一种高致密度粘结稀土永磁体及其制备方法与流程

文档序号:31851945发布日期:2022-10-19 01:25阅读:210来源:国知局

1.本发明属于永磁体技术领域,具体涉及一种高致密度粘结稀土永磁体及其制备方法。


背景技术:

2.近年以来,以镨/钕铁硼及其镧铈替代品、钐钴等为代表的稀土永磁体因其具有极高磁性能与相对稳定性而获得了广泛应用,从航空航天到风力发电,从家用电器、精密机床到新能源汽车,伴随以电机领域为代表的高功率密度、高稳定性要求,越来越多的应用领域采用了以镨/钕铁硼及其镧铈替代品、钐钴为代表的稀土永磁体作为磁能部件。
3.自上世纪70年代问世以来,稀土永磁体制备技术得到了快速发展,以其工艺不同分为烧结稀土永磁体与粘结稀土永磁体,其中以树脂、塑料、橡胶等有机物作为稀土永磁粉体络合介质(亦可称粘结剂)的统称为粘结稀土永磁体(以下称粘结磁体)。粘结磁体自上世纪80年代在日本问世以来,依据粘结介质与工艺的不同,先后衍生发展出模压粘结磁体(一般适用于树脂络合磁体),注射粘结磁体(一般以尼龙、聚甲醛、聚苯硫醚等等热塑性塑料作为络合介质)以及压延粘结磁体(一般以改性橡胶作为络合介质);由于采用了有机介质络合压缩成型,无需高温烧结以及因高温导致产生的变形以及后加工,因此其具有产品一次成型尺寸精度高、适于大批量产等特点,自20世纪90年代量产以来得到了快速的发展,伴随信息技术在上世纪90年代末突飞猛进的发展,粘结稀土永磁广泛应用于计算机存储驱动器、计算机外设、车辆精准控制、车辆舒适性配置等领域。
4.虽然粘结稀土磁体实现了大规模量产,但自2010年全球用量达到6000吨后,需求增长速度缓慢;相较于全球烧结稀土永磁体的发展来说,粘结稀土永磁一直难于成长为永磁材料主流。截至目前全球烧结稀土永磁体目前存量市场规模已达每年20万吨以上,而粘结稀土永磁体用量仅为每年1万吨,从2010年不足烧结市场十分之一逐步退化到2021年不足烧结稀土永磁二十分之一。
5.烧结镨/钕铁硼磁体近年来的出货量的快速稳步提升,说明以高性能及高功率密度应用为代表的稀土永磁应用需求在快速增加;而粘结稀土永磁未能很好满足这一需求特点,以最常用的钕铁硼磁体为例,量产最高性能的各向同性模压粘结钕铁硼磁体bhmax实测值最高12mgoe左右,量产最高性能的各向异性模压hddr磁体取向条件下bhmax最高实测值20mgoe左右,而量产最高性能的烧结钕铁硼磁体在良好的晶化条件下取向后则可达到实测值52mgoe左右,磁性能的巨大落差使得粘结钕铁硼难于满足对性能有更高要求应用场合。
6.另外材料利用率及成本方面:对比含钕21%的烧结钕铁硼磁体和同样钕含量的快淬法制备的钕铁硼磁粉后制得的模压粘结镨和/或钕铁硼,不取向条件下烧结钕铁硼磁体bhmax实测值可达24mgoe左右,而粘结磁体实测仅能达到9mgoe左右。由此得出在性能应用中,粘结稀土永磁实际性价比远低于同等稀土含量的烧结磁体;也即稀土实际利用率差成为制约粘结稀土永磁体应用扩展的瓶颈;很好地说明了近年来粘结稀土永磁体发展所面临的困境。


技术实现要素:

7.为了解决上述技术问题,本发明提供一种高致密度粘结稀土永磁体及其制备方法。
8.本发明通过以下技术方案实现:第一方面,本发明提供一种高致密度粘结稀土永磁体的制备方法,所述稀土永磁体的原料按质量百分比计,包括:热固性树脂0.1~1.6 wt%,润滑剂0.05~0.8wt%,偶联剂0-1.0 wt%,余量为稀土永磁粉;所述制备方法包括:将晶化处理后的稀土永磁粉与溶解有所述热固性树脂与偶联剂的溶液混合,密封搅拌后干燥,粉碎后得到磁粉络合物;将所述磁粉络合物与所述润滑剂混合,得到熟料;以及将所述熟料填入温度为40~120℃的模具中,预热、压制成型,脱模后得到生坯料,将所述生坯料置于120~200℃下保温2~3h,得到熟坯,进行精加工。
9.进一步地,所述稀土永磁粉包括快淬镨和/或钕铁硼磁粉及其含镝/铽/钴/铝的改性粉末、快淬镧铁硼粉末、快淬铈铁硼粉末、hddr永磁粉、钐钴永磁粉、永磁铁氧体粉、钐铁氮永磁粉和铁三硼永磁粉中的至少一种。
10.进一步地,本发明较佳的实施例中,所述偶联剂包括硅烷和/或钛酸酯中的至少一种或两种混合。
11.进一步地,本发明较佳的实施例中,所述润滑剂包括石墨和/或硬脂酸盐;优选地,所述硬脂酸盐包括硬脂酸锌和/或硬脂酸钙。
12.进一步地,本发明较佳的实施例中,所述晶化处理的条件为:在高纯度氩气氛围中,于670~730℃下晶化10~20min。
13.进一步地,本发明较佳的实施例中,所述稀土永磁粉的粒度为60~200目。
14.进一步地,本发明较佳的实施例中,在制备所述磁粉络合物的步骤中:密封搅拌的时间为40~60min。
15.进一步地,本发明较佳的实施例中,所述生坯料的密度为6.2~7.1 g/cm3。
16.进一步地,本发明较佳的实施例中,所述压制成型过程中,压制力为12-50t/cm2,保压时间为0.3~10s。
17.进一步地,本发明较佳的实施例中,为进一步提高熟坯料的密度,所述将所述生坯料加热得到熟坯的步骤包括:将所述生坯料加热至环氧软化点后,抽真空,使环境中的气压低于0.2个大气压,继续于120~200℃下保温2~3h。
18.进一步地,本发明较佳的实施例中,还包括将所述熟坯进行精加工后在表面制备保护涂层的步骤;所述保护涂层是通过以下方式中的至少一种来制备的:涂抹防锈油,电泳、喷涂环氧,镀锌、镀镍、镀铬,喷塑和聚对二甲苯。
19.第二方面,本发明提供一种上述制备方法制得的高致密度粘结稀土永磁体,所述稀土永磁体的密度为6.2~7.0 g/cm3;优选地,所述稀土永磁体还包括保护涂层,所述保护涂层包括表面涂抹防锈油、电
泳、喷涂环氧,镀锌、镀镍、镀铬,喷塑和聚对二甲苯中的至少一种。
20.与现有技术相比,本发明至少具有如下技术效果:1. 本技术采用模压成型方式制备,由此所得的这种模压粘结稀土永磁体对稀土永磁粉的利用率高,更易于对外显示高的磁性能。由此相比于现有技术,这种模压粘结稀土永磁体的经济效益和资源利用率也进一步得到提升。
21.2. 本技术提供的这种粘结稀土永磁体,具有较大的畴间作用力,由此该永磁体整体对外体现出较高的性能。
22.3. 通常,对于粘结磁体中的模压粘结永磁体来说,为保证粘结永磁体必要的结构强度以及顺利脱模,必须保证络合介质
‑‑‑
热固性树脂(以下简称树脂)质量百分比在1.8-4.0wt%,否则产品将无法成型,但树脂的存在会极大限制粘结永磁体中微观结构里微粉距离的进一步压缩。以目前最常用的w-6c环氧树脂为例,由于树脂密度仅为1.1g/cm2左右,树脂络合物在磁体体积占比高达12-30%,因此自本世纪初以来全球模压粘结钕铁硼磁体量产产品密度一直稳定在5.6-6.1,相较于烧结磁体粘结磁体7.2以上的产品密度存在着较大距离,极大降低了磁体成品中微观稀土磁粉磁化效果及磁化后的相互作用力,也因此相较于具有致密组织结构的烧结磁体来说粘结磁体难于取得较高性能。而本技术提供的这种粘结稀土永磁体,通过降低模压粘结磁体中树脂粘结剂的体积占比(约为1%-10%),有效的缩短了粘结磁体中的微粉距离,有效的增加了微粉磁化效果以及磁化后的相互作用力。
具体实施方式
23.下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围,实施例中未注明的具体条件,按照常规条件或者制造商建议的条件进行,所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
24.本发明的具体实施方式的技术方案为:本实施方式提供一种高致密度粘结稀土永磁体的制备方法,该稀土永磁体的原料按质量百分比计,包括:热固性树脂0.2~1.6 wt%,润滑剂0.05~0.8wt%,偶联剂0~1.0wt%,余量为稀土永磁粉;通常情况下,现有技术中普遍采用1.8-4.0wt%的粘结剂,但树脂类粘结剂材料密度相较于磁粉低很多,因此过高质量百分比的树脂材料带来很高的树脂体积占比,从而影响磁粉颗粒的磁化效果与磁性能表现。为保证最终产品的结构强度,本技术提供的这种粘结稀土永磁体,通过大幅降低粘结剂热固性树脂的使用量,从而大幅降低热固性树脂在稀土永磁体中的体积占比,由此极大的增强磁粉微粒之间的相互作用,进一步的达到了增强产品磁化效果与磁性能表现的目的;同时,由于利用成型过程中模具预设温度以及极高压强条件下颗粒间接触点摩擦升温,树脂环氧基的化学活泼性质使其在微观点达成固化条件下产生固化交联生成网状结构,达成了低粘结剂用量条件下保持产品坯料结构强度基本不变的目的。
25.为改善微观条件下磁粉络合物颗粒体在压缩过程中颗粒之间的摩擦力,以及颗粒与模具壁的摩擦力,我们在熟料配制过程中适当添加适用于粉料压缩的润滑剂,同时有利于产品生坯的顺利脱模。
26.进一步地,为进一步改善热固性树脂与磁粉表面的结合力,我们可根据树脂类型加入偶联剂,包括硅烷和/或钛酸酯。性能优选地,采用钛酸酯作为偶联剂,有助于在磁粉微粒表面形成涂敷均匀的粘结剂层,更进一步优化产品性能表现;强度优选地,采用硅烷偶联剂有助于降低成本,硅烷在磁粉微粒表面形成s形交错结构,有利于增加产品结构强度;更为优选地,在本发明较佳的实施例中所采用热固性树脂与偶联剂拟定采用由市售的w-6c\w-6d商品化粘结稀土永磁体适用环氧树脂(已含偶联剂)产品,即其中热固性树脂与偶联剂的比例约为3:1左右,因不同类型的热固树脂所需偶联剂比例存在较大差异,需根据具体应用类型择优选择品种并确定最佳比例。
27.进一步地,润滑剂包括石墨或硬脂酸盐;采用石墨微粉润滑剂,石墨微粉作为常用润滑剂,因其导电特性,可以有效改善因树脂包络带来的颗粒间电阻增大导致的后续电泳表面处理导电不良问题;采用硬脂酸盐为润滑剂,因同为有机化合物,硬脂酸盐润滑剂在磁粉络合物表面结合力更优,产品后续结构强度更优;优选地,硬脂酸盐包括硬脂酸锌和硬脂酸钙。
28.优选地,按质量百分比计,热固性树脂为0.2~1.6 wt%,润滑剂为0.05~0.8 wt%,偶联剂0~1.0wt%,余量为稀土永磁粉;在此范围内,可根据产品结构特点、应用特点适当调整树脂与润滑剂的质量百分比。
29.进一步地,稀土永磁粉包括快淬镨/钕铁硼永磁粉、含镝快淬钕铁硼永磁粉,快淬镧(铈)铁硼磁粉、hddr永磁粉、钐钴永磁粉、永磁铁氧体粉、钐铁氮永磁粉、铁三硼永磁粉中的至少一种。
30.优选地,为改善磁体矫顽力表现当磁粉选用快淬镨和/或钕铁硼磁粉时优选含有dy/tb-prnd-fe-b、dy/tb-hx相的磁粉,同样当磁粉选用快淬镨和/或钕铁硼磁粉时优先选用含co/al-prnd-fe-b中的任一种或两种的改性粉末以改善磁体耐温特性。
31.需要说明的是,快淬镨和/或钕铁硼磁粉永磁粉为具有r2fe14b基本相结构的快淬镨和/或钕铁硼磁粉产品,本技术所涉实验拟定采用由美国麦格昆磁公司生产的商品化快淬镨和/或钕铁硼永磁粉或等效磁粉,业内统称其为mqp永磁粉。即快淬永磁粉包括普通常规的快淬镨和/或钕铁硼磁粉、快淬镧/铈铁硼磁粉及含dy/tb-prnd-fe-b、dy/tb-hx、co/al-prnd-fe-b的快淬镨和/或钕铁硼磁粉;hddr永磁粉,在业内专指采用氢破法制备的具有异方性特征的钕铁硼磁粉的统称。
32.该高致密度粘结稀土永磁体的制备方法,包括以下步骤:步骤s1:将晶化处理后的稀土永磁粉与溶解有所述热固性树脂及偶联剂的有机溶液混合,密封搅拌后干燥,粉碎后得到磁粉络合物。
33.进一步地,晶化处理的条件为:在氩气氛围中,于670~730℃下晶化10~20min(优选为,在690~710℃下晶化13~18min)。晶化处理后稀土永磁粉的粒度破碎为80~120目(优选为100目)。
34.优选地,晶化步骤包括:将甩带后合金条带在氩气正压环境下粗破碎后得到的粗粒料装入晶化炉,真空后氩气正压0.3,于670~730℃下晶化10~20min,冷却后,氩气氛围破碎至80~120目,制得粉体。
35.更为优选地,在晶化步骤在前,还包括快淬及甩带步骤,即将预定熔炼后合金片料
低温保护烘干后装入甩带炉,抽真空后充氩至正压0.1-0.5,轮速20~23米/秒,开启甩带。
36.需要说明的是,在该步骤中也可直接采用市售产品粉末进行步骤s1,例如采用mqp1-7快淬钕铁硼商品粉末。
37.进一步地,溶解有所述热固性树脂的有机溶液中,溶剂为丙酮、氯仿、乙酸乙酯等有机溶剂,优选地,溶剂选用丙酮。
38.进一步地,密封搅拌的时间为40~60min,优选为45~55min。密封搅拌的目的在于防止搅拌过程中有机溶剂过快挥发,从而保证热固性树脂溶液与磁粉颗粒的充分浸润;较为优选地,制备磁粉络合物的步骤包括:将0.1~1.6 wt%的商品热固性树脂(例如w-6c或者w-6d环氧树脂),经丙酮溶解后混入晶化后的稀土永磁粉,密封搅拌40~60min混合均匀后,摊晾12~36h至丙酮干燥,轮式混炼机碾压破碎至80~120目,过筛。
39.步骤s2:将所述磁粉络合物与润滑剂混合,得到熟料;以及步骤s3:将所述熟料填入温度为40~120℃的模具中,预热、压制成型,脱模后得到生坯料,将所述生坯料置于120~200℃下保温2~3h,得到熟坯,进行精加工。
40.将模具的温度预热至40~120℃(优选为60~100℃),主要是由于热固性树脂存在软化点,当温度大于软化点时,包裹在稀土永磁粉颗粒外部的树脂软化,进一步增加了磁粉的流动性和填充性。例如,选用w-6c或者w-6d树脂材料软化点为60℃(此处选择的温度范围为经验累计值);同样当设定温度高于120℃后,树脂出现液化现象,将与模具发生粘连,难于脱模,此处根据所选择的粘结剂品种不同,对应温度范围应做出调整。
41.进一步地,压制成型过程中,单位压制力为12-50t/cm2,保压时间为0.3~10s。
42.进一步地,生坯料的密度为6.2~7.1 g/cm3,优选为6.4~7.0 g/cm3。根据单位压制力的不同,以及所设置的模具预热温度不同,生坯呈现出不同的密度状态;理论上此处密度越大越好,但过大的密度将会导致脱模困难。由此,此处将生坯料的密度控制为6.2~7.1 g/cm3。
43.进一步地,将生坯料加热得到熟坯的步骤包括:将生坯料加热至环氧软化点后,抽真空,使环境中的气压低于0.2个大气压(或者直接采用真空烘箱烘烤),于120~200℃下保温2~3h,进行固化。
44.具体地,步骤s3中,熟料通过可以模压成型脱模制成所需几何形状的磁体,分为压缩阶段—保压阶段—脱模阶段三个步骤:其中,压缩阶段为:把熟料在型腔中从松散状态压缩为所需几何形状的过程称为压缩阶段,因为磁粉微粒具有极高硬度且形状的不规则性,在熟料填充型腔后构成熟料松装体,模具上下型压缩过程中,伴随松装熟料被不断压缩,磁粉微粒之间以及与模腔壁之间摩擦力不断增大,在靠近模腔壁的压缩面所受摩擦力与上型下压力构成了剪切力,根据伯努利定律,靠近模腔壁的压缩坯表层密度值大于压缩坯内部,带来了压缩坯由外至内的压缩应力;所需压制力大部分用以克服在磁粉微粒的相互摩擦力以及与模具压缩与脱模中与模具摩擦面的摩擦力,直至达到上下型压力设定的最大值并与之平衡,上下型停止压缩,此时磁粉内摩擦力与上下型压力相等,在保压至所需时间后,熟料粉体压缩在模具母型与上下型与型芯所构建的空间内构成磁体零件的压缩坯;为了要得到所需的磁体零件的成型坯,需要完成下一步
模具的脱模阶段;在该过程中,所述磁体成型过程中上下型单位压力17.0-50.0吨/cm2,即作用压强为1.7gpa-5.0gpa。根据粉体颗粒大小的不同,熟料在模具型腔中从松装状态被压缩至所需密度所消耗的能量存在巨大差异,以通规为例,100目熟料情况下,经实验数据得知,当压制压强高于1.7gpa后产品坯料密度将达6.40以上,压强值高于3.0gpa后密度值达到6.8以上。
45.步骤s4:将所得到的熟坯进行精修后,在表面制备保护涂层,保护涂层是通过以下方式中的至少一种来制备的:涂抹防锈油,电泳、喷涂环氧,镀锌、镀镍、镀铬,喷塑、聚对二甲苯。
46.需要说明的是,当稀土永磁粉为钐钴永磁粉和永磁铁氧体粉时,因其材料本身不易被腐蚀,无需制备保护涂层。而采用其他的永磁粉,例如快淬钕铁硼磁粉、含镝/铽/钴/铝快淬钕铁硼粉末、快淬镧铁硼粉末、快淬铈铁硼粉末、hddr永磁粉、钐铁氮永磁粉和铁三硼永磁粉等,均需要在所得到的永磁体表面制备保护涂层,以防止永磁体表面腐蚀。
47.以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
48.实施例1本实施例提供一种高致密度粘结稀土永磁体,其制备方法包括:(1)粉体制备:采用市售的mqp1-7快淬钕铁硼粉末为稀土永磁粉。
49.(2)熟料制备:采用1.2wt%的w-6c环氧树脂,经丙酮溶解后混入晶化后的稀土永磁粉,密封搅拌50 min混合均匀后,摊晾24 h至丙酮干燥,轮式混炼机破碎至100目,过筛后,得到磁粉络合物;将磁粉络合物与0.15 wt%的硬脂酸锌混合,得到熟料备用。
50.(3)产品压制:通过模具内置的导油槽将模具预升温至60℃,装填入上述熟料,并根据产品大小调整熟料的预热时间,待熟料充分预热后,经单位压制力25t/cm2,并保压5s,脱模后可制得密度达到6.5g/cm3的材料生坯备用。将生坯料置于160℃下保温2.5h,使产品生坯固化到最终强度以制成产品熟坯备用。
51.(4)产品后加工:制得产品熟坯后,根据客户图纸要求进一步通过磨削或者线切等等机械加工办法获得最终产品的精坯;将产品精坯通过产品涂装(喷涂、电泳等)制得产品半成品,最后通过充磁包装制得符合客户需求的最终磁性零部件。
52.实施例2本实施例提供一种高致密度粘结稀土永磁体,其制备方法包括:(1)粉体制备:采用市售的mqp1-7快淬钕铁硼粉末为稀土永磁粉。
53.(2)熟料制备:采用0.5 wt%的w-6d环氧树脂(其中含有偶联剂),经丙酮溶解后混入晶化后的稀土永磁粉,密封搅拌40 min混合均匀后,摊晾36 h至丙酮干燥,轮式混炼机破碎至120目,过筛后,得到磁粉络合物;将磁粉络合物与0.2 wt%的硬脂酸钙混合,得到熟料备用。
54.(3)产品压制:通过模具内置的导油槽将模具预升温至120℃,装填入上述熟料,并根据产品大小调整熟料的预热时间,待熟料充分预热后,经单位压制力40 t/cm2,并保压0.3s,脱模后可制得密度达到6.2g/cm3的材料生坯备用。将生坯置于真空烘箱中加热至120℃,保温3h,让产品在近似真空环境下实现固化交联,产品熟坯的密度与性能进一步得以提升。
55.(4)产品后加工:制得产品熟坯后,根据客户图纸要求进一步通过磨削或者线切等等机械加工办法获得最终产品的精坯;将产品精坯通过产品涂装(喷涂、电泳等)制得产品半成品,最后通过充磁包装制得符合客户需求的最终磁性零部件。
56.实施例3本实施例提供一种高致密度粘结稀土永磁体,其制备方法包括:(1)粉体制备:采用市售的mqp1-7快淬钕铁硼粉末为稀土永磁粉。
57.(2)熟料制备:采用1.65 wt%的w-6c环氧树脂(其中含有偶联剂),经丙酮溶解后混入晶化后的稀土永磁粉,密封搅拌60 min混合均匀后,摊晾12 h至氯仿干燥,轮式混炼机破碎至80目,过筛后,得到磁粉络合物;将磁粉络合物与0.05 wt%的硬脂酸钙混合,得到熟料备用。
58.(3)产品压制:通过模具内置的导油槽将模具预升温至40℃,装填入上述熟料,并根据产品大小调整熟料的预热时间,待熟料充分预热后,经单位压制力12 t/cm2,并保压10.0s,脱模后可制得密度达到6.8g/cm3的材料生坯备用。将生坯置于烘箱内,加热至树脂的环氧软化点时,将烘箱内的气压降至0.2个大气压以下,继续加热至200℃,保温2h,让产品在近似真空环境下实现固化交联,产品熟坯的密度与性能进一步得以提升。
59.(4)产品后加工:制得产品熟坯后,根据客户图纸要求进一步通过磨削或者线切等等机械加工办法获得最终产品的精坯;将产品精坯通过产品涂装(喷涂、电泳等)制得产品半成品,最后通过充磁包装制得符合客户需求的最终磁性零部件。
60.为了说明本技术提供的稀土永磁体具有高密度和磁性能,特进行下述对比实验,以下实验均采用mqp1-7商品粉末为原粉制备后测试:实验例1热固性树脂的含量对稀土永磁体性能的影响:按照表1中记载的热固化树脂(采用w-6c环氧树脂)的含量,采用实施例1提供的制备方法,进行稀土永磁体的制备,并检测对所制得的产品的密度和bh性能,包括br(剩磁)、hcb(矫顽力)、hcj(内禀矫顽力)、bhmax (最大磁能积)。结果如表1所示:实验例2润滑剂的含量对稀土永磁体性能的影响:按照表2中记载的润滑剂(硬脂酸锌)的含量,采用实施例1提供的制备方法,进行稀土永磁体的制备,并检测对所制得的产品的密度和bh性能,包括br(剩磁)、hcb(矫顽力)、
hcj(内禀矫顽力)、bhmax (最大磁能积)。结果如表2所示:实验例3单位压制力对稀土永磁体性能的影响:采用实施例1提供的制备方法,按照表3中记载的单位压制力对熟料进行压制,进行稀土永磁体的制备,并检测对所制得的产品的密度和bh性能,包括br(剩磁)、hcb(矫顽力)、hcj(内禀矫顽力)、bhmax (最大磁能积)。结果如表3所示:实验例4压制温度对稀土永磁体性能的影响:采用实施例1提供的制备方法,按照表4中记载的压制温度对熟料进行压制,进行稀土永磁体的制备,并检测对所制得的产品的密度和bh性能,包括br(剩磁)、hcb(矫顽力)、hcj(内禀矫顽力)、bhmax (最大磁能积)。结果如表4所示:最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明
的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1