显示面板及显示装置的制作方法

文档序号:32216006发布日期:2022-11-16 07:34阅读:96来源:国知局
显示面板及显示装置的制作方法

1.本技术涉及显示技术领域,特别涉及一种显示面板及显示装置。


背景技术:

2.显示面板中包括衬底基板以及位于衬底基板上的多种不同颜色的子像素,每个子像素包括:位于衬底基板上且依次层叠的阳极层、功能膜层以及阴极层。
3.相关技术中,不同颜色的子像素在不同波长处的光学增益特性不同,因此需要将不同颜色的子像素的功能膜层的厚度设计的不同,以满足不同颜色的子像素的发光效率。例如,显示面板包括红色子像素,绿色子像素以及蓝色子像素,且红色子像素的功能膜层的厚度大于绿色子像素的功能膜层的厚度,绿色子像素的功能膜层的厚度大于蓝色子像素的功能膜层的厚度。
4.但是,由于不同颜色的子像素的功能膜层的厚度不同,因此不同颜色的子像素的功能膜层远离衬底基板的表面与衬底基板之间的距离不同,即用于设置阴极层的表面的平坦性较差,容易导致阴极层断裂,显示面板的显示效果较差。


技术实现要素:

5.本技术提供了一种显示面板及显示装置,可以解决相关技术中阴极层断裂导致显示面板的显示效果较差的问题。所述技术方案如下:
6.一方面,提供了一种显示面板,所述显示面板包括:
7.衬底基板;
8.位于所述衬底基板的一侧的多个子像素,每个所述子像素包括依次层叠的阳极层,功能膜层以及阴极层,每个所述子像素所在区域形成所述子像素的微腔,所述多个子像素至少包括第一颜色的子像素和第二颜色的子像素;
9.以及位于所述多个子像素远离所述衬底基板的一侧的光取出层,所述光取出层至少包括第一部分和第二部分,所述第一部分在所述衬底基板上的正投影与所述第一颜色的子像素在所述衬底基板上的正投影至少部分重叠,所述第二部分在所述衬底基板上的正投影与所述第二颜色的子像素在所述衬底基板上的正投影至少部分重叠;
10.其中,所述多个子像素中任意两个所述子像素的功能膜层远离所述衬底基板的表面和所述衬底基板之间的距离的差值小于差值阈值,所述第一部分的厚度和所述第二部分的厚度不同。
11.可选的,所述第一颜色的子像素的微腔长度大于所述第二颜色的子像素的微腔长度,所述第一部分的厚度大于所述第二部分的厚度;
12.其中,对于每个所述子像素,所述子像素的微腔长度用于表示所述子像素中阳极层远离所述衬底基板的表面与所述子像素发出光线的表面之间的距离。
13.可选的,所述多个子像素还包括第三颜色的子像素,所述光取出层还包括第三部分,所述第三部分在所述衬底基板上的正投影与所述第三颜色的子像素在所述衬底基板上
的正投影至少部分重叠;
14.所述第三部分的厚度和所述第一部分的厚度不同,且和所述第二部分的厚度不同。
15.可选的,所述第二颜色的子像素的微腔长度大于所述第三颜色的子像素的微腔长度,所述第二部分的厚度大于所述第三部分的厚度。
16.可选的,所述第一颜色为红色,所述第二颜色为绿色,所述第三颜色为蓝色。
17.可选的,所述功能膜层包括:沿远离所述衬底基板的方向依次层叠的电子注入层,电子传输层,发光层,光学调整层,空穴传输层以及空穴注入层。
18.可选的,所述多个子像素的功能膜层中的发光层和光学调整层均为图案化膜层;
19.所述多个子像素的功能膜层中的空穴传输层和空穴注入层均为共用膜层;
20.所述多个子像素的功能膜层中的电子注入层和电子传输层均为图案化膜层,或者所述多个子像素的功能膜层中的电子注入层和电子传输层均为共用膜层;
21.其中,图案化膜层包括间隔设置的多个图案,所述多个图案在所述衬底基板上的正投影位于所述多个子像素所在区域,且不位于所述多个子像素的间隔区域,共用膜层在所述衬底基板上的正投影位于所述多个子像素所在区域,且位于所述多个子像素的间隔区域。
22.可选的,所述功能膜层包括:沿远离所述衬底基板的方向依次层叠的第一电子注入层,第一电子传输层,第一发光层,第一光学调整层,第一空穴传输层,电荷产生层,第二电子注入层,第二电子传输层,第二发光层,第二光学调整层,第二空穴传输层以及空穴注入层。
23.可选的,所述多个子像素的功能膜层中的第一发光层,第一光学调整层,电荷产生层,第二发光层以及第二光学调整层均为图案化膜层;
24.所述多个子像素的功能膜层中的第一空穴传输层,第二电子注入层,第二电子传输层,第二空穴传输层以及空穴注入层均为共用膜层;
25.所述多个子像素的功能膜层中的第一电子注入层和第一电子传输层均为图案化膜层,或者所述多个子像素的功能膜层中的第一电子注入层和第一电子传输层均为共用膜层;
26.其中,图案化膜层包括间隔设置的多个图案,所述多个图案在所述衬底基板上的正投影位于所述多个子像素所在区域,且不位于所述多个子像素的间隔区域,共用膜层在所述衬底基板上的正投影位于所述多个子像素所在区域,且位于所述多个子像素的间隔区域。
27.可选的,所述功能膜层包括:沿远离所述衬底基板的方向依次层叠的空穴注入层,空穴传输层,第一发光层,第二发光层,第一空穴阻挡层,电荷产生层,第三发光层,第二空穴阻挡层,电子传输层以及电子注入层。
28.可选的,所述多个子像素的功能膜层中的空穴注入层,空穴传输层以及电荷产生层均为图案化膜层;
29.所述多个子像素的功能膜层中的第一发光层,第二发光层,第一空穴阻挡层,第三发光层,第二空穴阻挡层,电子传输层以及电子注入层均为共用膜层;
30.其中,图案化膜层包括间隔设置的多个图案,所述多个图案在所述衬底基板上的
reality, ar)设备一直受到市场的关注。目前,头戴式设备(或者称为可穿戴显示设备) 的出货量均较大,三年复合增长率为96%。当前的智能手机和电视最终可能都会被更符合人体工程学的智能眼镜形态的设备(即头戴式设备)所取代,这些头戴式设备可以让数字世界以及模拟世界和谐共存。有机发光二极管(organiclight-emitting diode,oled)显示面板一直都是vr设备和ar设备研发的关键组件。现有主流的vr设备和ar设备采用的是硅基oled(si-oled)显示面板,该si-oled显示面板的制造方法与智能手机或者电视的尺寸较大的oled 面板不同,该si-oled显示面板是通过直接在硅基上制备oled形成的显示面板。si-oled显示面板中的像素的像素密度(pixels per inch,ppi)更高,像素的尺寸更小。目前,si-oled显示面板较为成熟的量产技术是采用白色发光二极管(woled)与彩膜层(color filter,cf)相结合的方式实现彩色化的显示效果。虽然现有的像素密度的si-oled显示面板已经可以满足部分vr设备的显示需求,但现有微型oled显示面板的ppi和亮度水平还较低,还无法满足ar 设备以及较为高端的vr设备的需求。但是现有的si-oled显示面板 (woled+cf)光效损失大且色域低,显示效果较差。
49.相对于si-oled显示面板(woled+cf)来说,若si-oled显示面板直接对子像素的发光层进行图案化设计(例如采用掩膜板进行图案化蒸镀),则理论上是可以获得更高的器件效率和超高的色域表现。相对于传统的si-oled显示面板(woled+cf),这种设计产品的显示亮度可以提升20倍以上。在显示面板处于相同的驱动条件下,可以有效降低功耗,改善烧屏的问题。同时,这种设计产品能够解决现有微型oled显示面板的显示亮度和ppi的问题,且该产品具有更高的亮度和分辨率,能够克服或抵消光学器件的限制,实现原来无法想象的目标。
50.通常,oled显示面板(发光层进行图案化设计)理论上可以实现高效率和高色域的需求,比如手机量产使用的低温多晶硅(low temperature poly-silicon, ltps)oled显示面板。但是,不同于玻璃基板或者柔性基板的oled显示面板,高ppi(ppi》3000)的si-oled显示面板中的子像素是近半导体级别的尺寸,约为5
×
5μm2(平方微米)甚至更小,且子像素的发光区域之间的距离小于2μm (微米)。这些si-oled显示面板的特点,对si-oled显示面板(将发光层进行图案化设计)在制备上带来了新的问题,也提出了更高的要求和挑战。
51.对于si-oled显示面板(将发光层进行图案化设计),要图案化制备得到超小尺寸的子像素的发光层以及光学调整(prime)层,需要使用大深宽比的掩膜板(mask)进行制备(大深宽比的掩膜板用于表示掩膜板中用于形成图案的开口的深度与开口的宽度的比值较大)。大深宽比的mask在图案化蒸镀时,对蒸镀图案具有一定的准直效果。这样可以满足si-oled显示面板中形成的蒸镀图案的精度要求,且子像素的发光层以及prime层的图案化的shadow(阴影) 的尺寸要严格控制小于1μm至2μm的要求。也即是,不同于传统的oled显示面板中用于制备发光层的精细金属掩膜(fine metal mask,fmm)技术,si-oled 显示面板中图案化的膜层采用的mask需要有大的深宽比。在si-oled显示面板的制备中,不仅需要通过mask(大深宽比)完成发光层(emission layer,eml) 的图案化,还需要通过mask(大深宽比)完成prime层的图案化。但是大的深宽比的mask在蒸镀工艺中位于开口处的部分容易有材料的堆积,从而导致形成的图案的畸变。也即是,这种mask不仅使用寿命较低,而且会影响子像素的良率。
52.目前,oled显示面板中的oled器件采用的是效率较高的第二节点的增益光学腔的
腔长(也可称为微腔长度),不同颜色的子像素在第二节点下的光学腔长不同,因此不同颜色的子像素中膜层的厚度差异较大。例如,参考图1,红色子像素的光学腔长大于绿色子像素的光学腔长,绿色子像素的光学腔长大于蓝色子像素的光学腔长。由此,红色子像素中膜层的厚度大于绿色子像素中膜层的厚度,绿色子像素中膜层的厚度大于蓝色子像素中膜层的厚度,如红色子像素中的膜层比绿色子像素中的膜层厚50nm(纳米)左右,比蓝色子像素中的膜层厚90nm左右。
53.但是,在si-oled显示面板中,由于子像素的尺寸小,且子像素的发光区域之间的距离小,因此用于隔断相邻子像素的发光区域的像素界定层(pixel defining layer,pdl)的隔断边缘角度较大。进一步的,若不同颜色子像素中膜层的厚度差异较大,则容易造成显示面板中所有子像素共用的阴极层的局部虚接或者断裂,严重降低显示面板的显示效率以及显示效果。
54.另外,子像素的发光层和阳极层之间的膜层相对于发光层远离阳极层的一侧的膜层而言,更容易导致多个子像素之间产生电学串扰。图1中由于子像素的发光层和阳极层之间的空穴注入层(hole injection layer,hil)以及空穴传输层(hole transport layer,htl)的载流子迁移率较大,因此子像素的载流子可能会传输至与该子像素相邻的子像素,产生较大的横向电流,多个子像素之间会产生电学串扰,影响显示装置的显示效果(例如影响色域)。
55.图2是本技术实施例提供的一种显示面板的结构示意图。参考图2可以看出,该显示面板10可以包括:衬底基板101,位于衬底基板101的一侧的多个子像素102,以及位于多个子像素102远离衬底基板101的一侧的光取出层 (capping layer,cpl)103。
56.参考图2,每个子像素102可以包括依次层叠的阳极层(anode layer)1021,功能膜层1022以及阴极层(cathode layer)1023。显示面板10中的多个子像素 102的阴极层1023可以为共用膜层。该共用膜层可以用于表示其在衬底基板101 上的正投影位于多个子像素102所在区域,且位于多个子像素102的间隔区域。该共用膜层可以为未采用掩膜板进行图案化处理的共通膜层。其中,图2中的功能膜层以共用膜层为例,实际上功能膜层1022可以包括多个膜层,多个膜层中的一部分膜层可以为共用膜层,另一部分膜层不为共用膜层。
57.多个子像素102至少包括第一颜色的子像素102a和第二颜色的子像素 102b。光取出层103至少包括第一部分1031和第二部分1032,第一部分1031 在衬底基板101上的正投影与第一颜色的子像素102a在衬底基板101上的正投影至少部分重叠(第一部分1031与第一颜色的子像素102a对应),第二部分 1032在衬底基板101上的正投影与第二颜色的子像素102b在衬底基板101上的正投影至少部分重叠(第二部分1032与第二颜色的子像素102b对应)。也即是,第一颜色的子像素102a发出的光线可以从光取出层103的第一部分1031 射出,第二颜色的子像素102b发出的光线可以从光取出层103的第二部分1032 射出。
58.在本技术实施例中,多个子像素102中任意两个子像素102的功能膜层1022 远离衬底基板101的表面和衬底基板101之间的距离的差值小于差值阈值。该差值阈值可以在保证不同颜色的子像素102的寿命的均一性的前提下尽可能的小。例如,该差值阈值可以为10nm(纳米)。
59.可选的,第一颜色的子像素102a中功能膜层1022远离衬底基板101的表面和衬底基板101之间的距离,以及第二颜色的子像素102b中功能膜层1022 远离衬底基板101的表
面和衬底基板101之间的距离的差值小于差值阈值。也即是,第一颜色的子像素102a中功能膜层1022远离衬底基板101的表面和衬底基板101之间的距离,以及第二颜色的子像素102b中功能膜层1022远离衬底基板101的表面和衬底基板101之间的距离得差值可以较小,即两者可以近似的相等。由此,第一颜色的子像素102a中用于形成阴极层1023的表面和第二颜色的子像素102b中用于形成阴极层1023的表面可以近似的共面。进一步的,可以提高形成阴极层1023的表面的平坦性,减小阴极层1023断裂的概率,保证显示面板10的显示效果。
60.同时,光取出层103的第一部分1031的厚度和光取出层103的第二部分1032 的厚度不同,即可使得第一颜色的子像素102a的微腔长度和第二颜色的子像素 102b的微腔长度不同。进一步的,可以使得第一部分1031的厚度满足第一颜色的子像素102a的光学增益特性,并使得第二部分1032的厚度满足第二颜色的子像素102b的光学增益特性,同时保证显示面板10中第一颜色的子像素102a 和第二颜色的子像素102b的发光效率。
61.其中,每个子像素102所在区域形成子像素102的微腔,每个子像素102 可以在其微腔的作用下高效出光。对于每个子像素102,子像素102的微腔长度可以用于表示子像素102中阳极层1021远离衬底基板101的表面与子像素102 发出光线的表面之间的距离。本技术实施例中,子像素102发出的光线可以从光取出层103远离衬底基板101的表面射出,因此该光取出层103远离衬底基板101的表面可以为子像素102发出光线的表面。由此,第一颜色的子像素102a 的微腔长度可以用于表示第一颜色的子像素102a的阳极层1021远离衬底基板 101的表面与光取出层103的第一部分1031远离衬底基板101的表面之间的距离。第二颜色的子像素102b的微腔长度可以用于表示第二颜色的子像素102b 的阳极层1021远离衬底基板101的表面与光取出层103的第二部分1032与远离衬底基板101的表面之间的距离。
62.也即是,本技术实施例提供的显示面板10能够在满足不同颜色的子像素102 的光学增益特性的前提下,减小阴极层1023断裂的概率,保证显示面板10中子像素102的发光效率以及显示面板10的显示效果。
63.综上所述,本技术实施例提供了一种显示面板,该显示面板包括多个子像素以及光取出层,每个子像素包括依次层叠的阳极层,功能膜层以及阴极层。该多个子像素至少包括第一颜色的子像素和第二颜色的子像素。由于任意两个子像素中功能膜层远离衬底基板的表面和衬底基板之间的距离的差值小于差值阈值,因此可以使得不同颜色的子像素所在区域形成阴极层的表面的平坦性较好,减小阴极层断裂的概率,提高显示面板的显示效果。同时,光取出层中与第一颜色的子像素对应的第一部分的厚度以及与第二颜色的子像素对应的第二部分的厚度不同,可以使得光取出层的厚度满足对应子像素的光学增益特性,保证显示面板中子像素的发光效率。
64.可选的,该显示面板10可以为硅基显示面板。该显示面板10可以应用于 ar设备或vr设备中。
65.可选的,第一颜色的子像素102a的微腔长度可以大于第二颜色的子像素 102b的微腔长度。也即是,第一颜色的子像素102a中阳极层1021靠近衬底基板101的表面与光取出层103的第一部分1031远离衬底基板101的表面之间的距离,大于第二颜色的子像素102b中阳极层1021靠近衬底基板101的表面与光取出层103的第二部分1032远离衬底基板101的表面之间的距离。因此,第一颜色的子像素102a对应的光取出层103的第一部分1031的厚度可以大于第二颜色的子像素102b对应的光取出层103的第二部分1032的厚度。
66.参考图3,多个子像素102还可以包括第三颜色的子像素102c。光取出层 103还可以包括第三部分1033。该第三部分1033在衬底基板101上的正投影与第三颜色的子像素102c在衬底基板101上的正投影至少部分重叠(第三部分 1033与第三颜色的子像素102c对应)。也即是,第三颜色的子像素102c发出的光线可以从光取出层103的第三部分1033射出。
67.由于多个子像素102中任意两个子像素102的功能膜层1022远离衬底基板 101的表面和衬底基板101之间的距离的差值小于差值阈值,因此第三颜色的子像素102c中功能膜层1022远离衬底基板101的表面和衬底基板101之间的距离,可以与第一颜色的子像素102a中功能膜层1022远离衬底基板101的表面和衬底基板101之间的距离以及第二颜色的子像素102b中功能膜层1022远离衬底基板101的表面和衬底基板101之间的距离的差值均小于差值阈值。也即是,第一颜色的子像素102a中用于形成阴极层1023的表面,第二颜色的子像素102b中用于形成阴极层1023的表面以及第三颜色的子像素102c中用于形成阴极层1023的表面近似的共面。由此,可以提高形成的阴极层1023(共通膜层) 的表面的平坦性,减小阴极层1023断裂的概率,保证显示面板10的显示效果。
68.同时,光取出层103的第三部分1033的厚度可以和光取出层103的第一部分1031的厚度不同,且和光取出层103的第二部分1032的厚度不同。由此,即可使得第三颜色的子像素102c的微腔长度,与第一颜色的子像素102a的微腔长度以及第二颜色的子像素102b的微腔长度均不同。进一步的,可以使得第三部分1033的厚度满足第三颜色的子像素102c的光学增益特性,保证显示面板 10中第三颜色的子像素102c的发光效率。
69.可选的,第二颜色的子像素102b的微腔长度可以大于第三颜色的子像素 102c的微腔长度。也即是,第二颜色的子像素102b中阳极层1021靠近衬底基板101的表面与光取出层103的第二部分1032远离衬底基板101的表面之间的距离,大于第三颜色的子像素102c中阳极层1021靠近衬底基板101的表面与光取出层103的第三部分1033远离衬底基板101的表面之间的距离。因此,第二颜色的子像素102b对应的光取出层103的第二部分1032的厚度可以大于第三颜色的子像素102c对应的光取出层103的第三部分1033的厚度。
70.在本技术实施例中,显示面板10的多个子像素102可以包括红色(red,r) 子像素,绿色(green,g)子像素以及蓝色(blue,b)子像素。其中,为了满足各种颜色的子像素102的光学增益特性,需使得红色子像素102的微腔长度大于绿色子像素102的微腔长度,且使得绿色子像素的微腔长度大于蓝色子像素的微腔长度。由此,可以使得本技术实施例中的第一颜色为红色(第一颜色的子像素102a为红色子像素),第二颜色为绿色(第二颜色的子像素102b为绿色子像素),第三颜色为蓝色(第三颜色的子像素102c为蓝色子像素)。
71.参考图3,功能膜层1022可以包括:沿远离衬底基板101的方向依次层叠的电子注入层(electron injection layer,eil)10221a,电子传输层(electron transportlayer,etl)10222a,发光层10223a,光学调整层10224a,空穴传输层10225a 以及空穴注入层10226a。
72.参考图3,多个子像素102的功能膜层1022中的发光层10223a和光学调整层10224a均为图案化膜层。多个子像素102的功能膜层1022中的电子注入层10221a,电子传输层10222a,空穴传输层10225a和空穴注入层10226a均为共用膜层。
73.其中,图案化膜层包括间隔设置的多个图案,多个图案在衬底基板101上的正投影位于多个子像素102所在区域,且不位于多个子像素102的间隔区域。例如图案化膜层包括
的图案的数量可以与子像素102的数量相同,且每个图案位于一个子像素102所在区域。该图案化膜层可以是由掩膜板进行图案化处理的非共通膜层。
74.第一颜色的子像素102a的发光层10223a的材料可以为红色发光材料(第一颜色的子像素102a的发光层10223a可以为红色发光材料层),第二颜色的子像素102b的发光层10223a的材料可以为绿色发光材料(第二颜色的子像素102b 的发光层10223a可以为绿色发光材料层),第三颜色的子像素102c的发光层 10223a的材料可以为蓝色发光材料(第三颜色的子像素102c的发光层10223a 可以为蓝色发光材料层)。由此即可使得显示面板10发出多种颜色的光,显示面板10的色域较高。
75.通常情况下,电子注入层10221a和电子传输层10222a的载流子迁移率小于空穴注入层10226a和空穴传输层10225a的载流子迁移率,因此相对于相关技术而言,本技术实施例的显示面板10将电子注入层10221a和电子传输层10222a 相对于空穴注入层10226a和空穴传输层10225a靠近阳极层1021设计,且发光层10223a相对于光学调整层10224a靠近阳极层1021设计,可以减小子像素102 之间的横向漏电,有效减小子像素102之间的电学串扰的概率,极大提高显示面板的色域和显示面板的对比度等性能。
76.在图3所示的显示面板10中,将子像素102的功能膜层1022中的发光层 10223a以及光学调整层10224a进行了图案化。其中不同颜色的子像素102的发光层10223a的厚度可以保持一致,例如可以均为30nm(纳米),或者不同颜色的子像素102的发光层10223a的厚度根据不同颜色的子像素102的寿命需求允许一定的厚度差异(差异小于10nm)。不同颜色的子像素102的光学调整层 10224a只需要满足电学上阻挡载流子的功能而不要求其参与光学调整的功能,因此光学调整层10224a的厚度范围可以为5nm至10nm。由此,图3所示的显示面板10中需要图案化的膜层的厚度可以统一为35nm
±
10nm。也即是,能够使得显示面板10整体的膜层厚度的差异尽可能小,使得形成阴极层1023的表面的平坦性较好,减小阴极层1023断裂的概率,这对于高ppi的显示技术具有至关重要的影响。
77.图4是本技术实施例提供的另一种显示面板的结构示意图。参考图4可以看出,多个子像素102的电子注入层10221a和电子传输层10222a可以为图案化膜层。由此,图4所示的显示面板10相对于图3所示的显示面板10而言,更能阻隔载流子的横向传输,避免多个子像素102之间产生横向的电学串扰。
78.在图4所示的显示面板10中,将子像素102的功能膜层1022中的电子注入层10221a,电子传输层10222a,发光层10223a,光学调整层10224a进行了图案化。其中不同颜色的子像素102的电子注入层10221a和电子传输层10222a 的总厚度可以保持一致,例如小于35nm。该电子注入层10221a和电子传输层 10222a的总厚度可以基于其膜层材料以及阳极层1021的厚度进行调整。不同颜色的子像素102的发光层10223a的厚度可以保持一致,例如可以均为30nm,或者不同颜色的子像素102的发光层10223a的厚度根据不同颜色的子像素102 的寿命需求允许一定的厚度差异(差异小于10nm)。不同颜色的子像素102的光学调整层10224a只需要满足电学上阻挡载流子的功能而不要求其参与光学调整的功能,因此光学调整层10224a的厚度范围可以为5nm至10nm。由此,图 4所示的显示面板10中需要图案化的膜层的厚度可以统一为70nm
±
10nm。
79.也即是,图4所示的显示面板10相对于图3所示的显示面板10而言,能够完全阻隔载流子的横向传输,但显示面板10整体的膜层厚度的差异较大。本技术实施例在设计显示
面板10的电子注入层10221a和电子传输层10222a时,可以综合考虑横向漏电以及膜层厚度的差异进行具体设计。
80.在图3和图4所示的显示面板10中,第一颜色的子像素102a可以包括:依次层叠的阳极层1021,电子注入层(eil)10221a,电子传输层(etl)10222a,红色发光材料层(r-eml)10223a,红色的光学调整层(r-prime)10224a,空穴传输层(htl)10225a,空穴注入层(hil)10226a,阴极层1023以及光取出层103的第一部分1031。第二颜色的子像素102b可以包括:依次层叠的阳极层1021,电子注入层(eil)10221a,电子传输层(etl)10222a,绿色发光材料层(g-eml)10223a,绿色的光学调整层(g-prime)10224a,空穴传输层(htl) 10225a,空穴注入层(hil)10226a,阴极层1023以及光取出层103的第二部分1032。第三颜色的子像素102c可以包括:依次层叠的阳极层1021,电子注入层(eil)10221a,电子传输层(etl)10222a,蓝色发光材料层(b-eml) 10223a,红色的光学调整层(b-prime)10224a,空穴传输层(htl)10225a,空穴注入层(hil)10226a,阴极层1023以及光取出层103的第三部分1033。
81.图5是本技术实施例提供的又一种显示面板的结构示意图。参考图5可以看出,该功能膜层1022可以包括:沿远离衬底基板101的方向依次层叠的第一电子注入层10221b,第一电子传输层10222b,第一发光层10223b,第一光学调整层10224b,第一空穴传输层10225b,电荷产生层(charge generate layer,cgl) 10226b,第二电子注入层10227b,第二电子传输层10228b,第二发光层10229b,第二光学调整层102210b,第二空穴传输层102211b以及空穴注入层102212b。也即是,图5所示的显示面板10中子像素102可以为叠层结构。
82.参考图5,多个子像素102的功能膜层1022中的第一电子注入层10221b,第一电子传输层10222b,第一发光层10223b,第一光学调整层10224b,电荷产生层10226b,第二发光层10229b以及第二光学调整层102210b均为图案化膜层。多个子像素102的功能膜层1022中的第一空穴传输层10225b,第二电子注入层 10227b,第二电子传输层10228b,第二空穴传输层102211b以及空穴注入层 102212b均为共用膜层。
83.当然,为了完全阻隔载流子的横向传输,可以使得第一电子注入层10221b 和第一电子传输层10222b为图案化膜层。本技术实施例对此不做限定。
84.在图5所示的显示面板中,第一颜色的子像素102a可以包括:依次层叠的阳极层1021,第一电子注入层(eil)10221b,第一电子传输层(etl)10222b,红色发光材料层(r-eml)10223b,红色的光学调整层(r-prime)10224b,第一空穴传输层(htl)10225b,电荷产生层(cgl)10226b,第二电子注入层 (eil)10227b,第二电子传输层(etl)10228b,红色发光材料层(r-eml) 10229b,红色的光学调整层(r-prime)102210b,第二空穴传输层(htl)102211b,空穴注入层102212b,阴极层1023以及光取出层103的第一部分1031。第二颜色的子像素102b可以包括:依次层叠的阳极层1021,第一电子注入层(eil) 10221b,第一电子传输层(etl)10222b,绿色发光材料层(g-eml)10223b,绿色的光学调整层(g-prime)10224b,第一空穴传输层(htl)10225b,电荷产生层(cgl)10226b,第二电子注入层(eil)10227b,第二电子传输层(etl) 10228b,绿色发光材料层(r-eml)10229b,绿色的光学调整层(r-prime) 102210b,第二空穴传输层(htl)102211b,空穴注入层102212b,阴极层1023 以及光取出层103的第二部分1032。第三颜色的子像素102c可以包括:依次层叠的阳极层1021,第一电子注入层(eil)10221b,第一电子传输层(etl)10222b,蓝色发光材料层(b-eml)10223b,蓝色的光学调整层(b-prime)10224a,第一空穴传输层(htl)10225b,电荷产生层
(cgl)10226b,第二电子注入层 (eil)10227b,第二电子传输层(etl)10228b,蓝色发光材料层(b-eml) 10229b,蓝色的光学调整层(b-prime)102210b,第二空穴传输层(htl)102211b,空穴注入层102212b,阴极层1023以及光取出层103的第三部分1033。
85.图6是本技术实施例提供的再一种显示面板的结构示意图。参考图6,功能膜层1022可以包括:沿远离衬底基板101的方向依次层叠的空穴注入层10221c,空穴传输层10222c,第一发光层10223c,第二发光层10224c,第一空穴阻挡层 (hole block layer,hbl)10225c,电荷产生层10226c,第三发光层10227c,第二空穴阻挡层10228c,电子传输层10229c以及电子注入层102210c。
86.参考图6,多个子像素102的功能膜层1022中的空穴注入层10221c,空穴传输层10222c以及电荷产生层10226c均为图案化膜层。多个子像素102的功能膜层1022中的第一发光层10223c,第二发光层10224c,第一空穴阻挡层10225c,第三发光层10227c,第二空穴阻挡层10228c,电子传输层10229c以及电子注入层102210c均为共用膜层。
87.由于空穴注入层10221c,空穴传输层10222c以及电荷产生层10226c均为图案化膜层,因此可以完全阻隔载流子的横向传输。
88.可选的,图6所示的显示面板10中,空穴注入层10221c可以与电子注入层102210c交换位置,空穴传输层10222c可以与电子传输层10229c交换位置。此种情况下,由于电子注入层102210c和电子传输层10229c相对于空穴注入层 10221c和空穴传输层10222c的载流子迁移率小,因此为了尽可能减小显示面板 10整体的膜层厚度的差异,可以使得电子注入层102210c和电子传输层10229c 为共用膜层。当然,电子注入层102210c和电子传输层10229c可以为图案化膜层,以完全阻隔载流子的横向传输。本技术实施例对此不做限定。
89.在本技术实施例中,该第一发光层10223c发出的光线,第二发光层10224c 发出的光线以及第三发光层10227c发出的光线混合后可以为白光。例如,该第一发光层10223c可以由红色磷光材料制备得到,该第一发光层10223c发出的光线的颜色可以为红色。该第二发光层10224c可以由绿色磷光材料制备得到,该第二发光层10224c发出的光线的颜色可以为绿色。该第三发光层10227c可以由蓝色荧光材料制备得到,该第三发光层10227c发出的光线的颜色可以为蓝色。
90.图6所示的显示面板10中的子像素102经过阴极层1023之后发出的光线为白光。并且,不同厚度的光取出层103所能够透过的光线的颜色不同,例如经过第一部分1031所能够透过的光线的颜色为红色,经过第二部分1032所能够透过的光线的颜色为绿色,经过第三部分1033所能够透过的光线的颜色为蓝色。
91.参考图6可以看出,该显示面板10还可以包括:彩膜层104。该彩膜层104 可以位于多个子像素102远离衬底基板101的一侧。该彩膜层104可以包括多个不同颜色的色阻块1041,每个子像素102所在区域位于一个色阻块1041在衬底基板101上的正投影内。
92.示例的,图6中示出了三个子像素102和三个色阻块1041,第一颜色的子像素102a对应的色阻块1041的颜色可以为红色,第二颜色的子像素102b对应的色阻块1041的颜色可以为绿色,第三颜色的子像素102c对应的色阻块1041 的颜色可以为蓝色。
93.通过在子像素102远离衬底基板101的一侧设置彩膜层104,可以使得透过光取出层103的光线透过彩膜层104中不同颜色的色阻块1041,提高显示面板 10的显示效果。
94.在图6所示的显示面板10中,第一颜色的子像素102a可以包括:依次层叠的阳极层
1021,空穴注入层(hil)10221c,空穴传输层(htl)10222c,红色发光材料层(r-eml)10223c,绿色发光材料层(g-eml)10224c,第一空穴阻挡层(hbl)10225c,电荷产生层(cgl)10226c,蓝色发光材料层(b-eml) 10227c,第二空穴阻挡层(hbl)10228c,电子传输层(etl)10229c,电子注入层(eil)102210c,阴极层1023以及光取出层103的第一部分1031。第二颜色的子像素102b可以包括:依次层叠的阳极层1021,空穴注入层(hil)10221c,空穴传输层(htl)10222c,红色发光材料层(r-eml)10223c,绿色发光材料层(g-eml)10224c,第一空穴阻挡层(hbl)10225c,电荷产生层(cgl) 10226c,蓝色发光材料层(b-eml)10227c,第二空穴阻挡层(hbl)10228c,电子传输层(etl)10229c,电子注入层(eil)102210c,阴极层1023以及光取出层103的第二部分1032。第三颜色的子像素102c可以包括:依次层叠的阳极层1021,空穴注入层(hil)10221c,空穴传输层(htl)10222c,红色发光材料层(r-eml)10223c,绿色发光材料层(g-eml)10224c,第一空穴阻挡层(hbl)10225c,电荷产生层(cgl)10226c,蓝色发光材料层(b-eml) 10227c,第二空穴阻挡层(hbl)10228c,电子传输层(etl)10229c,电子注入层(eil)102210c,阴极层1023以及光取出层103的第三部分1033。
95.在本技术实施例中,子像素102的阳极层1021的材料可以为氧化铟锡 (ndium tin oxide,ito)。子像素102的阴极层1023的材料可以为高透过率的金属材料,例如可以为镁银合金(mg-ag)或氧化铟锌(izo)。其中,该氧化铟锌的包裹性以及连续性较好,可以进一步避免阴极层1023断裂,保证显示面板的良率。
96.参考图3至图6可以看出,该显示面板10还可以包括封装膜层(thin-filmencapsulation,tfe)105。该封装膜层105可以位于光取出层103远离衬底基板 101的一侧。该封装膜层105可以包括:沿远离衬底基板101的方向层叠设置的第一膜层,第二膜层以及第三膜层。
97.可选的,该第一膜层和该第三膜层可以由无机材料制成,该第二膜层可以由有机材料制成。例如,该第一膜层和该第三膜层可以由sinx、siox和sioxny 等一种或多种无机氧化物制成。第二膜层可以由树脂材料制成。该树脂可以为热塑性树脂或热塑性树脂,热塑性树脂可以包括亚克力(pmma)树脂,热固性树脂可以包括环氧树脂。
98.在本技术实施例中,第二膜层可以采用喷墨打印(ink jet printing,ijp)的方法制作。第一膜层和第三膜层可以采用化学气相沉积(chemical vapor deposition, cvd)的方法制作。
99.在显示面板包括封装膜层105的情况下,子像素102的增益光学腔可以由子像素102的阳极层1021以及封装膜层105中的第一膜层之间的膜层构成。由此,子像素102的阳极层1021与封装膜层105中的第一膜层之间的膜层的厚度均会影响子像素102的微腔长度。可选的,本技术实施例可以通过调整不同颜色的子像素102对应的光取出层103的厚度,使得不同颜色的子像素102的微腔长度不同,满足不同颜色的子像素102的光学增益特性。
100.参考图3至图6,显示面板10还可以包括:像素界定层106,像素界定层106可以位于阳极层1021远离衬底基板101的一侧。该像素界定层106可具有多个镂空区域,每个镂空区域可以用于露出一个子像素的阳极层。并且,像素界定层可以覆盖每个子像素的阳极层的边缘。
101.综上所述,本技术实施例提供了一种显示面板,该显示面板包括多个子像素以及光取出层,每个子像素包括依次层叠的阳极层,功能膜层以及阴极层。该多个子像素至少包
括第一颜色的子像素和第二颜色的子像素。由于任意两个子像素中功能膜层远离衬底基板的表面和衬底基板之间的距离的差值小于差值阈值,因此可以使得不同颜色的子像素所在区域形成阴极层的表面的平坦性较好,减小阴极层断裂的概率,提高显示面板的显示效果。同时,光取出层中与第一颜色的子像素对应的第一部分的厚度以及与第二颜色的子像素对应的第二部分的厚度不同,可以使得光取出层的厚度满足对应子像素的光学增益特性,保证显示面板中子像素的发光效率。
102.图7本技术实施例提供的一种显示装置的结构示意图。参考图7,该显示装置可以包括:供电组件20以及上述实施例所提供的显示面板10。该供电组件20可以用于为显示面板10供电。
103.可选的,该显示装置可以为si-oled显示装置、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航仪等任何具有显示功能以及指纹识别功能的产品或部件。
104.将理解的是,尽管术语第一和第二等在本文中可以用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应当由这些术语限制。这些术语仅用来将一个元件、部件、区、层或部分与另一个区、层或部分相区分。因此,上面讨论的第一元件、部件、区、层或部分可以被称为第二元件、部件、区、层或部分而不偏离本公开的教导。
105.诸如“在

之下”、“在

之上”、“左”、“右”等等之类的空间相对术语在本文中可以为了便于描述而用来描述如图中所图示的一个元件或特征与另一个(些)元件或特征的关系。将理解的是,这些空间相对术语意图涵盖除了图中描绘的取向之外在使用或操作中的器件的不同取向。例如,如果翻转图中的器件,那么被描述为“在其他元件或特征之下”的元件将取向为“在其他元件或特征之上”。因此,示例性术语“在

之下”可以涵盖在

之上和在

之下的取向两者。器件可以取向为其他方式(旋转90度或以其他取向)并且相应地解释本文中使用的空间相对描述符。另外,还将理解的是,当层被称为“在两个层之间”时,其可以是在该两个层之间的唯一的层,或者也可以存在一个或多个中间层。
106.本文中使用的术语仅出于描述特定实施例的目的并且不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”意图也包括复数形式,除非上下文清楚地另有指示。将进一步理解的是,术语“包括”和/或“包含”当在本说明书中使用时指定所述特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组的存在或添加一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组。如本文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合。在本说明书中,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
107.除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。将进一步理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。
108.以上所述仅为本技术的可选实施例,并不用以限制本技术,凡在本技术的精神和
原则之内,所作的任何修改、等同替换、改进等,均应包含在本技术的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1