一种静电泄放自保护的p-GaN栅极结构增强型GaNHEMT器件的制作方法

文档序号:31947082发布日期:2022-10-26 05:00阅读:163来源:国知局
一种静电泄放自保护的p-GaN栅极结构增强型GaNHEMT器件的制作方法
一种静电泄放自保护的p-gan栅极结构增强型gan hemt器件
技术领域
1.本发明涉及半导体器件及集成电路技术领域,特别涉及一种静电泄放自保护的p-gan栅极结构增强型gan hemt器件。


背景技术:

2.现如今传统的硅基器件即将达到自身的物理极限,逐渐难以在愈加严苛的环境下应用。氮化镓作为第三代半导体的典型代表之一,相比于硅材料,具有更宽的禁带宽度、更高的击穿电场、更高的极限工作温度、更快的电子漂移速度,在功率器件方面具有很好的应用前景,受到了电力电子领域研究者们的广泛关注。利用algan/gan界面的自发极化形成具有高电子迁移率的二维电子气,可设计出一种横向结构的gan高电子迁移率晶体管(high electron mobility transistor,hemt)。
3.利用天然形成的二维电子气,可轻易实现耗尽型(常开型)功率器件,但耗尽型gan hemt很不利于驱动设计和整个电力电子系统的可靠性。为实现增强型(常关型)gan hemt,在过去的几十年里已经发展出了多种器件结构,如p-gan栅极结构、氟离子注入型栅结构、凹槽栅结构以及硅基场效应晶体管与耗尽型gan hemt的cascode共源共栅型级联结构。其中,p-gan栅极结构的增强型gan hemt技术成熟度高,已逐渐产业化,进入电力电子器件市场。
4.然而,p-gan栅极结构的增强型gan hemt的可靠性问题依然需要关注。其中静电释放(electro-static discharge,esd)是生活中常见的现象,人体或其他材料上积累的静电荷接触到芯片引脚,就会在极短的时间内(几十到几百纳秒)产生极大的瞬时电流或电压烧毁器件,使器件永久失效。虽然gan hemt器件耐高压性能优异,但栅源耐压极低。p-gan栅极结构的gan hemt器件结构特殊,metal/p-gan/algan栅极部分为肖特基接触,没有栅氧层保护,器件内部也不存在pn结辅助静电泄放,当栅源施加较高电压时,栅极极易击穿失效。
5.当前研究表明,无静电泄放自保护的p-gan栅极结构增强型gan hemt器件esd(hbm模式)失效电压不足500 v,远低于工业标准2000 v。因此,从提高抗esd电压等级的角度出发,增强器件鲁棒性,对提升器件可靠性具有重要意义。


技术实现要素:

6.本发明的目的在于提供一种静电泄放自保护的p-gan栅极结构增强型gan hemt器件,以解决背景技术中的问题。
7.为解决上述技术问题,本发明提供了一种静电泄放自保护的p-gan栅极结构增强型gan hemt器件,包括:第一gan器件,用于实现功率开关器件功能;第二gan器件,用于静电泄放,保护所述第一gan器件;所述第一gan器件和所述第二gan器件之间通过注入隔离工艺形成高阻区隔断两者间的电连接;
所述第一gan器件包括衬底、成核层、缓冲层、沟道层、势垒层、源电极、漏电极和栅电极;所述衬底、所述成核层、所述缓冲层、所述沟道层和所述势垒层依次堆叠;所述源电极、所述漏电极和所述栅电极位于所述势垒层上;所述沟道层所采用材料为gan,所述势垒层所采用材料为algan;所述沟道层与所述势垒层的接触界面因自发极化和压电极化形成二维电子气,所述二维电子气在所述源电极与所述漏电极之间实现电荷传输。
8.在一种实施方式中,所述第二gan器件包括衬底、成核层、缓冲层、沟道层、势垒层、负电极和正电极;所述第二gan器件中的所述衬底、所述成核层、所述缓冲层、所述沟道层、所述势垒层与所述第一gan器件共用,所述负电极和所述正电极位于所述势垒层上。
9.在一种实施方式中,所述源电极与所述势垒层之间、所述漏电极与所述势垒层之间的接触均为欧姆接触。
10.在一种实施方式中,所述栅电极包括栅电极p-gan层和栅电极金属,所述栅电极p-gan层与所述栅电极金属之间的接触为肖特基接触或欧姆接触;所述栅电极p-gan层是mg掺杂的p型gan材料,耗尽所述栅电极p-gan层下方的二维电子气。
11.在一种实施方式中,所述负电极与所述势垒层之间的接触为欧姆接触。
12.在一种实施方式中,所述正电极包括正电极p-gan层和正电极金属,所述正电极p-gan层与所述正电极金属之间的接触为欧姆接触;所述正电极p-gan层是mg掺杂的p型gan材料,耗尽所述正电极p-gan层下方的二维电子气,形成pn结,与所述负电极组成二极管。
13.在一种实施方式中,所述栅电极和所述负电极互联,作为静电泄放自保护的p-gan栅极结构增强型gan hemt器件的栅极;所述源电极和所述正电极互联,作为静电泄放自保护的p-gan栅极结构增强型gan hemt器件的源极。
14.在一种实施方式中,在所述静电泄放自保护的p-gan栅极结构增强型gan hemt器件中,所述第二gan器件的反向击穿电压介于所述第一gan器件的栅极驱动电压和所述第一gan器件的栅极正向击穿电压之间;当源极电位高于栅极电位且电位差高于第二gan器件的阈值电压时,所述第二gan器件导通,泄放静电;当栅极电位高于源极电位且电位差高于第二gan器件的反向击穿电压时,所述第二gan器件导通,泄放静电。
15.在一种实施方式中,所述静电泄放自保护的p-gan栅极结构增强型gan hemt器件串并联了多个第二gan器件。
16.本发明利用二极管的正向导通和反向击穿形成静电泄放通道,保护gan hemt器件;通过串并联第二gan器件增加静电泄放电流,并在保证gan hemt器件正常工作的前提下实现静电泄放自保护。本发明可有效提高器件抗esd电压等级,增强器件鲁棒性,提升器件可靠性。同时,本发明的制备工艺与p-gan栅极结构增强型gan hemt器件兼容,有利于与p-gan栅极结构增强型gan hemt器件的工艺集成。
附图说明
17.图1为本发明提供的gan hemt器件俯视图。
18.图2为沿图1中aa’方向和bb’方向的剖视图。
19.图3为本发明提供的gan hemt器件等效电路示意图。
具体实施方式
20.以下结合附图和具体实施例对本发明提出的一种静电泄放自保护的p-gan栅极结构增强型gan hemt器件作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
21.本发明提供一种静电泄放自保护的p-gan栅极结构增强型gan hemt器件,其俯视图如图1所示,包括第一gan器件100和第二gan器件200。所述第一gan器件100用于实现功率开关器件功能;所述第二gan器件200用于静电泄放,保护所述第一gan器件100。所述第一gan器件100和所述第二gan器件200之间通过注入隔离工艺形成高阻区300隔断两者间的电连接。
22.如图2所示为沿图1中aa’方向和bb’方向的剖视图,所述第一gan器件100包括衬底10、成核层20、缓冲层30、沟道层40、势垒层50、源电极61、漏电极62、栅电极70;所述沟道层40与所述势垒层50接触界面因自发极化和压电极化形成二维电子气400,所述二维电子气400在所述源电极61与所述漏电极62之间实现电荷传输,其中所述沟道层40所采用材料为gan,所述势垒层50所采用材料为algan。
23.所述源电极61与所述势垒层50之间的接触为欧姆接触,所述源电极61的材质为金或铝;所述漏电极62与所述势垒层50之间的接触为欧姆接触,所述漏电极62的材质为金或铝。
24.所述栅电极70包括栅电极p-gan层71和栅电极金属72,所述栅电极p-gan层71与所述栅电极金属72之间的接触为肖特基接触或欧姆接触,所述栅电极金属72的材质为金或铝。
25.所述栅电极p-gan层71是mg掺杂的p型gan材料,耗尽所述栅电极p-gan层71下方的二维电子气,实现增强型gan hemt器件,改变栅极电压可调节耗尽区,从而控制器件通断。
26.请继续参阅图2,所述第二gan器件200包括衬底10、成核层20、缓冲层30、沟道层40、势垒层50、负电极80和正电极90。
27.所述负电极80与所述势垒层50之间的接触为欧姆接触,所述负电极80的材质为金或铝;所述正电极90包括正电极p-gan层91和正电极金属92,所述正电极p-gan层91与所述正电极金属92之间的接触为欧姆接触,所述正电极金属92的材质为金或铝。
28.所述正电极p-gan层91是mg掺杂的p型gan材料,耗尽所述正电极p-gan层91下方的二维电子气,形成pn结,与所述负电极80组成二极管。
29.所述第一gan器件100的栅电极70和所述第二gan器件200的负电极80互联作为静电泄放自保护的p-gan栅极结构增强型gan hemt器件的栅极,所述第一gan器件100的源电极61和所述第二gan器件200的正电极90互联作为静电泄放自保护的p-gan栅极结构增强型gan hemt器件的源极。
30.在所述静电泄放自保护的p-gan栅极结构增强型gan hemt器件中,所述第二gan器件(组)的反向击穿电压介于所述第一gan器件100的栅极驱动电压和所述第一gan器件的栅极正向击穿电压之间,在保证gan hemt器件正常工作的前提下实现静电泄放自保护;当源极电位高于栅极电位且电位差高于第二gan器件200的阈值电压时,所述第二gan器件200导通,泄放静电;当栅极电位高于源极电位,且电位差高于第二gan器件200的反向击穿电压
时,所述第二gan器件200导通,泄放静电。
31.如图1和图3所示,本实施例所提供的器件串并联了多个第二gan器件200,形成第二gan器件组,通过串联结构可提高二极管反向击穿电压,使第二gan器件组的反向击穿电压大于第一gan器件100的栅极驱动电压。同时,本实施例所提供的器件串并联方式还能够提升器件鲁棒性,少数第二gan器件200的失效并不会影响器件的静电泄放自保护功能。
32.上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1