨烯锗硅量子点集成的复合结构探测器及其制备方法与流程

1.本发明涉及半导体光电探测器技术领域,具体地,涉及一种石墨烯锗硅量子点集成的复合结构探测器及其制备方法。


背景技术:

2.半个世纪以来,光通讯、光互连技术的迅猛发展,不断推动着人们对于高响应、低暗电流的光电探测器的研究。硅(si)作为传统的第一代半导体材料,它的光电性能一直是人们研究的热点,其成熟的微电子器件工艺,使得si器件在工业应用上无疑有着天然的优势。然而si材料本身固有的间接带隙特性以及一阶光电系数低等,导致si探测器光电响应极低,这使其应用受到限制,改进si探测器的光电特性成为研究的焦点。引入锗(ge)材料的gesi量子点因具有特殊的量子限制效应,载流子运动在空间三维方向上均受限,其态密度与能量呈现分离的狄拉克函数关系,能够产生许多不同于体材料的光学和电学特性,如量子点内因电子-空穴跃迁振子的强度增加而导致的发光增强,以及应变引入的ge间接带隙到直接带隙的转变等。新型基于gesi量子点的光电探测器是一个重要且极具潜力的研究方向。
3.德国于利希亚琛研究联盟实验室(jara)报道了基于gesi量子点阵列的单光子探测器件。美国加州大学的wang教授和法国巴黎大学的boucaud教授分别研制了多层gesi量子点的光伏型探测器,并测量了器件的光电流谱和量子效率。半导体所的王启明院士课题组发现集成gesi量子点的光伏器件具有较高的外量子效率。上述研究工作显示了gesi量子点在光电探测方面的应用潜力。但是目前国际上报道的gesi量子点红外探测器普遍存在量子点密度低,吸收效率不高,外延生长的量子点尺寸分布不均匀导致的量子点吸收系数低等关键问题。因此,尽管gesi量子点红外探测器在实验室有一些初步的结果,但离实际应用仍有差距,探索提高gesi量子点探测器探测效率的方法,解决gesi量子点光电耦合效率低的问题,对于si基集成光电子技术的发展有重要的应用价值。


技术实现要素:

4.针对现有技术中的缺陷,本发明的目的是提供一种石墨烯锗硅量子点集成的复合结构探测器及其制备方法。
5.根据本发明提供的一种石墨烯锗硅量子点集成的复合结构探测器,包括图案化si衬底、si缓冲层、多层gesi量子点层和si间隔层、单层石墨烯薄膜、sin
x
钝化层、顶电极以及底电极,其中:
6.所述si缓冲层沉积在图案化si衬底上;
7.单层石墨烯薄膜、多层gesi量子点层和si间隔层组成吸收层;
8.吸收层侧边和图案化si衬底上表面包裹sin
x
钝化层;
9.所述单层石墨烯薄膜上设置顶电极;图案化si衬底上表面设置底电极。
10.优选地,所述图案化si衬底为p型重掺杂,表面为(100)晶面。
11.优选地,所述图案化si衬底的图案为有序的倒金字塔状的纳米坑阵列,平均横向尺寸和深度分别为50nm和20nm,横向周期为100nm。
12.优选地,所述gesi量子点为高密度有序的gesi量子点,量子点的直径为40-80nm,平均高度为7.8nm,周期为100nm。
13.优选地,所述单层石墨烯薄膜为cvd方法制备的单层石墨烯。
14.根据本发明提供的一种基于上述的石墨烯锗硅量子点集成的复合结构探测器的制备方法,其特征在于,包括如下步骤:
15.步骤s1:采用纳米球刻蚀工艺制备图案化si衬底;
16.步骤s2:利用mbe在图案化si衬底上沉积si缓冲层;在si缓冲层上,采用两步生长法沉积gesi量子点层和si间隔层;
17.步骤s3:用cvd在铜衬底上生长单层石墨烯薄膜;
18.步骤s4:通过pmma辅助的湿法转移方法将所述铜基单层石墨烯转移到所述多层gesi量子点样品的表面;
19.步骤s5:采用标准紫外光刻工艺,rie工艺,得到方形台面型探测器结构,刻蚀深度至高导si衬底层;
20.步骤s6:利用cvd在刻蚀后的台面结构上沉积sinx钝化层;
21.步骤s7:采用标准紫外光刻工艺,开顶电极窗口,使石墨烯部分区域暴露,通过热蒸镀制备顶电极;
22.步骤s8:采用标准紫外光刻工艺,rie工艺,在si衬底表面开底电极窗口,使si衬底相应区域暴露,通过热蒸镀制备底电极。
23.优选地,所述步骤s1包括如下步骤:
24.步骤s1.1:利用直径为纳米至微米量级的小球的自组装排列特性,在硅衬底上形成单层大面积有序的纳米球膜;
25.步骤s1.2:以纳米球膜为掩模,进行金属蒸镀;
26.步骤s1.3:将样品浸入四氢呋喃溶剂,超声去除纳米球;
27.步骤s1.4:将去除小球的样品浸入koh溶液,进行湿法刻蚀,在si表面形成有序的小尺寸的纳米坑阵列;
28.步骤s1.5:将样品浸入ki:i2:hf溶液,去除金属掩膜。
29.优选地,步骤s4包括如下步骤:
30.步骤s4.1:在铜基单层石墨烯上旋涂pmma,旋涂完成后在120℃的热板烘烤20分钟;
31.步骤s4.2:将旋涂有pmma的铜基石墨烯,铜基底朝下,pmma层朝上,漂浮在fecl3溶液中30分钟,腐蚀铜基底;
32.步骤s4.3:铜基底腐蚀完全后,将得到的pmma/单层石墨烯,在去离子水中进行多次漂洗;
33.步骤s4.4:用步骤s3中所述多层锗硅量子点样品倾斜捞起石墨烯,放在70℃的热板上烘烤15分钟以上;
34.步骤s4.5:将所述覆盖有pmma/单层石墨烯的锗硅量子点样品依次浸入丙酮、乙醇溶剂,去除pmma。
35.优选地,步骤2中,先生长的ge层,停顿5分钟,再生长的si层,通过热扩散得到si含量为25%的gesi量子点层和si间隔层,停顿5分钟,再重复该过程多次。
36.优选地,所述步骤5中,所述方形台面,顶部面积为0.5
×
0.5mm2。
37.与现有技术相比,本发明具有如下的有益效果:
38.1、本发明在具有周期性纳米坑阵列的图案化si衬底上沉积gesi量子点,可以控制gesi量子点的成核位置和形貌,从而得到尺寸均匀的、高度有序的、高密度的多层gesi量子点,有利于得到高吸收系数的gesi量子点层。
39.2、本发明gesi量子点表层转移的单层石墨烯具有表面等离激元效应,入射光共振激发石墨烯的表面等离激元,使入射光局域在gesi量子点层中,大幅度增强了gesi量子点对入射光的吸收,提高gesi量子点探测器的光电转换效率。
40.3、本发明石墨烯由于其高的载流子迁移率、良好的导电性以及在可见到红外波段较大的透光性,可以作为透明电极增强对入射光的吸收。石墨烯的功函数为4.5ev,其费米能级低于gesi量子点的导带,所以gesi量子点中的光生电子会转移到石墨烯上而迅速被电极收集,从而进一步提高红外探测器的光电响应效率,缩短其响应时间。
41.4、石墨烯具有大的热导系数,通过石墨烯层可以将正负电极之间产生的热量快速耗散掉,以减少热量对器件性能的影响。
42.5、本发明为台面式结构探测器,底电极在衬底表面,减少了光生载流子的传输路径,降低其被衬底中杂质、缺陷俘获的几率,提高探测器的响应率。
43.6、本发明涉及si、ge材料,其材料制备和器件加工工艺成熟、自然界储量丰富,有利于实现大规模片上集成,具有重要实用价值。
附图说明
44.通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
45.图1为本发明提供的一种石墨烯/gesi量子点集成的复合结构探测器的结构示意图。
46.图2为石墨烯/gesi量子点复合结构的拉曼光谱图。
47.图3为石墨烯/gesi量子点集成的复合结构探测器制备流程图。
具体实施方式
48.下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
49.本发明提供了一种石墨烯锗硅量子点集成的复合结构探测器及其制备方法,为解决gesi量子点探测器由于量子点密度低、尺寸分布不均匀导致的吸收系数低的问题。本发明通过在图案衬底生长gesi量子点,控制其尺寸和密度,从而提高gesi量子点层的吸收系数。为解决现有gesi量子点探测器吸收率不高、光电转换效率低的问题,本发明将单层石墨烯与gesi量子点探测器集成,制备石墨烯/gesi复合结构探测器。由于石墨烯的二维电子气
震荡特性,石墨烯的表面等离激元比传统金属具有更强的局域性,可以将入射光局域在量子点层内,从而大幅度增强gesi量子点对入射光的吸收,解决gesi量子点红外探测器吸收效率较低的问题,提高gesi量子点探测器的光电转换效率。石墨烯由于其高的载流子迁移率、良好的导电性和透光性,能够在石墨烯/gesi量子点复合结构探测器中作为透明电极,有助于gesi量子点中光生载流子的收集,从而进一步提高红外探测器的光电响应。本发明将负电极设置在si衬底上表面,减少光生载流子的传输路径,降低其被衬底中杂质、缺陷俘获的几率,提高探测器的响应率。
50.进一步说明,本技术实施例提供了一种石墨烯/gesi量子点集成的复合结构探测器,如图1所示,所述探测器为台面结构,包括图案化p型si衬底、si缓冲层、10层gesi量子点层和si间隔层、石墨烯薄膜和金属正负电极。吸收层由单层石墨烯、多层gesi量子点和si间隔层组成,吸收层侧边包裹sinx钝化层,吸收区的电场由石墨烯顶部电极和衬底上表面电极之间的电压产生。其中,图案化si衬底用来提高gesi量子点的密度以及有序性和均匀性,gesi量子点层作为吸收层产生光生载流子,石墨烯层一方面利用其表面等离激元特性,将入射光局域在gesi量子点层内,大幅度增强gesi量子点对入射光的吸收,另一方面作为透明电极,收集光生载流子,提高探测器的光电响应。
51.所述高导si衬底为p型重掺杂,表面为(100)晶面。所述图案化si衬底的图案为有序的倒金字塔状的纳米坑阵列,平均横向尺寸和深度分别为50nm和20nm,横向周期为100nm;所述gesi量子点为高密度有序的gesi量子点,量子点的直径约为40-80nm,平均高度约为7.8nm,周期为100nm;所述石墨烯薄膜为cvd方法制备的单层石墨烯。
52.根据本发明提供的一种制备基于石墨烯/gesi量子点集成的复合结构探测器的方法,包括以下步骤:
53.步骤1:采用纳米球刻蚀工艺制备图案化si衬底;
54.步骤2:利用分子束外延(mbe)在图案化si衬底上沉积si缓冲层,作为优选方案si缓冲层的厚度为40nm;在si缓冲层上,采用两步生长法沉积gesi量子点层和si间隔层,作为优选方案,先生长的ge层,停顿5分钟,再生长的si层,通过热扩散得到si含量为25%的gesi量子点层和si间隔层,停顿5分钟,再重复该过程多次;
55.步骤3:用cvd在25μm厚的铜衬底上生长单层石墨烯薄膜;
56.步骤4:通过pmma辅助的湿法转移方法将所述铜基单层石墨烯转移到所述多层gesi量子点样品的表面;
57.步骤5:采用标准紫外光刻工艺,rie工艺,得到方形台面型探测器结构,刻蚀深度至高导si衬底层,作为优选方案,所述方形台面,顶部面积为0.5
×
0.5mm2;
58.步骤6:利用cvd在刻蚀后的台面结构上沉积sinx钝化层;
59.步骤7:采用标准紫外光刻工艺,开顶电极窗口,使石墨烯部分区域暴露;
60.步骤8:通过热蒸镀制备顶电极,作为优选方案,所述金属顶电极为in电极;
61.步骤9:采用标准紫外光刻工艺,rie工艺,在si衬底表面开底电极窗口,使si衬底相应区域暴露;
62.步骤10:通过热蒸镀制备底电极,作为优选方案,所述金属底电极为al电极。
63.其中,步骤1包括如下步骤:
64.步骤1.1:利用直径为纳米至微米量级的小球(如聚苯乙烯(polystyrene,ps)纳米
球)的自组装排列特性,在硅衬底上形成单层大面积有序的纳米球膜,作为优选方案,所述ps纳米小球的直径为100nm;
65.步骤1.2:以纳米球膜为掩模,进行金属蒸镀;
66.步骤1.3:将样品浸入四氢呋喃溶剂,超声去除纳米球;
67.步骤1.4:将去除小球的样品浸入koh溶液,进行湿法刻蚀,在si表面形成有序的小尺寸的纳米坑阵列;
68.步骤1.5:将样品浸入ki:i2:hf溶液,去除金属掩膜。
69.步骤4包括如下步骤:
70.步骤4.1:在铜基单层石墨烯上旋涂pmma,作为优选方案,在旋涂pmma的过程中,转速为2500rad/s,时间为30秒;旋涂完成后在120℃的热板烘烤20分钟;
71.步骤4.2:将旋涂有pmma的铜基石墨烯,铜基底朝下,pmma层朝上,漂浮在fecl3溶液中30分钟,腐蚀铜基底,作为优选方案,腐蚀铜基底的fecl3溶液的质量浓度比为40%;
72.步骤4.3:待铜基底腐蚀完全后,将得到的pmma/单层石墨烯,在去离子水中进行多次漂洗;
73.步骤4.4:用步骤3中所述多层锗硅量子点样品倾斜捞起石墨烯,放在70℃的热板上烘烤15分钟以上;
74.步骤4.5:将所述覆盖有pmma/单层石墨烯的锗硅量子点样品依次浸入丙酮、乙醇溶剂,去除pmma。
75.更为详细的说明,本发明的石墨烯/gesi量子点集成的复合结构的制备方法包括如下步骤:
76.步骤s1:清洗p型si衬底:在市面购买电阻率为0.01ω
·
cm,表面为(100)晶面的p型掺杂si衬底,依次在丙酮、乙醇、去离子水中超声5分钟,去除有机污染物,接下来在煮沸的体积比为1:2的双氧水、浓硫酸混合液中加热5分钟,然后再用去离子水中冲洗5分钟,再在质量比为5%的hf溶液浸泡30秒,去除si表面的氧化层;最后继续用去离子水冲洗5分钟,氮气吹干。
77.步骤s2:制备图案化p型si衬底:利用直径为纳米至微米量级的小球(如聚苯乙烯(polystyrene,ps)纳米球)的自组装排列特性,在si衬底上形成单层大面积有序的纳米球膜;以所述纳米球膜为掩模,进行金蒸镀,厚度为2nm;然后,将样品浸入四氢呋喃溶剂,超声去除纳米球;将去除小球的样品浸入koh溶液,进行湿法刻蚀,在si表面形成有序的小尺寸的纳米坑阵列;最后将样品浸入ki:i2:hf溶液,去除金掩膜。
78.步骤s3:利用rca法化学清洗图案化si衬底,用h
+
将si衬底表面的悬挂键钝化保护。
79.步骤s4:在氢钝化的图案化si衬底上沉积多层gesi量子点层和si间隔层:将所述图案化si衬底送入mbe腔内,保持780℃高温加热5分钟,以脱附表面钝化氢;将温度降至400℃,通过mbe在衬底上沉积40nm si缓冲层;在si缓冲层上,采用两步生长法沉积gesi量子点层和si间隔层,先沉积的ge层,停顿5分钟,再沉积的si层,间隔5分钟,重复沉积10层;完成后将衬底自然冷却到室温,取出样品。
80.步骤s5:用cvd方法在25μm厚的铜衬底上生长单层石墨烯薄膜。
81.步骤s6:将单层石墨烯转移到gesi量子点样品表面:在铜基单层石墨烯上旋涂
pmma,在旋涂过程中,转速为2500rad/s,时间为30秒;旋涂完成后在120℃的热板烘烤20分钟;将旋涂有pmma的铜基石墨烯,漂浮在质量浓度比为40%的fecl3溶液中30分钟,腐蚀铜基底;待铜基底腐蚀完全后,将得到的pmma/单层石墨烯,在去离子水中进行多次漂洗;用多层gesi量子点样品倾斜捞起石墨烯,放在70℃的热板上烘烤15分钟以上;将覆盖有pmma/单层石墨烯的gesi量子点样品依次浸入丙酮、乙醇溶剂,去除pmma。
82.步骤s7:采用标准紫外光刻工艺,rie工艺,得到方形台面型探测器结构:在样品表面旋涂光刻胶,曝光,显影,得到边长为0.5mm的方形掩膜,采用rie干法刻蚀,得到方形台面,刻蚀深度至高导si衬底层。
83.步骤s8:利用cvd在刻蚀后的台面结构上沉积sin
x
钝化层。
84.步骤s9:制备顶电极:在样品表面旋涂光刻胶,曝光,显影,得到顶电极接触窗口,通过热蒸镀在暴露的石墨烯表面制备in电极。
85.步骤s10:制备底电极:在样品表面旋涂光刻胶,曝光,显影,rie刻蚀,在si衬底表面开底电极窗口,通过热蒸镀在暴露的si衬底区域制备al电极。
86.步骤s11:封装、打线:利用金丝球焊机,将器件的两个电极由金线引出,与外部测试电路连接,完成探测器制备。
87.以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本技术的实施例和实施例中的特征可以任意相互组合。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1