非极性AlGaN基深紫外光电探测器外延结构及其制备方法

文档序号:31132060发布日期:2022-08-13 06:27阅读:147来源:国知局
非极性AlGaN基深紫外光电探测器外延结构及其制备方法
非极性algan基深紫外光电探测器外延结构及其制备方法
技术领域
1.本发明涉及光电器件探测器技术领域,特别是涉及一种非极性algan基深紫外光电探测器外延结构及其制备方法。


背景技术:

2.algan作为第三代半导体材料,其具有宽禁带宽度、强抗辐射能力、高电子饱和漂移速率、高热稳定性的特点,被广泛用于实现高性能光电器件。同时algan材料因其可调的禁带宽度,覆盖对应200~365nm范围的紫外光,是深紫外光探测器制备的理想材料。
3.与传统极性c面algan材料相比,非极性面algan材料不受自发极化带来的影响,不存在量子限制斯塔克效应,且具有光学各向异性的特性,使得非极性面algan基器件天然具有比极性面algan基器件更高的稳定性和应用潜力。现阶段异质外延生长的非极性面algan材料由于材料与衬底之间晶格失配较大,普遍存在晶体质量差、表面粗糙、位错密度高等问题,严重制约了非极性面algan基器件的性能,因此研究制备高质量非极性algan材料对于改善探测器性能具有重要意义。


技术实现要素:

4.为了解决上述现有技术的不足,本发明提供了一种非极性algan基深紫外光电探测器外延结构及其制备方法,采用laalo3为衬底,减少衬底与外延缓冲层之间的位错与应力,提高了紫外光电探测器的光电响应度,同时设计两层组分不同的algan外延缓冲层的结构,缓解外延层和衬底之间的化学不相容性,降低了非极性algan外延层材料的位错密度和表面粗糙度,增强了非极性algan基深紫外光电探测器的性能。由于laalo3材料在高温下不稳定,本发明通过采用脉冲激光沉积技术,利用激光烧蚀靶材料,能够在低温下实现外延材料的生长,从而抑制laalo3衬底与algan材料的界面反应,因此制备的非极性algan基深紫外光电探测器响应度大、灵敏度高。
5.本发明的第一个目的在于提供一种非极性algan基深紫外光电探测器外延结构。
6.本发明的第二个目的在于提供一种非极性algan基深紫外光电探测器外延结构的制备方法。
7.本发明的第一个目的可以通过采取如下技术方案达到:
8.一种非极性algan基深紫外光电探测器外延结构,采用laalo3为衬底,在所述laalo3衬底上依次生长非极性aln缓冲层、非极性al
0.15
ga
0.85
n缓冲层和非极性al
0.7
ga
0.3
n外延层,其中,所述laalo3衬底以(100)面为外延面,以aln[11-20]为外延生长方向。
[0009]
进一步的,所述非极性aln缓冲层的厚度为300~400nm。
[0010]
进一步的,所述非极性al
0.15
ga
0.85
n缓冲层的厚度为350~400nm。
[0011]
进一步的,所述非极性al
0.7
ga
0.3
n外延层的厚度为450~550nm。
[0012]
本发明的第二个目的可以通过采取如下技术方案达到:
[0013]
一种非极性algan基深紫外光电探测器外延结构的制备方法,所述方法包括:
[0014]
采用laalo3为衬底,对所述laalo3衬底进行表面清洁;
[0015]
将清洁后laalo3衬底放入超高真空室中,高温退火,去除表面污染;
[0016]
在超高真空室中通入氮气,采用脉冲激光沉积技术,在所述laalo3衬底上外延生长非极性aln缓冲层;
[0017]
在生长非极性aln缓冲层的环境下,改变靶材料,在所述非极性aln缓冲层上原位生长非极性al
0.15
ga
0.85
n缓冲层;
[0018]
在生长非极性aln缓冲层的环境下,改变靶材料,在所述al
0.15
ga
0.85
n缓冲层上生长非极性al
0.7
ga
0.3
n外延层;
[0019]
其中,所述laalo3衬底以(100)面为外延面,以aln[11-20]为外延生长方向。
[0020]
进一步的,生长非极性aln缓冲层的环境,具体为:
[0021]
保持超高真空室腔内真空度,激光能量为220~300mj、激光频率15~30hz,氮气流量2~8sccm,真空室氮气气压为6~10mtorr,在富n氛围下生长所述非极性aln缓冲层。
[0022]
进一步的,在所述laalo3衬底上外延生长非极性aln缓冲层,al源为aln高纯陶瓷靶材。
[0023]
进一步的,在所述非极性aln缓冲层上原位生长非极性al
0.15
ga
0.85
n缓冲层,靶材料为富镓algan陶瓷。
[0024]
进一步的,在所述al
0.15
ga
0.85
n缓冲层上生长非极性al
0.7
ga
0.3
n外延层,靶材料为富铝algan陶瓷。
[0025]
进一步的,所述非极性aln缓冲层的厚度为300~400nm;
[0026]
所述非极性al
0.15
ga
0.85
n缓冲层的厚度为350~400nm;
[0027]
所述非极性al
0.7
ga
0.3
n外延层厚度为450~550nm。
[0028]
本发明相对于现有技术具有如下的有益效果:
[0029]
1、本发明提供的非极性algan基深紫外光电探测器外延结构中的(110)面laalo3衬底与非极性面aln材料的(11-20)面的晶格失配小,仅为0.4%(为理论值),是绝佳的异质外延衬底材料,能够有效的减少衬底与外延缓冲层之间的位错与应力,提高所生长材料晶体质量,增强了algan基深紫外探测器的探测率,降低了探测器的暗电流,提高了紫外光电探测器的光电响应度。
[0030]
2、本发明采用低温脉冲激光沉积技术(pld)生长非极性algan紫外光电探测器外延,有效抑制了高温下衬底与外延层材料之间的界面反应,保证了高质量非极性algan外延薄膜的生长。如果使用传统mocvd等高温生长薄膜的方法,由于laalo3材料在高温下不稳定,会使得laalo3衬底析出氧原子与外延材料发生反应,形成位错缺陷密度很高的界面反应层,严重影响晶体质量。本发明通过设计两层组分不同的algan外延缓冲层的结构,缓解外延层和衬底之间的化学不相容性,逐渐释放拉应力,从而进一步降低非极性algan外延层的位错密度和表面粗糙度,有利于减少探测器的暗电流,增大光响应度与探测率,整体增强了非极性algan基深紫外光电探测器的性能。
[0031]
3、本发明使用非极性algan作为器件的基础材料,相较于极性algan材料,不受材料本身自发极化和内建电场带来的影响,有效提高了紫外光电探测器的光电响应度,并且由于非极性algan光学各向异性特点,表现出偏振敏感特性,使得紫外光电探测器具有探测偏振光的能力。
附图说明
[0032]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
[0033]
图1为本发明实施例的非极性algan基深紫外光电探测器外延结构示意图。
[0034]
图2为本发明实施例1的非极性algan外延片[0001]方向的rheed图。
[0035]
图3为本发明实施例1的非极性algan(11-20)薄膜x射线摇摆曲线测试图。
[0036]
图1中:
[0037]
1-laalo3衬底,2-非极性aln缓冲层,3-非极性al
0.15
ga
0.85
n缓冲层,4-非极性al
0.7
ga
0.3
n外延层。
具体实施方式
[0038]
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。应当理解,描述的具体实施例仅仅用以解释本技术,并不用于限定本技术。
[0039]
本实施例提供了一种非极性algan基深紫外光电探测器外延结构的制备方法,包括以下步骤:
[0040]
(1)衬底及其晶向选取:所述laalo3衬底以(100)面为外延面,以aln[11-20]方向为材料的外延生长方向;
[0041]
(2)衬底表面清洁:将所述laalo3衬底依次放入丙酮、无水乙醇、去离子水三种介质中,依次超声清洗,取出后用去离子水冲洗并使用热高纯氮气吹干;
[0042]
(3)衬底表面退火除杂:将所述laalo3衬底放入超高真空室(uhv)中,将腔内真空度抽至2.5~2.9
×
10-10
torr,将温度升高至600~800℃,实施衬底退火工艺从而去除衬底表面污染和获得平坦表面;
[0043]
(4)非极性aln缓冲层的生长:在完成衬底退火步骤后,将腔体温度降至450℃,保持腔内真空度,采用脉冲激光沉积工艺,激光能量为220~300mj、激光频率15~30hz,氮气流量2~8sccm,真空室氮气气压为6~10mtorr,在富n氛围下生长所述非极性aln缓冲层,al源为aln高纯陶瓷靶材;
[0044]
(5)非极性al
0.15
ga
0.85
n缓冲层的外延生长:在完成所述非极性aln缓冲层生长后,保持腔体内真空度、激光能量、激光频率和氮气流量不变,改变靶材料为富镓algan陶瓷,在所述非极性aln缓冲层上原位生长非极性al
0.15
ga
0.85
n缓冲层;
[0045]
(6)非极性al
0.7
ga
0.3
n缓外延层的生长:在完成所述非极性al
0.15
ga
0.85
n缓冲层生长后,保持腔体内真空度、激光能量、激光频率和氮气流量不变,改变靶材料为富铝algan陶瓷,在所述非极性al
0.15
ga
0.85
n缓冲层上外延生长所述非极性al
0.7
ga
0.3
n外延层。
[0046]
如图1所示,本实施例制备的非极性algan基深紫外光电探测器外延结构,包括在laalo3衬底1上依次生长的非极性aln缓冲层2、非极性al
0.15
ga
0.85
n缓冲层3和非极性
al
0.7
ga
0.3
n外延层4,其中:非极性aln层厚度为300~400nm,非极性al
0.15
ga
0.85
n缓冲层的厚度为350~400nm,非极性al
0.7
ga
0.3
n外延层厚度为450~550nm。
[0047]
生长的外延结构非极性algan薄膜表面[0001]方向rheed衍射图参见图2,衍射图表现为隐约的条纹状,可见表面为质量较好的单晶;非极性algan(11-20)薄膜x射线摇摆曲线测试结果参见图3,半峰宽仅为0.11
°
,可见薄膜晶体质量良好。
[0048]
实施例1:
[0049]
本实施例提供了一种非极性algan基深紫外光电探测器外延结构的制备方法,具体如下:
[0050]
(1)衬底及其晶向选取:采用laalo3为衬底,以(100)密排面为外延面,以aln[11-20]方向作为材料外延生长方向;
[0051]
(2)衬底表面清洁:将所述laalo3衬底依次放入丙酮、无水乙醇、去离子水三种介质中,依次超声清洗5min,取出后用去离子水冲洗并使用热高纯氮气吹干
[0052]
(3)衬底表面退火除杂和平整:将清洁后laalo3衬底放入超高真空室(uhv)中,将腔内真空度抽至2.5
×
10-10
torr,将温度升高至600℃,退火处理30min;
[0053]
(4)非极性aln缓冲层的生长:采用脉冲激光沉积工艺,将腔体温度降至450℃,保持腔内真空度为2.5
×
10-10
torr,激光能量为220mj,激光频率15hz,通入氮气流量2sccm并保持氮气压力为6mtorr,在富n条件下生长aln成核层,al源为aln高纯陶瓷靶材;
[0054]
(5)非极性al
0.15
ga
0.85
n缓冲层的外延生长:保持参数与步骤(4)一致,改变靶材料为富镓algan陶瓷,在所述非极性aln缓冲层上原位生长非极性al
0.15
ga
0.85
n缓冲层;
[0055]
(6)非极性al
0.7
ga
0.3
n缓外延层的生长:保持参数与步骤(4)一致,改变靶材料为富铝algan陶瓷,在所述非极性al
0.15
ga
0.85
n缓冲层上原位生长非极性al
0.7
ga
0.3
n缓冲层;
[0056]
如图1所示,本实施例制备的非极性algan基深紫外光电探测器外延结构,包括在laalo3衬底1上依次生长非极性aln缓冲层2、非极性al
0.15
ga
0.85
n缓冲层3和非极性al
0.7
ga
0.3
n外延层4,其中:非极性aln缓冲层厚度为300nm,非极性al
0.15
ga
0.85
n缓冲层厚度为360nm,非极性al
0.7
ga
0.3
n外延层为500nm。
[0057]
实施例2:
[0058]
本实施例提供了一种n极性面alalgan基深紫外光电探测器外延结构的制备方法,具体如下:
[0059]
(1)衬底及其晶向选取:采用laalo3衬底,以(100)密排面为外延面,以aln[11-20]方向作为材料外延生长方向;
[0060]
(2)衬底表面清洁:将所述laalo3衬底依次放入丙酮、无水乙醇、去离子水三种介质中,依次超声清洗5min,取出后用去离子水冲洗并使用热高纯氮气吹干;
[0061]
(3)衬底表面退火除杂和平整:将清洁后laalo3衬底放入超高真空室(uhv)中,将腔内真空度抽至2.5
×
10-10
torr,将温度升高至700℃,退火处理30min;
[0062]
(4)非极性aln缓冲层的生长:采用脉冲激光沉积工艺,将腔体温度降至450℃,保持腔内真空度为2.5
×
10-10
torr,激光能量为280mj,激光频率25hz,通入氮气流量5sccm并保持氮气压力为8mtorr,在富n条件下生长aln成核层薄膜,al源为aln高纯陶瓷靶材;
[0063]
(5)非极性al
0.15
ga
0.85
n缓冲层的外延生长:保持参数与步骤(4)一致,改变靶材料为富镓algan陶瓷,在所述非极性aln缓冲层上原位生长非极性al
0.15
ga
0.85
n缓冲层;
[0064]
(6)非极性al
0.7
ga
0.3
n缓外延层的生长:保持参数与步骤(4)一致,改变靶材料为富铝algan陶瓷,在所述非极性al
0.15
ga
0.85
n缓冲层上原位生长非极性al
0.7
ga
0.3
n缓冲层;
[0065]
如图1所示,本实施例制备的非极性algan基深紫外光电探测器外延结构,包括在laalo3衬底1上依次生长非极性aln缓冲层2、非极性al
0.15
ga
0.85
n缓冲层3、非极性al
0.7
ga
0.3
n外延层4,其中:非极性aln缓冲层厚度为300nm,非极性al
0.15
ga
0.85
n缓冲层厚度为360nm,非极性al
0.7
ga
0.3
n外延层为450nm。
[0066]
实施例3:
[0067]
本实施例提供了一种n极性面alalgan基深紫外光电探测器外延结构的制备方法,具体如下:
[0068]
(1)衬底及其晶向选取:采用laalo3衬底,以(100)密排面为外延面,以aln[11-20]方向作为材料外延生长方向;
[0069]
(2)衬底表面清洁:将所述laalo3衬底依次放入丙酮、无水乙醇、去离子水三种介质中,依次超声清洗5min,取出后用去离子水冲洗并使用热高纯氮气吹干;
[0070]
(3)衬底表面退火除杂和平整:将清洁后laalo3衬底放入超高真空室(uhv)中,将腔内真空度抽至2.5
×
10-10
torr,将温度升高至800℃,退火处理30min;
[0071]
(4)非极性aln缓冲层的生长:采用脉冲激光沉积工艺,将腔体温度降至450℃,保持腔内真空度为2.5
×
10-10
torr,激光能量为300mj,激光频率30hz,通入氮气流量8sccm并保持氮气压力为10mtorr,在富n条件下生长aln成核层薄膜,al源为aln高纯陶瓷靶材;
[0072]
(5)非极性al
0.15
ga
0.85
n缓冲层的外延生长:保持参数与步骤(4)一致,改变靶材料为富镓algan陶瓷,在所述非极性aln缓冲层上原位生长非极性al
0.15
ga
0.85
n缓冲层;
[0073]
(6)非极性al
0.7
ga
0.3
n缓外延层的生长:保持参数与步骤(4)一致,改变靶材料为富铝algan陶瓷,在所述非极性al
0.15
ga
0.85
n缓冲层上原位生长非极性al
0.7
ga
0.3
n缓冲层。
[0074]
如图1所示,本实施例制备的非极性algan基深紫外光电探测器外延结构,包括在laalo3衬底1上依次生长非极性aln缓冲层2、非极性al
0.15
ga
0.85
n缓冲层3、非极性al
0.7
ga
0.3
n外延层4,其中:非极性aln缓冲层厚度为350nm,非极性al
0.15
ga
0.85
n缓冲层厚度为380nm,非极性al
0.7
ga
0.3
n外延层为500nm。
[0075]
综上所述,本发明提供的非极性algan基深紫外光电探测器外延结构,包括在laalo3衬底上依次生长的非极性aln缓冲层、非极性al
0.15
ga
0.85
n缓冲层和非极性al
0.7
ga
0.3
n外延层,通过采用laalo3作为衬底,以(100)面为外延面,以aln[11-20]为外延生长方向,增强了algan基深紫外探测器的功率和探测率,提高了紫外光电探测器的光电响应度;本发明提供的非极性algan基深紫外光电探测器外延结构,降低了生长的非极性algan外延层材料的位错密度和表面粗糙度,有利于减少探测器的暗电流,增大光响应度与探测率,整体增强了非极性algan基深紫外光电探测器的性能。
[0076]
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1