太阳能电池的制造的制作方法

文档序号:33462441发布日期:2023-03-15 04:35阅读:30来源:国知局
太阳能电池的制造的制作方法
太阳能电池的制造
1.本技术要求2020年7月13日提交的申请号为2007382,题为“proc
édé
de fabrication de contacts passiv
é
s pour cellules solaires ibc”的法国专利申请,和2020年10月28日提交的申请号为2011026,题为“fabrication de cellules solaires”的法国专利申请的优先权,其内容在法律允许的最大范围内通过引用并入。
技术领域
2.本公开总体上涉及一种太阳能电池并且更具体地涉及一种背面接触式太阳能电池结构和制造方法。


背景技术:

3.太阳能电池是将太阳光转化为电能的装置。通常,太阳能电池结构基于同一半导体衬底上存在的p型区域和n型区域。在背面接触式太阳能电池中,每个区域都耦合到太阳能电池背面的金属触点,以允许外部电路或装置耦合到太阳能电池并由太阳能电池供电,如us2016/0351737和us7468485所述。


技术实现要素:

4.需要改进当前的太阳能电池及其处理,特别是减少处理时间。
5.一个实施例解决了已知太阳能电池及其制造方法的全部缺点或部分缺点。
6.一个实施例提供了一种太阳能电池的制造方法,所述方法依次包括:
7.在半导体衬底的至少一个表面之上形成隧道氧化物;
8.在隧道氧化物之上形成掺杂有第一导电类型掺杂物的第一层;
9.在第一掺杂层上形成掩模;
10.在掩模之上形成掺杂有第二导电类型掺杂物的第二层;和
11.使用激光通过掺杂有第二导电掺杂物的第二层掺杂第一掺杂层的至少一个第一区域。
12.根据实施例,所述方法包括在形成第二层之后形成沟槽,所述沟槽在第二层、掩模、第一掺杂层和隧道氧化物中延伸。
13.根据实施例,沟槽将第一掺杂层的第一区域与第一掺杂层的第二区域分隔开。
14.根据实施例,所述方法包括在另一表面上对半导体衬底进行纹理化。
15.根据实施例,所述方法包括在第一掺杂层之上形成钝化膜,钝化层重新覆盖沟槽的内部。
16.一个实施例提供了一种通过上述方法获得的叉指型背接触或ibc太阳能电池。
17.一个实施例提供了一种包括ibc太阳能电池的太阳能电池板。
附图说明
18.上述特征和优点以及其他特征和优点将在下面结合附图以示例性而非限制性的
方式给出的具体实施例的描述中进行详细描述,其中:
19.图1是图示了太阳能电池的示例的截面图。
20.图2是图示了图1所示的太阳能电池的制造方法的示例的步骤的截面图。
21.图3图示了图2的制造方法的另一步骤;
22.图4图示了图2的制造方法的另一步骤;
23.图5图示了图2的制造方法的另一步骤;
24.图6图示了图2的制造方法的另一步骤;
25.图7图示了图2的制造方法的另一步骤;
26.图8图示了图2的制造方法的另一步骤;
27.图9图示了图2的制造方法的另一步骤;
28.图10图示了图2的制造方法的另一步骤;
29.图11图示了图2的制造方法的另一步骤;
30.图12图示了图2的制造方法的另一步骤;
31.图13图示了图2的制造方法的另一步骤;
32.图14图示了图2的制造方法的另一步骤;
33.图15图示了图2的制造方法的另一步骤;
34.图16图示了图2的制造方法的另一步骤;
35.图17图示了根据本说明书的实施例所述的太阳能电池的截面图;
36.图18是图示了根据本说明书的实施例所述的太阳能电池的制造方法的步骤的截面图。
37.图19图示了图18的制造方法的另一步骤;
38.图20图示了图18的制造方法的另一步骤;
39.图21图示了图18的制造方法的另一步骤;
40.图22图示了图18的制造方法的另一步骤;
41.图23图示了图18的制造方法的另一步骤;
42.图24图示了图18的制造方法的另一步骤;
43.图25图示了图18的制造方法的另一步骤;
44.图26图示了图18的制造方法的另一步骤;和
45.图27图示了图18的制造方法的另一步骤。
具体实施方式
46.在各个图中,相同的特征已由相同的附图标记指定。特别地,在各种实施例中共同的结构和/或功能特征可以具有相同的附图标记并且可以具有相同的结构、尺寸和材料特性。
47.为了清楚起见,仅详细说明和描述了对理解本文描述的实施例有用的操作和元件。
48.除非另有说明,当提到连接在一起的两个元件时,这表示除了导体之外没有任何中间元件的直接连接,并且当提到耦合在一起的两个元件时,这表示这两个元件可以连接或者它们可以通过一个或更多个其他元件耦合。
49.在以下公开中,除非另有说明,否则当提到绝对位置限定词时,例如“前”、“后”、“上”、“下”、“左”、“右”等术语,或提到相对位置限定词时,例如“之上”、“之下”、“较高”、“较低”等术语,或提到方位限定词时,例如“水平”、“垂直”等,均作为图中所示的方向的参考。
50.除非另有说明,表述“约”、“大致”、“基本上”和“大约”表示在10%以内,并且优选地在5%以内。
51.图1是图示了太阳能电池的示例的截面图。
52.图1所示的太阳能电池由半导体衬底10制成,所述半导体衬底10具有用于在正常操作期间接收太阳辐射的正面部分和形成太阳能电池的金属触点的背面部分。太阳能电池具有由掺杂层37覆盖的纹理化正面。
53.图1的太阳能电池包括第一导电类型的第一区域32,例如p型区域,以及第二导电类型的第二区域36,例如n型区域,其形成在衬底10的背面之上的未掺杂层30b中。隧道氧化物20b可以形成在衬底10的背面上,更准确地,形成在衬底10和未掺杂层30b之间。层37是第二导电类型。
54.金属触点41连接到区域32和区域36以允许外部电路和装置从太阳能电池接收电力。
55.图1的太阳能电池可以包括钝化层38、39、40以保护结构免受外部电损坏。
56.图2至图16是图示了图1所示的太阳能电池的制造方法的示例的步骤的截面图。
57.图1所示的太阳能电池的制造过程可以包括:
[0058]-制备(图2)半导体衬底10;
[0059]-在衬底10的正面101上形成(图3)隧道氧化物层20f并在衬底10的背面103上形成另一个隧道氧化物层20b;
[0060]-在层20f的正面上形成半导体层30f并在层20b的背面上形成另一个半导体层30b;
[0061]-在层30b的背面上形成(图4)层31,层31由掺杂层和未掺杂层构成,掺杂层形成在整个层30b之上,未掺杂层形成在整个掺杂层之上。掺杂层包括第一导电类型(p或n)掺杂物;
[0062]-使用例如湿蚀刻工艺在层31中形成(图5)开口310;
[0063]-通过使用激光使层31的掺杂物在层30b中热扩散,从而在层30b中形成(图6)区域32;
[0064]-在结构周围沉积(图7)掩膜层33;
[0065]-从结构的正面去除(图8)掩膜层33,更准确地说,从层30f的正面以及从层30f、层20f和衬底10的一部分的侧面去除掩膜层33;
[0066]-去除(图9)层20f和层30f,并对层30f的正面进行纹理化处理;
[0067]-在掩膜层33中形成(图10)开口34;
[0068]-在包含第二导电类型掺杂物的气体环境35下进行处理(图11),以便在层30b中形成区域36和在衬底10的正面上形成层37;
[0069]-去除(图12)掩膜层33;
[0070]-热处理(图13)以便在层30b的所有深度中扩散区域36的掺杂物;
[0071]-在层37的正面形成(图14)钝化和抗反射(anti-reflection)膜38;
[0072]-在结构的背面形成(图15)钝化膜39,在结构的侧面形成钝化膜40;和
[0073]-通过层39的湿蚀刻步骤和金属沉积步骤在结构的背面形成(图16)电极41。
[0074]
图17是图示了根据本说明书的实施例所述的太阳能电池的截面图。
[0075]
图17所示的太阳能电池由半导体衬底50制成,所述半导体衬底50具有用于在正常操作期间接收太阳辐射的正面部分和形成与太阳能电池的金属触点的背面部分。太阳能电池具有由掺杂层64覆盖的纹理化正面。
[0076]
图17的太阳能电池包括形成于衬底50的背面之上的一个或更多个第一导电类型的区域541,例如p型区域,和一个或更多个第二导电类型的区域66,例如n型区域。隧道氧化物52可以形成在衬底50的背面上,更准确地说,形成在衬底50和区域541、66之间。
[0077]
金属触点76、78分别连接到区域541和66以允许外部电路和装置从太阳能电池接收电力。
[0078]
图17的太阳能电池可以包括钝化层70、72、74以保护结构免受外部电损坏。
[0079]
此外,图17中所示的太阳能电池可以包括在区域541和区域66之间的沟槽60和在衬底50中的具有第二导电类型掺杂物的低深度掺杂衬底68。
[0080]
图18图示了根据本说明书的实施例所述的接触式太阳能电池的制造步骤。
[0081]
在本实施例中,衬底50是半导体衬底、例如硅晶片,优选掺杂有n型掺杂物,例如磷(p),或p型掺杂物,例如镓(ga)和硼(b)。
[0082]
衬底50具有正面501和背面503。正面501是太阳能电池的用于接收太阳辐射的一侧。使用同样从晶片表面蚀刻损伤的方法(锯损伤蚀刻-sde),将衬底50减薄至,例如约240μm的厚度。
[0083]
图19图示了根据本说明书的实施例所述的接触式太阳能电池的另一制造步骤。
[0084]
在图19中,在隧道氧化物层52之上形成掺杂层54,例如p掺杂多晶硅层。
[0085]
隧道氧化物层52形成在背面503之上并且,例如,形成在衬底50的正面之上。隧道氧化物层52被形成为足够薄从而增加电子直接隧穿隧道氧化物层52的概率。隧道氧化物层52可以具有约7埃至约20埃的厚度。在一个实施例中,隧道氧化物层52具有约10埃的厚度。隧道氧化物52层可以通过,例如热生长或化学沉积(例如等离子体增强化学气相沉积(pecvd)或低压化学气相沉积(lpcvd))形成。可以使用臭氧氧化法形成隧道氧化物层52,该方法涉及将衬底50浸入包含悬浮在去离子水中的臭氧的浴中。例如,可以首先使用氢氧化钾对衬底50进行湿蚀刻以减薄衬底50,然后进行冲洗-清洁循环,然后使用臭氧氧化法以形成隧道氧化物层52,所有这些步骤都在同一设备中进行。在使用臭氧氧化期间,一层隧道氧化物在衬底50的两侧生长。
[0086]
根据替代实施例,隧道氧化物层52也可以使用其他方法形成而不损害本说明书的优点。
[0087]
多晶硅层54可具有约2000埃的厚度。多晶硅层可以使用三氯化硼(bcl3)或乙硼烷(b2h6)与硅烷(sih4)通过pecvd或lpcvd沉积在隧道氧化物52上。
[0088]
在图19中,在沉积层54之后,在层54之上和之下形成掩膜层56以完全覆盖所述结构。掩模层56将用于随后的蚀刻和激光工艺(图23至图25),以暴露层54的部分。
[0089]
在图19中,层57形成在掩膜层56之上和之下以完全覆盖所述结构。在一个示例中,层57可以掺杂有n型掺杂物。在一个实施例中,层57由磷硅酸盐玻璃(psg)制成,例如,通过
磷化氢(ph3)和正硅酸四乙酯(teos)的大气反应制成。
[0090]
在图19中,另一掩膜层58形成在层57之上从而完全覆盖所述结构。
[0091]
掩膜层56和58和层57可以通过,例如热生长或化学沉积(pecvd或lpcvd)形成。然而,可以应用各种其他方法来形成掩模层56、58和层57。
[0092]
掩膜层56、58可以由被选择为不具有导电掺杂物的未掺杂材料并且具有防止n导电掺杂物扩散的能力的材料形成。在一个示例中,掩模层56、58可以是单层,其包括氧化硅(sio
x
)、氮化硅(sih
x
)、氮氧化硅(sio
x
ny)、本征非晶硅、碳化硅(sic)或这些材料的组合。特别地,当掩膜层56、58是由碳化硅形成的单层时,掩膜层56、58可以有效地防止掺杂物的扩散。
[0093]
图20图示了根据本说明书的实施例所述的制造接触式太阳能电池的另一制造步骤。
[0094]
在图20中,掩模层56、58和层57从结构的正面(从衬底50的正面501的一侧)去除。如果掩模层56、58和层57在前面的步骤中通过pecvd形成,则可以跳过所述去除步骤。
[0095]
图21图示了根据本说明书的实施例所述的接触式太阳能电池的另一制造步骤。
[0096]
在一个实施例中,掩模层56、58、层57、层52、层54以及衬底50的一部分在一些区域中从背面(从衬底50的背面503的一侧)去除,以产生沟槽60。例如,沟槽60是通过使用激光制成。
[0097]
在另一个实施例中,掩膜层56、58和层57在一些区域中从背面(从衬底50的背面503的一侧)去除,从而在一个步骤中产生孔。例如,孔是通过使用激光制成的。在另一步骤中,掩膜层56、58和层57用于蚀刻p型掺杂层54和隧道氧化物层52。在同一实施例中,使用包含缓冲氢氟酸、氢氧化钾和异丙醇或tmah(四甲基氢氧化铵(tertramathylammonium hydroxid))溶液的湿蚀刻工艺来图案化层54、层52和衬底50。湿蚀刻工艺蚀刻未被掩模层56、58和层57覆盖的层54、隧道氧化物层52和衬底50的部分。湿蚀刻工艺进行蚀刻,以形成从孔延伸到层54、隧道氧化物层52和衬底50中的沟槽60。区域541和542形成在层54中。
[0098]
在图21中,在掩模层56、58、层57、层54、层52和衬底50上制作了两个沟槽60,然而,沟槽60的数量可以不同于两个。每个沟槽60具有30nm至200μm的宽度。
[0099]
图21还图示了区域542的掺杂以产生区域66。区域52的掺杂工艺是通过使用激光进行的。
[0100]
激光可以具有1064nm或更小的波长。这是因为难以制造波长超过1064nm的激光。即,红外光、紫外光和可见光的所有波长都可以用作激光。此时,在一个示例中,激光可以是波长在500nm至650nm范围内的激光,即绿色激光。
[0101]
图22图示了根据本说明书的实施例所述的接触式太阳能电池的另一制造步骤。
[0102]
在图22中,衬底50的正面501被纹理化。正面501可以使用湿蚀刻工艺或包括例如氢氧化钾和异丙醇或tmah(四甲基氢氧化铵)溶液的另一化学工艺进行纹理化。湿蚀刻工艺用随机金字塔对正面501进行纹理化,从而有利地提高太阳辐射收集效率。
[0103]
本实施例说明半导体衬底50的正面501在该步骤中被纹理化。然而,本说明书的实施例不限于此。
[0104]
图23图示了根据本说明书的实施例所述的接触式太阳能电池的另一制造步骤。
[0105]
在图23中,图22中所示的结构被置于包含n型导电掺杂物的气体环境62中。可以使
用包含n型导电掺杂物的各种气体来产生气体环境62。在一个示例中,当导电掺杂物是磷(p)时,气体环境62可以包括磷酰氯(pocl3)。
[0106]
此时,半导体衬底50的正面501可以掺杂有n型导电掺杂物。由此,也可以在掺杂过程期间形成正面场区域64。然而,本说明书的实施例不限于此。因此,在掺杂过程中,可以在半导体衬底50的正面501之上形成防扩散膜(anti-diffusion film),使得在掺杂过程中不形成正面场区域64。在这种情况下,正面场区域64可以在从包括例如离子注入、热扩散和激光掺杂的各种工艺中选择的单独工艺中形成。
[0107]
在图23所示的步骤中,正面场区域64和区域68在pocl3下的相同的掺杂过程中实现。
[0108]
在此步骤之后,例如对结构进行退火。
[0109]
图24图示了根据本说明书的实施例所述的接触式太阳能电池的另一制造步骤。
[0110]
此时,掩模56、58和层57被去除并且所述结构离开气体环境62。
[0111]
图25图示了根据本说明书的实施例所述的接触式太阳能电池的另一制造步骤。
[0112]
在图25中,绝缘膜70形成在半导体衬底50的正面上。绝缘膜70包括形成在层64的正面上的正面钝化膜和防反射膜。例如,正面钝化膜和防反射膜形成在层64的整个正面之上。正面钝化膜和防反射膜可以使用各种方法形成,例如真空沉积、化学气相沉积、旋涂、丝网印刷或喷涂。正面钝化膜和防反射膜的形成顺序没有规定。
[0113]
图26图示了根据本说明书的实施例所述的接触式太阳能电池的另一制造步骤。
[0114]
在图26中,绝缘膜72和74分别形成在所述结构的背面和侧面上。
[0115]
例如,背面钝化膜72形成在所述结构的整个背面之上。可以使用例如真空沉积、化学气相沉积、旋涂、丝网印刷或喷涂的各种方法来形成背面钝化膜72。
[0116]
图27图示了根据本说明书的实施例所述的接触式太阳能电池的另一制造步骤。
[0117]
图27图示了分别连接到导电区域541和66的第一电极76和第二电极78的形成。
[0118]
第一电极76和第二电极78可以通过,例如丝网印刷,将糊剂施加到背面,然后执行,例如烧穿或激光烧制接触来形成。背面,例如在沉积金属之前,蚀刻钝化膜72,以产生金属化。
[0119]
与第一实施例相反,第二实施例和实施模式的优点在于隧道氧化物、掺杂层和掩模沉积在一个步骤中实现。
[0120]
第二实施例和实施模式的优点是太阳能电池的制造过程比第一实施例更短且更便宜。
[0121]
已经描述了各种实施例和变体。本领域技术人员将理解,可以组合这些实施例的某些特征,并且本领域技术人员将容易想到其他变体。
[0122]
最后,基于上文提供的功能描述,本文描述的实施例和变型的实际实现在本领域技术人员的能力范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1