一种改善mosfet器件hci效应的方法及mosfet器件
技术领域
1.本发明涉及半导体制造技术领域,具体涉及一种改善mosfet器件hci效应的方法及mosfet器件。
背景技术:2.在目前的集成电路中,高压器件(如输入/输出(i/o)器件)是重要的组成部分。与低压器件(如核心器件)相比,高压器件具有高工作电压和高驱动能力的特点。但是在高工作电压下,高压器件沟道内存较强的横向电场,使得载流子在输运过程中发生碰撞电离,产生额外的电子空穴对,部分热载流子注入栅氧化层,使得器件阈值电压上升,饱和电流和载流子迁移率下降等,这种现象称为热载流子注入(hot carrier inject,hci))效应。hci效应是高压器件设计中经常遇到的问题,是影响器件特性和可靠性的主要因素,尤其是nmos器件。
3.现行业界为了改善hci效应,常用轻掺杂漏(light doped drain,ldd)工艺技术来降低器件栅(gate)端到漏(drain)端附近峰值电场,轻掺杂的ldd结构作为衔接区使电场出现一个缓变的过程,削弱了峰值电场强度,以改善hci效应。但是随着mosfet器件尺寸不断缩小,28nm及以下的先进制程中,传统ldd结构对于hci效应的改善能力有限,使得高压器件的寿命、可靠性问题变得十分严峻,亟需新的技术来进一步改善hci效应。
技术实现要素:4.为了解决上述现有技术存在的问题,本发明提供一种改善mosfet器件hci效应的方法及mosfet器件,用以进一步改善hci效应,提升器件性能。
5.本发明提供一种改善mosfet器件hci效应的方法,包括以下步骤:
6.步骤一、提供衬底,所述衬底内形成有阱区和浅槽隔离结构;
7.步骤二、在所述阱区上形成栅极结构;
8.步骤三、以所述栅极结构为掩膜,在所述衬底中进行间隔多次的ldd离子注入;其中,所述ldd离子注入的方向为第一次为垂直注入,其余次为向沟道方向延伸的倾斜方向。
9.优选地,步骤一中所述衬底为硅衬底。
10.优选地,步骤三中所述倾斜为大角度的倾斜。
11.优选地,步骤三中所述ldd离子注入之前或之后还包括:以栅极结构为掩膜,在所述半导体衬底中进行晕环注入的步骤。
12.优选地,所述方法还包括:在所述栅极结构两侧形成侧墙;以所述栅极结构及侧墙为掩膜,进行源/漏极离子注入形成源/漏区。
13.本发明还提供一种mosfet器件,包括:
14.衬底;
15.形成于所述衬底内的阱区和浅槽隔离结构;
16.形成于所述阱区上方的栅极结构;
17.形成于所述栅极结构两侧的所述阱区中的ldd结构;
18.形成于所述栅极结构侧面的侧墙;以及
19.形成于所述侧墙的侧面的所述阱区中的源区、漏区;
20.其中,所述ldd结构的离子呈渐进梯度分布;所述ldd结构不只分布于所述侧墙下方区域,还延伸到沟道区域。
21.本发明通过改变ldd离子注入角度,让ldd注入向沟道方向的延伸,并分多次的进行ldd离子注入以形成渐进式ldd离子分布,可有效增加热载流子缓冲,降低峰值电场,从而进一步改善hci效应,并且其能提升漏端的能带,兼顾短沟道效应,进一步提升器件性能。
附图说明
22.通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
23.图1显示为现有技术的mosfet器件结构与器件沟道横向能带的示意图;
24.图2显示为本发明实施例的mosfet器件结构与器件沟道横向能带的示意图;
25.图3显示为本发明实施例的改善mosfet器件hci效应的方法的流程图。
具体实施方式
26.以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。
27.此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
28.除非上下文明确要求,否则整个申请文件中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
29.在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
30.现有技术形成ldd的工艺流程为:在完成多晶栅极的定义之后,首先进行一次低剂量低能量的注入,形成轻掺杂区,然后cvd淀积一层sio2,接下来用反应离子刻蚀(rie)去除sio2,由于反应离子刻蚀的特点,如果控制得当的话,正好能够把源漏区的sio2刻蚀干净,而栅极两侧留下侧墙,最后再进行大剂量的源漏注入(或者是金属硅化物工艺)形成源漏端。
31.如图1所示,ldd注入位置是透过侧墙(spacer)定义,在mos隔离侧墙形成以前增加一道轻掺杂的离子注入工艺,隔离侧墙形成后依然进行源漏重掺杂离子注入工艺,漏端与沟道之间会形成一定宽度的轻掺杂区域,该区域使得电场向漏端延伸,削弱了峰值电场,从而降低漏端附近峰值电场,达到削弱hci效应的目的。但目前随着工艺微缩的演进,现有ldd结构对于hci效应的改善有限。尤其是i/o器件,在较高的操作电压下工作,对hci效应的改善提出更高的要求。因此,本发明提出一种改善mosfet器件hci效应的方法及mosfet器件,
用于进一步降低栅(gate)端到漏(drain)端峰值电场,进一步改善hci效应。
32.下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
33.图2显示为本发明实施例的mosfet器件结构与器件沟道横向能带的示意图;图3显示为本发明实施例的改善mosfet器件hci效应的方法的流程图。如图3所示,包括以下步骤:
34.步骤一、提供衬底,所述衬底内形成有阱区和浅槽隔离结构。
35.衬底可以是单晶硅、多晶硅或非晶硅;衬底也可以是硅、锗、砷化镓或硅锗化合物;衬底还可以具有外延层或绝缘体上的硅衬底(soi衬底);衬底还可以是其它半导体材料。本发明实施例中,衬底为硅衬底,浅沟槽隔离(图中未示出)结构用于隔离不同的晶体管,防止不同晶体管之间电学连接,浅沟槽隔离结构的材料可以为氧化硅、氮化硅、氮氧化硅其中的一种或几种。有源区位于浅沟槽隔离结构之间,在有源区内定义阱区域。阱区分为n型或p型,如图2所示,本发明实施例中为p型阱区(pw)。
36.步骤二、在阱区上形成栅极结构。
37.在衬底上采用化学气相沉积工艺及刻蚀工艺形成栅介质层和栅极,所述栅极形成于栅介质层上方,栅介质层和栅极构成栅极结构。栅介质层可以为氧化硅或氮氧化硅,在28nm技术节点以下,优选高介电常数(高k)材料,如氧化铝,氧化锆,氧化铪等。栅极一般为多晶硅。
38.步骤三、以栅极结构为掩膜,在衬底中进行间隔多次的ldd离子注入。
39.本发明实施例中,ldd离子注入分多次进行,ldd离子注入的方向为第一次为垂直注入,其余次为向沟道方向延伸的倾斜方向。倾斜为大角度的倾斜。也就是说让离子尽可能远的注入到沟道方向。并且,形成渐进式的ldd结构。具体如图2所示,本发明在现有垂直注入轻掺杂离子的基础上,再进行向沟道方向延伸的倾斜方向的离子注入,不仅使离子注入到沟道方向,而且利用前后注入离子的分布差异使形成的ldd结构呈渐进式分布,能带图上可有效的增加热载流子的缓冲,进一步降低峰值电场,从而达到进一步改善hci效应的目的。
40.通常地,在所述ldd大角度倾斜离子注入之前或之后,还可进行以栅极结构为掩膜,在所述半导体衬底中进行晕环注入的步骤,以抑制hci)效应和击穿效应,进一步提高器件性能。本注入技术为本领域内技术人员公知技术,不再详述。
41.此外,本发明实施例的方法还包括:步骤四、在所述栅极结构两侧形成侧墙;步骤五、以栅极结构及侧墙为掩膜,进行源/漏极离子注入形成源/漏区。如图2所示,侧墙位于栅极结构右侧,左侧侧墙图中未示出。以侧墙的侧面为自对准条件进行n+掺杂的源漏注入在所述栅极结构两侧的衬底中形成漏区,源区图中未示出。
42.本发明实施例提供的mosfet器件,包括衬底、阱区和浅槽隔离结构、栅极结构、侧墙以及源漏区。阱区和浅槽隔离结构形成于所述衬底内;栅极结构形成于所述阱区上方;ldd结构形成于所述栅极结构两侧的所述阱区中;侧墙形成于所述栅极结构侧面;源漏区形成于所述侧墙的侧面的所述阱区中;
43.其中,ldd结构不只分布于所述侧墙下方区域,还延伸到沟道区域。ldd结构的离子呈渐进梯度分布。
44.本发明实施例由原本固定位于侧墙下方的ldd结构,通过改变ldd注入角度让较淡的ldd注入向沟道方向的延伸,并分多次的ldd注入来变成渐进式注入结构,可有效的增加
热载流子的缓冲,进一步降低峰值电场,进一步改善hci效应。在改善hci效应的同时,还能提升漏端的能带,兼顾短沟道效应。并且本发明实施例通过改变ldd注入角度并多次进行ldd注入,其不需要增加光罩而使成本增加,也不需要增加工艺步骤而产生复杂度。
45.应当理解,本发明实施例的mosfet器件中许多其他层也可以存在,例如间隔元件和/或其他合适的部件,为了简化,图示中予以省略。
46.以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。