1.本公开涉及纳米线,尤其涉及改进的用于制造纳米线的方法。
背景技术:2.纳米线对于在量子计算中的应用显示出巨大的前景。不幸的是,很难以精确的器件几何形状制造高质量的纳米线。用于制造纳米线的常规工艺包括选择性区域生长(sag),其中纳米线通过图案化的掩模层直接选择性地生长在衬底上。为了使许多纳米线器件正常工作,纳米线必须由导电半导体材料制成,诸如砷化铟(inas)、锑化铟(insb)或铟砷锑(inassb)。然后,在其上生长纳米线的衬底在所有相关器件操作频率(包括射频rf)处必须是电绝缘材料。满足这些标准的衬底材料的示例包括砷化镓(gaas)、磷化铟(inp)、磷化镓(gap)、硅(si)和锗(ge)。衬底和纳米线的晶格常数通常存在较大差异。这种晶格失配导致纳米线在生长过程中出现晶体缺陷,诸如位错和堆垛层错。晶体缺陷可以穿透纳米线,进而降低所得到的纳米线的性能。
3.鉴于上述情况,需要具有减少的晶体缺陷的纳米线及其制造方法。
技术实现要素:4.在一个实施例中,一种用于制造纳米线的方法包括提供牺牲衬底,在牺牲衬底上提供图案化的掩模层,通过图案化的掩模层中的开口在牺牲衬底上提供纳米线,以及去除牺牲衬底。由于牺牲衬底用于生长纳米线并随后被去除,因此可以选择牺牲衬底的材料以与纳米线的材料晶格匹配,而不考虑其电学特性。因此,可以生长和操作高质量的纳米线,而不会出现在使用晶格匹配的衬底时通常会经历的性能下降。
5.在一个实施例中,牺牲衬底通过诸如抛光或研磨等机械工艺去除。在另一个实施例中,通过选择性蚀刻工艺去除牺牲衬底。在一些实施例中,可以在牺牲衬底和纳米线之间提供牺牲层以促进选择性蚀刻工艺。
6.在阅读以下结合附图对优选实施例的详细描述后,本领域技术人员将理解本公开的范围并实现其附加方面。
附图说明
7.并入本说明书并形成本说明书一部分的附图图示出本公开的若干方面,并且与描述一起用于解释本公开的原理。
8.图1是图示出根据本公开的一个实施例的用于制造一个或多个纳米线的方法的流程图。
9.图2a至图2g-2是图示出根据本公开的一个实施例的图1的方法的图。
10.图3是图示出根据本公开的一个实施例的用于制造一个或多个纳米线的方法的流程图。
11.图4a至图4h-2是图示出根据本公开的一个实施例的图3的方法的图。
具体实施方式
12.下面阐述的实施例展现了使本领域技术人员能够实施实施例所必需的信息并说明了实施实施例的最佳模式。在根据附图阅读以下描述后,本领域技术人员将理解本公开的构思并且将认识到本文未特别提及的这些构思的应用。应当理解,这些构思和应用落入本公开和所附权利要求的范围内。
13.应当理解,尽管在本文中可以使用术语第一、第二等来描述各种元素,但是这些元素不应受这些术语的限制。这些术语仅用于区分一个元素与另一个元素。例如,在不脱离本公开的范围的情况下,可以将第一元素称为第二元素,并且类似地,可以将第二元素称为第一元素。如本文所用,术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
14.应当理解,当诸如层、区域或衬底之类的元素被称为“在”或“延伸到”另一个元素“上”时,它可以直接在另一个元素上或直接延伸到另一个元素上,或者也可以存在中间元素。相反,当元素被称为“直接在”或“直接延伸到”另一个元素“上”时,不存在中间元素。同样,应当理解,当诸如层、区域或衬底之类的元素被称为“在”另一个元素“之上”或“在”另一个元素“之上”延伸时,它可以直接在另一元素之上,或直接在另一个元素之上延伸,或者也可以存在中间元素。相反,当元素被称为“直接在”另一个元素“之上”或“直接在”另一个元素“之上”延伸时,不存在中间元素。还将理解,当一个元素被称为“连接”或“耦合”到另一个元素时,它可以直接连接或耦合到另一个元素,或者可以存在中间元素。相反,当元素被称为“直接连接”或“直接耦合”到另一个元素时,不存在中间元素。
15.在本文中可以使用诸如“下方”或“上方”或“上”或“下”或“水平”或“垂直”等相对术语来描述如图所示的一个元素、层或区域与另一元素、层或区域的关系。应当理解,这些术语和上面讨论的那些术语旨在涵盖器件的除了图中描绘的定向之外的不同定向。
16.本文使用的术语仅出于描述特定实施例的目的,并不旨在限制本公开。如本文所用,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文另有明确指示。将进一步理解,术语“包括”、“包含”、“含有”和/或“具有”在本文中使用时指定了所陈述的特征、整数、步骤、操作、元素和/或部件的存在,但是不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、部件和/或它们的组。
17.除非另有定义,否则本文使用的所有术语(包括技术和科学术语)与本公开所属领域的普通技术人员通常理解的含义相同。将进一步理解,本文使用的术语应被解释为具有与其在本说明书和相关领域的上下文中的含义一致的含义,并且除非本文明确如此定义,否则不会以理想化或过于正式的意义进行解释。
18.图1是图示出根据本公开的一个实施例的用于制造纳米线的方法的流程图。图2a至图2g图示出图1中的每一个步骤,因此图1和2在下面一起讨论。首先,提供牺牲衬底10(框100和图2a)。牺牲衬底10为生长高质量纳米线提供支撑。因此,牺牲衬底10是与将在其上生长的纳米线的材料晶格匹配的材料。如本文所定义,晶格匹配的材料具有小于2%的晶格常数差异。如上所述,为生长纳米线提供良好晶格匹配的材料通常与纳米线的操作不相容。这是因为提供良好晶格匹配的材料通常不是电绝缘材料。如下所述,牺牲衬底10在随后的步骤中被去除,因此牺牲衬底的电特性无关紧要。因此,牺牲衬底10的材料可以仅基于其机械特性,即其晶格常数来选择,以便为一个或多个纳米线提供理想的生长表面。根据牺牲衬底10上生长的纳米线的材料,牺牲衬底可以包括砷化铟(inas)、锑化铟(insb)或锑化镓
(gasb)。
19.在牺牲衬底10上提供图案化的掩模层12(框102和图2b)。图案化的掩模层12可以包括氧化物材料,诸如二氧化硅,或任何其他合适的用于提供掩模层的材料。提供图案化的掩模层12可以包括提供无图案掩模层,然后使用光刻工艺对无图案掩模层进行图案化。图案化的掩模层12中的一个或多个开口暴露牺牲衬底10的表面,在该表面上可以生长一个或多个纳米线。
20.通过图案化的掩模层12中的开口在牺牲衬底10上提供纳米线14(框104和图2c)。提供纳米线14可以包括使用选择性区域生长(sag)工艺来生长纳米线14。虽然纳米线14被示为均一结构,但纳米线14可以包括任何数量的纳米线层,这些纳米线层可以一起或单独生长,并且可以包括相同或不同的材料。纳米线14可以包括例如砷化铟(inas)、锑化铟(insb)和铟砷锑(inassb)。纳米线可以具有在5nm和300nm之间的厚度。此外,纳米线14可以具有纳米级(10-9
米)的直径或大于1000的长宽比。因为牺牲衬底10的材料被选择为与纳米线14的材料晶格匹配,所以所得到的纳米线14的质量可以非常高。换言之,纳米线14可以具有非常少(如果有)的缺陷,诸如位错和堆垛层错,从而改善纳米线14的性能。
21.在纳米线14上提供超导体层16(框106和图2d)。也可以在图案化的掩模层12的一部分上提供超导体层16。超导体层16可以通过任何合适的沉积工艺提供。超导体层16可以包括铝、铅、铌、铟、锡和钒中的一项。超导层16的厚度可以在3nm和30nm之间。
22.在纳米线14和超导体层16上提供支撑结构18(框108和图2e)。支撑结构18可以包括诸如氮化硅(sin)或二氧化硅(sio2)的电介质材料,或者可以包括有机聚合物膜。提供支撑结构18以对纳米线14提供机械支撑,以允许去除牺牲衬底10,如下所述。支撑结构18可以通过任何合适的电介质沉积工艺来提供,包括原位和非原位工艺。
23.去除牺牲衬底10(框110和图2f)。可以通过任何合适的工艺去除牺牲衬底10,例如通过机械工艺(例如,抛光/研磨)或化学工艺(例如,选择性蚀刻)。尽管图2f中未示出,但也可以去除图案化的掩模层12。如上所述,牺牲衬底10为纳米线14提供了理想的生长衬底,因为牺牲衬底10的材料被选择为与纳米线14的材料晶格匹配。然而,牺牲衬底10不具有用于纳米线14的操作的理想电特性。通过提供牺牲衬底10作为生长衬底并随后将其去除,可以在不干扰纳米线14的后续操作的情况下生长高质量的纳米线14。此外,牺牲衬底10在某些情况下可以重复使用,从而减少浪费和制造成本。
24.可选地,可以在纳米线14上提供背侧层20(框112以及图2g-1和图2g-2)。在一些实施例中,背侧层20是如图2g-1所示的单个覆盖层或附加超导体层。在其他实施例中,背侧层20是栅极结构,包括电介质层22和在电介质层22上的栅极接触24,如图2g-2所示。值得注意的是,背侧层20可以包括任何数量的附加层,这些附加层被配置为在不背离本公开的原理的情况下执行任何期望的功能。虽然在框108中在纳米线14的顶侧上提供超导体层16,但是可以在去除牺牲衬底10之后暴露的纳米线14的背侧上提供背侧层20。因此,纳米线14可以有效地被夹在超导体层16和背侧层20之间。背侧层20可以允许产生附加静电栅极,这可以实现对纳米线14中电子波函数的位置和/或电子密度的额外控制。因此,可以改善纳米线14的性能。
25.图3是图示出根据本公开的另一个实施例的用于制造纳米线的方法的流程图。图4a至图4h图示出图3中的每一个步骤,因此下面一起讨论图3和图4。关于图3讨论的方法与
图1中讨论的方法基本相同,并且从提供牺牲衬底10(框200和图4a)开始。牺牲衬底10为生长高质量纳米线提供支撑。因此,牺牲衬底10是与将在其上生长的纳米线的材料晶格匹配的材料。根据牺牲衬底10上生长的纳米线的材料,牺牲衬底10可以包括砷化铟(inas)、锑化铟(insb)、磷化铟(inp)或锑化镓(gasb)。在一些实施例中,牺牲衬底10可以包括多个层,诸如分级缓冲层。
26.在牺牲衬底10上提供牺牲层22(框202和图4b)。牺牲层22在牺牲衬底10和将在其上生长的纳米线之间提供屏障。牺牲层22的材料被选择为相对于纳米线14的材料是可选择性蚀刻的,使得牺牲衬底10可以在下面讨论的后续蚀刻工艺中容易地去除。在各种实施例中,牺牲层22可以包括锑化铝(alsb)、砷化铝(alas)和砷化铝镓(algasb),包括砷化铝蚀刻停止层。牺牲层22还可以提供与纳米线14的材料的晶格匹配。
27.在牺牲层22上提供图案化的掩模层12(框204和图4c)。图案化的掩模层12可以包括氧化物材料,诸如二氧化硅,或任何其他合适的用于提供掩模层的材料。提供图案化的掩模层12可以包括提供无图案掩模层,然后使用光刻工艺对无图案掩模层进行图案化。图案化的掩模层12中的一个或多个开口暴露牺牲衬底10的表面,在该表面上可以生长一个或多个纳米线。虽然牺牲层22被示为牺牲衬底10上的无图案层,使得图案化的掩模层12设置在牺牲层22上,但是在一些实施例中,牺牲层22可以仅设置在图案化的掩模层12的开口中,使得图案化的掩模层12在牺牲层22之前设置在牺牲衬底10上。
28.通过图案化的掩模层12中的开口在牺牲层22上提供纳米线14(框206和图4d)。提供纳米线14可以包括使用选择性区域生长(sag)工艺来生长纳米线14。虽然纳米线14被示为均一结构,但纳米线14可以包括任何数量的纳米线层,这些纳米线层可以一起或单独生长,并且可以包括相同或不同的材料。纳米线14可以包括例如砷化铟(inas)、锑化铟(insb)和铟砷锑(inassb)。纳米线14可以具有在5nm和300nm之间的厚度。此外,纳米线14可以具有纳米级(10-9
米)的直径或大于1000的长宽比。因为牺牲衬底10和牺牲层22的材料被选择为与纳米线14的材料晶格匹配,所以纳米线14的最终质量可以非常高。换言之,纳米线14可以具有非常少(如果有)的缺陷,诸如位错和堆垛层错,从而改善纳米线14的性能。
29.在纳米线14上提供超导体层16(框208和图4e)。也可以在图案化的掩模层12的一部分上提供超导体层16。超导体层16可以通过任何合适的沉积工艺提供。超导体层16可以包括铝、铅、铌、铟、锡和钒中的一项。超导层16的厚度可以在3nm和30nm之间。
30.在纳米线14和超导体层16上提供支撑结构18(框210和图4f)。支撑结构18可以包括电介质材料,例如氮化硅(sin)、二氧化硅(sio2),或有机聚合物膜。提供支撑结构18以对纳米线14提供机械支撑,以允许去除牺牲衬底10,如下所述。支撑结构18可以通过任何合适的电介质沉积工艺来提供,包括原位和非原位工艺。
31.去除牺牲衬底10和牺牲层22(框212和图4g)。尽管图4g中未示出,但也可以去除图案化的掩模层12。如上所述,去除牺牲衬底10可以包括选择性地蚀刻牺牲层22,其材料被选择为相对于纳米线14的材料被选择性地蚀刻。通过提供牺牲衬底10作为生长衬底并且随后去除它,可以在不干扰纳米线14的后续操作的情况下生长出高质量的纳米线14。
32.可选地,可以在纳米线14上提供背侧层20(框214以及图4h-1和图4h-2)。如上所述,背侧层20可以包括如图4g-1所示的单个覆盖层或附加超导体层,或者如图4g-2所示的包括电介质层22和在电介质层22上的栅极接触24的栅极控制结构。值得注意的是,背侧层
20可以包括任何数量的附加层,这些附加层被配置为在不背离本公开的原理的情况下执行任何期望的功能。具体地,虽然在框210中在纳米线14的顶侧上提供超导体层16,但是可以在去除牺牲衬底10之后暴露的纳米线14的背侧上提供背侧层20。因此,纳米线14可以有效地夹在超导体层16和背侧层20之间。背侧层20可以允许产生附加静电栅极,这可以实现对纳米线14中的电子波函数的位置和/或电子密度的额外控制。因此,可以改善纳米线14的性能。
33.值得注意的是,上面讨论的过程仅仅是图示出性的。一般而言,本公开考虑在晶格匹配的牺牲衬底上生长一个或多个纳米线,然后移除牺牲衬底以使其不干扰一个或多个纳米线的操作。本领域技术人员将理解,用于实现这些目标的任何合适的过程都在本文中被考虑。
34.本领域技术人员将会认识到对本公开的优选实施例的改进和修改。这样的改进和修改被考虑在本文中所公开的构思以及以下权利要求的范围内。