一种太阳能电池的制作方法

文档序号:33477518发布日期:2023-03-15 10:50阅读:88来源:国知局
一种太阳能电池的制作方法

1.本技术涉及太阳能电池领域。


背景技术:

2.topcon太阳能电池(隧穿氧化层钝化接触,tunnel oxide passivated contact)是一种使用超薄氧化层作为钝化层结构的太阳能电池。n型topcon电池在2022年迎来大规模量产,已建及在建规模已超40gw,将逐渐取代p型占据市场主导地位。目前,n型topcon电池通常采用硼掺杂的方式形成发射极结构,发射极通常采用均匀结,其金属接触复合、短波响应及复合速率等往往并非最优。为了实现更低的金属接触复合,硼掺杂的结深一般需要0.7μm以上,而硼原子本身较难掺杂,需要970度以上温度,3h以上时间才能达到0.7μm以上的结深,电池制造的电耗、设备损耗都较高,且高温时间长对硅片质量要求也更高,这些都大大增加了太阳能电池的度电成本;采用该方法制造的硼发射极的电化学电容-电压法(ecv)掺杂浓度-深度曲线(ecv掺杂曲线)如图3所示(图3中常规硼发射极表示该硼发射极的ecv掺杂曲线)。本领域还需要进一步优化n型topcon电池的结构。


技术实现要素:

3.本技术提供一种太阳能电池,包括:具有第一表面和第二表面的n型硅基体,形成于所述第一表面的隧穿钝化结构和第一钝化减反膜,形成于所述第二表面的硼掺杂的发射极结构层,所述发射极结构层包括第一发射极层和第二发射极区域,其中,第一发射极层的结深小于第二发射极区域的结深,第一发射极层的硼的总掺杂量小于第二发射极区域的硼的总掺杂量;形成于所述发射极结构层上的第二钝化减反膜,第一电极,所述第一电极经配置为与所述第二发射极区域电接触;第二电极,第二电极经配置为与所述隧穿钝化结构电接触。
4.本技术的太阳能电池具有选择性发射极结构,金属接触区域结深大,满足金属化需求;非金属接触区结深浅,提升光学响应;同时,第一发射极层的硼的总掺杂量小于第二发射极区域的硼的总掺杂量,这种电池结构在满足太阳能电池光电转换性能的同时,制备过程中硼扩散工艺的高温时间可大幅缩短,降低太阳能电池的制造成本。
5.在一种实施方式中,所述隧穿钝化结构包括隧穿氧化物层和钝化接触材料层,其中,所述隧穿氧化物层设置于所述n型硅基体和所述钝化接触材料层之间。
6.在一种实施方式中,所述钝化接触材料层的构成材料选自掺杂非晶硅、掺杂多晶硅、碳化硅中的一种或多种。
7.在一种实施方式中,所述第二电极经配置为与所述钝化接触材料层电接触。
8.在一种实施方式中,第一发射极层的结深小于或等于0.7μm。
9.在一种实施方式中,第二发射极区域的结深大于或等于0.8μm。
10.在一种实施方式中,其中,第二发射极区域的硼最高掺杂浓度≤2
×
10
19
atm/cm3。
11.在一种实施方式中,第一发射极层的ecv掺杂曲线中的最高点在距离第一发射极层表面的深度为0.05-0.5μm的内部位置。
12.在一种实施方式中,第一发射极层的ecv掺杂曲线中距离第一发射极层表面深度为0.05-0.7μm的范围内,第一发射极层中最高硼掺杂浓度与最低硼掺杂浓度差异大于1个数量级。
13.在一种实施方式中,第二发射极层的ecv掺杂曲线中距离第二发射极层表面深度为0.05-0.6μm的范围内,第二发射极区域中最高硼掺杂浓度与最低硼掺杂浓度差异小于1个数量级。
14.在一种实施方式中,第一发射极层的方阻大于第二发射极区域的方阻。
15.在一种实施方式中,第一发射极层的方阻≥150ohm/sq,第二发射极区域的方阻≤150ohm/sq。
16.在一种实施方式中,第一电极的宽度小于第二发射极区域的宽度。
17.在一种实施方式中,钝化减反膜的材料选自氧化铝、氧化硅、氮化硅、氮氧化硅中一种或多种的组合。
附图说明
18.图1示出本公开的太阳能电池的结构示意图。
19.图2示出制备本公开太阳能电池的方法流程图。
20.图3示出了实施例1的太阳能电池的第一发射极层和第二发射极区域中的ecv掺杂曲线以及常规硼发射极的ecv掺杂浓度-深度曲线。
具体实施方式
21.下面通过附图和实施例对本技术进一步详细说明。通过这些说明,本技术的特点和优点将变得更为清楚明确。
22.在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
23.此外,下面所描述的本技术不同实施方式中涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
24.如图1所示,本技术提供一种太阳能电池,包括:具有第一表面和第二表面的n型硅基体1,形成于所述第一表面的隧穿钝化结构2和第一钝化减反膜6,形成于所述第二表面的硼掺杂的发射极结构层,所述发射极结构层包括第一发射极层3和第二发射极区域4,其中,第一发射极层3的结深小于第二发射极区域4的结深,第一发射极层的最高硼掺杂浓度大于第二发射极区域的最高硼掺杂浓度,第一发射极层的硼的总掺杂量小于第二发射极区域的硼的总掺杂量;形成于所述发射极结构层上的第二钝化减反膜5,第一电极7,所述第一电极7经配置为与所述第二发射极区域4电接触;
第二电极8,第二电极8经配置为与所述隧穿钝化结构2电接触。
25.在本技术中,正面是指太阳光入射的面,而背面是与太阳光入射的面相对的面。在图1中,n型硅基体1的上侧面为正面(第二表面),而下侧面为背面(第一表面)。
26.以下结合制备过程来描述该太阳能电池的结构。如图2所示,该太阳能电池可以如下制备:s1 提供n型硅基体;s2 在所述n型硅基体的第一表面沉积隧穿钝化结构,和在所述隧穿钝化结构上沉积掩膜层;s3 对所述n型硅基体的第二表面清洗;s4 在同一环境下对所述n型硅基体清洗后的第二表面进行硼扩散处理和对所述隧穿钝化结构进行退火处理,以使得在所述n型硅基体的第二表面形成第一发射极层和晶化所述隧穿钝化结构;s5 对第一发射极层进行激光图案化处理,形成第二发射极区域;s6 沉积钝化减反膜,和s7 形成第一电极和第二电极,其中,第一电极经配置为与所述第二发射极区域电接触,第二电极经配置为与所述隧穿钝化结构电接触。
27.在进行制备之前,可以对n型硅基体进行清洗、抛光处理,以便于后继工序的进行。
28.之后,如图1所示,在所述n型硅基体1的第一表面(背面)沉积隧穿钝化结构2。该隧穿钝化结构可以是topcon电池中可以使用的各种隧穿钝化结构,例如可以包括隧穿氧化物层21和钝化接触材料层22,其中,所述隧穿氧化物层21设置于所述n型硅基体1和所述钝化接触材料层22之间。在一种实施方式中,隧穿氧化物层的构成材料可以为氧化硅等材质。在一种实施方式中,所述钝化接触材料层的构成材料选自掺杂非晶硅、掺杂多晶硅、碳化硅材料sicx中一种或多种,例如磷掺杂多晶硅层,碳化硅材料等。
29.之后,对n型硅基体的第二表面(正面)进行清洗步骤,以除去在该正面绕镀产生的不需要的材料层例如多晶硅层等。还可以在清洗之后进行制绒步骤,由此可以形成绒面,以增加表面面积、降低表面反射率并去除杂质等。
30.之后,在同一环境下对所述n型硅基体清洗后的第二表面进行硼扩散处理和对所述隧穿钝化结构进行退火处理,以使得在所述n型硅基体的第二表面形成第一发射极层和晶化所述隧穿钝化结构。在n型硅基体1的第二表面(正面)进行硼扩散,形成p型硅层,即第一发射极层3。在该同一环境进行处理时,除了n型硅基体的第二表面(正面)硼扩散形成p型硅层(第一发射极层3)之外,还同时对预先形成的隧穿钝化结构2进行了退火处理,使得钝化接触材料层中的材料在硼扩高温过程中完成晶化及掺杂元素的再分布,能够提升钝化接触结构的钝化能力。由此,无需对隧穿钝化结构单独进行退火处理的步骤,避免退火处理的高温对于硅片及其上形成各层的不利影响。在一种实施方式中,硼扩散处理所用的硼源为bcl3、bbr3等。在本技术中,硼扩散处理的温度低,时间短,并且所形成的p型硅层(第一发射极层)的结深比较浅,第一发射极层3的结深可以小于或等于0.7μm,能够提升光学响应。在一种实施方式中,该同一环境的温度为300-970℃,且在800-970℃的处理时间小于3小时。在一种实施方式中,第一发射极层的方阻≥150ohm/sq。
31.在一种实施方式中,第一发射极层3的结深可以小于或等于0.7μm,由此可以提升
光学响应。图1示出第一发射极层的结深h1,其等同于第一发射极层的厚度,其是指从表面至存在第一发射极层处的距离。
32.之后,对第一发射极层3进行激光图案化处理,形成第二发射极区域4。激光图案化处理的条件为:采用紫外、绿光或红外等一种或两种及以上波长的激光,脉冲宽度为纳秒、皮秒或者是飞秒,平均功率为5-200w;例如可以使用波长532nm的绿光纳秒激光器,激光功率为30w。如图1所示,通过激光图案化处理,可以推进硼掺杂,形成与第一发射极层具有不同结深、掺杂浓度以及方阻的第二发射极区域。在本技术中,第一发射极层的结深h1小于第二发射极区域的结深h2。图1示出第二发射极区域的结深h2,其等同于第二发射极区域的厚度,其是指从表面至存在第二发射极处的距离。在一种实施方式中,第二发射极区域的结深h2大于或等于0.8μm。不过,第二发射极区域的结深h2一般也不会超过5μm。如后所述,第二发射极区域与第一电极7电接触,以上结深h2能够满足金属化需要。第一发射极层3和第二发射极区域4共同构成发射极结构层。
33.对于第一发射极层,ecv掺杂浓度-深度曲线(ecv掺杂曲线)中最高点不在硅片表面,在距离第一发射极层表面的深度为约0.02-0.5μm的内部位置。并且,第一发射极层的掺杂曲线相对变化幅度大,掺杂浓度在0.02-0.6μm深度范围内变化大,最高硼掺杂浓度与最低掺杂浓度差异大于1个数量级;例如第一发射极层中硼掺杂浓度为2
×
10
19
到1
×
10
18
atm/cm3,或者3
×
10
19
到5
×
10
17
atm/cm3等。第一发射极层陡峭的扩散结型使用较短的硼扩工艺时间即可实现,降低制造成本;对于第二发射极区域,第二发射极区域的ecv掺杂浓度-深度曲线(ecv掺杂曲线)更平整,掺杂浓度在0.05-0.7μm深度范围内变化不大,最高硼掺杂浓度与最低硼掺杂浓度差异小于1个数量级;例如第二发射极区域中硼掺杂浓度为1
×
10
19-1
×
10
18
atm/cm3,5
×
10
18-5
×
10
19
atm/cm3,或者1
×
10
19-1
×
10
20
atm/cm3之间。第二发射极区域更平缓的掺杂结型更有利于形成良好的金属接触,降低接触电阻率,同时也可以降低金属区的复合电流密度,提升太阳能电池的光电转换效率。
34.在一种实施方式中,第一发射极层的方阻大于第二发射极区域的方阻。在一种实施方式中,第一发射极层的方阻≥150ohm/sq,第二发射极区域的方阻≤150ohm/sq。
35.之后,对硅片表面进行清洗。该清洗步骤可以清洗掉背面的在所述隧穿钝化结构上的掩膜层,以及正面的氧化层等。清洗步骤可以采用碱洗和/或酸洗的方式,碱洗例如可以采用氢氧化钾溶液、氢氧化钠溶液等作为洗涤剂,酸洗可以采用hf溶液、hcl溶液等作为洗涤剂。
36.之后,在硅片的两个面上沉积钝化减反膜。沉积钝化减反膜的方法可以使用本领域已知的各种方法,钝化减反膜的材料可以为常用的各种钝化减反膜材料例如氧化铝、氧化硅、氮化硅、氮氧化硅等材质中一种或多种的组合。钝化减反膜可以由单层材料构成,或者为多层结构,由多层材料构成。如图1所示,第二钝化减反膜5位于正面,第一钝化减反膜6位于背面。
37.之后,沉积金属电极部分。如图1所示,金属电极部分包括第一电极7和第二电极8,第一电极7位于正面,经配置为与所述第二发射极区域4电接触。第二电极8位于背面,经配置为与所述隧穿钝化结构2特别是钝化接触材料层22电接触。沉积金属电极可以通过丝网印刷等常规方式进行。
38.在一种实施方式中,如图1所示,第一电极7的宽度小于第二发射极区域4的宽度。图1示出第一电极7的宽度w1和第二发射极区域4的宽度w2,其是第一电极7和第二发射极区域4各自在x方向上的边缘间距。如此设置,具有如下优点:第一电极区域可完全覆盖在第二发射极区域,重掺杂有效降低第一电极区域下的金属复合,降低复合电流密度,提升电池开路电压。
39.实施例1对n型硅片进行湿化学清洗去除表面损伤及杂质,并利用碱溶液对表面进行抛光,形成平整度较高的表面,反射率大于30%,以更适合实现背面钝化接触结构更有的钝化效果。
40.采用pecvd的方法在硅片背面沉积隧穿氧化硅层及掺杂多晶硅层,其中隧穿氧化硅层厚度在0.9-2nm之间,掺杂多晶硅层厚度为75-150nm;之后在外层进一步沉积氧化硅层掩膜,厚度为10-50nm。
41.采用湿化学清洗的方式去除正面的绕镀多晶硅层,之后对正面进行碱制绒,在硅片正面形成金字塔结构,而背面则在掩膜保护下保持原有的结构。
42.硅片放入管式扩散炉管内,在800℃以上的温度条件下通入bcl3和氧气,在硅片表面反应形成硼原子,扩散进入硅片内部,形成第一发射极,并在表面生成富含硼原子的氧化硅层,即硼硅玻璃bsg,硼扩散的条件为:沉积步bcl3流量为300sccm,氧气流量为200sccm,温度为850℃,时间为15min;之后进行升温推结,温度为930℃,时间为30min。第一发射极方阻在150-250ohm/sq,第一发射极的结深为0.5μm,bsg厚度在10-150nm;同时在硼扩散的高温温度和时间下,背面的掺杂多晶硅层完成晶化及掺杂元素的再分布,提升钝化接触结构的钝化能力。
43.使用长脉冲激光或短脉冲但高重叠率的激光对正面的硼硅玻璃做图形化处理,激光功率为30w,光斑宽度在60-200μm,形状为圆形、椭圆形或矩形。经激光处理后的方阻下降至150ohm/sq以下,扩散的第二发射极结深加深至0.7μm以上,表面掺杂浓度下降至1
×
10
19
cm-3
;对硅片表面进行湿化学清洗,去除正面的bsg层,激光损伤层、以及背面的掩膜;硅片正面采用ald方式沉积氧化铝,厚度在2-20nm;之后使用pecvd的方式在正面沉积50-200nm的氮氧化硅、氧化硅中的一种或几种以上的组合,由此构成第二钝化减反膜;硅片背面采用pecvd的方式在背面沉积厚度为30-200nm的氮氧化硅、氧化硅中的一种或几种以上的组合,由此构成第一钝化减反膜;背面采用丝网印刷的方式印刷细栅及主栅电极,正面在激光加工区域的第二发射极上方采用丝网印刷的方式印刷细栅电极,正面电极宽度小于50μm。之后经过高温烧结,使金属电极与发射极形成欧姆接触。
44.图3还示出了实施例1所得的太阳能电池的第一发射极层和第二发射极区域中的ecv掺杂曲线(图3中,第一发射极层表示第一发射极层的ecv掺杂曲线,第二发射极区域表示第二发射极区域的ecv掺杂曲线),显示第一发射极层具有陡峭的扩散结型,而第二发射极区域具有更平缓的掺杂结型。
45.相对于cn110299422a的实施例1所制备的太阳能电池,本公开实施例1所得的太阳能电池的第一发射极深度更浅,结深小于0.7μm,电池短波响应更好,短路电流密度更高,从
40.3ma/cm2提升至40.6 ma/cm2;相对于cn110299422a的实施例1所制备的太阳能电池,本公开实施例1所得的太阳能电池激光掺杂后的第二发射极深度更深,大于0.7μm,电极接触电阻更低,从1.5ohm/cm2下降至0.9ohm/cm2。
46.在本技术的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于本技术工作状态下的方位或位置关系,仅是为了便于描述本技术和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本技术的限制。
47.以上结合了优选的实施方式对本技术进行了说明,不过这些实施方式仅是范例性的,仅起到说明性的作用。在此基础上,可以对本技术进行多种替换和改进,这些均落入本技术的保护范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1