一种纳米棒状磷酸锰锂正极材料及其制备方法

文档序号:8445983阅读:231来源:国知局
一种纳米棒状磷酸锰锂正极材料及其制备方法
【技术领域】
[0001]本发明属于新能源材料领域中的锂离子电池材料技术领域,特别涉及一种纳米棒状磷酸锰锂正极材料及其制备方法。
【背景技术】
[0002]自从1997年Goodenough课题组开创性地报导了应用橄榄石型磷酸铁锂(LiFePO4)作为锂离子电池的正极材料以来,这种材料以其原料丰富、价格低廉、材料安全性能好等诸多优势,目前已成功实现商业化,应用到通讯、照明、交通等多个领域。尽管1^?#04具有较高的理论比容量(170mAh/g),但其放电电压平台较低,在3.45V左右,限制了锂离子电池能量密度的发挥。近年来,橄榄石型磷酸锰锂(LiMnPO4)成为锂离子电池正极材料的研宄热点之一,其放电电压为4.1V左右,比1^?#04高出0.65V,且具有与LiFePO 4相同的理论比容量,因此采用LiMnPO4作为正极材料能够大大提高锂离子电池的能量密度。但是,LiMnPO4材料自身存在电子电导率和锂离子扩散系数较低等缺点,导致材料的比容量难以有效发挥,倍率性能和循环稳定性也有待提高。
[0003]LiMnPO4材料的电化学性能可以通过材料纳米化、表面导电层包覆以及金属离子掺杂等方式得到一定程度的改善。目前所报道的高性能LiMnP04m米材料大多呈现为二维纳米片状结构或零维纳米颗粒形貌。一维纳米材料如纳米棒、纳米线等具有相对于二维纳米材料和零维纳米材料更大的比表面积-体积比,即在相同体积下能获得更大的比表面积,从而实现与电解液更为有效的接触。然而,目前已报道的一维纳米棒状LiMnPO4材料大多尺寸较大,电化学性能不甚理想(J.Power Sources, 2011, 196,10258-10262 ;J.Electrochem.Soc., 2011, 158, A227-A230 ; J.Power Sources, 2014, 248, 655-659)。同时,为了提高LiMnPO4材料的电子电导率,往往将所制备的LiMnPO4材料与大量的碳材料进行复合,这些电化学惰性的碳无法提供容量,因而导致以磷酸锰锂-碳复合材料作为正极的锂离子电池难以提供更高的能量密度。此外,为了合成纯度高、形貌可控的LiMnPO4纳米材料,现有制备技术往往在反应过程中引入聚乙烯吡咯烷酮(PVP)、聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123)、抗坏血酸、柠檬酸等添加剂,反应体系较为复杂,同时也增加了生产成本,不利于进一步推广应用。

【发明内容】

[0004]本发明的主要目的在于提供一种纳米棒状磷酸锰锂正极材料及其制备方法,且所制备的磷酸锰锂材料具有较高的放电比容量和较好的循环稳定性。
[0005]本发明中磷酸锰锂正极材料的制备方法,是以乙二醇和水作为反应溶剂,采用溶剂热方法合成磷酸锰锂,再将磷酸锰锂与蔗糖混合合成碳包覆的磷酸锰锂正极材料。其中溶剂热合成过程反应体系简单,除了合成产物所必需的原料之外无需添加其他反应助剂,通过控制反应原料的添加顺序,调节溶剂配比、反应物浓度、反应温度、反应时间等工艺参数,即可合成纯度高、形貌可控的磷酸锰锂材料。碳包覆过程中减少了有机碳源即蔗糖的用量,有利于提高磷酸锰锂正极材料的能量密度。
[0006]一种纳米棒状磷酸锰锂正极材料的制备方法,包括如下步骤:
[0007](I)按P和Mn的摩尔比为1:1,称取磷酸和一水合硫酸锰,并将磷酸和一水合硫酸锰溶于水中,加入乙二醇溶液充分搅拌,得到磷酸和一水合硫酸锰的混合溶液,其中水与乙二醇的体积比为1:5?1:2 ;
[0008](2)依据步骤(I)中称取的一水合硫酸锰的量,按照Mn和Li的摩尔比为1: 3,称取一水合氢氧化锂,溶于乙二醇中得到氢氧化锂溶液;
[0009](3)将步骤(2)所制备的氢氧化锂溶液以2mL/min?10mL/min的速率加入到步骤
(I)制备的磷酸和一水合硫酸锰的混合溶液中,充分搅拌得到均匀的悬浊液;
[0010](4)将步骤(3)中所得悬浊液转移到高压反应釜中进行溶剂热反应,反应温度为160°C?200°C,反应时间为3h?24h ;反应结束后,待反应釜降至室温,采用去离子水和无水乙醇对生成的产物反复洗涤并过滤,经真空干燥后得到磷酸锰锂纳米棒;
[0011](5)依据步骤(4)中所得磷酸锰锂纳米棒的量,按照磷酸锰锂和蔗糖的质量比为1: (0.15?0.25),称取蔗糖,将磷酸锰锂和蔗糖在无水乙醇介质中球磨混合,经干燥后在500°C?700°C下惰性气氛中热处理2h?6h,得到碳包覆的磷酸锰锂材料。
[0012]所述步骤(I)中所得磷酸和一水合硫酸锰的混合溶液中,磷酸和一水合硫酸锰的浓度均为0.lmol/L?lmol/L。
[0013]所述步骤(2)中所得氢氧化锂溶液中氢氧化锂的浓度为0.3mol/L?3mol/L。
[0014]所述步骤(4)中真空干燥温度为60°C?80°C。
[0015]所述步骤(5)中干燥温度为60V?75 °C。
[0016]所述步骤(5)中惰性气氛为氩气、氮气和氢气中的一种以上,其中氢气在惰性气氛中所占的体积分数不大于7%。
[0017]一种纳米棒状磷酸锰锂正极材料,所述纳米棒状磷酸锰锂正极材料采用上述方法制备得到,该材料为纳米级棒状材料,长为80nm?180nm,宽和高分别为30nm?60nm ;该材料由磷酸锰锂与碳共同组成,其中碳含量为材料总质量的2%?4%。所述纳米棒状磷酸锰锂正极材料具有较好的电化学性能,在0.1C下的放电比容量不小于150mAh/g,在1C下仍能保持不小于95mAh/g的比容量,且经过0.5C下的100次循环后容量的保持率不小于87%。
[0018]本发明的有益效果为:
[0019]本发明磷酸锰锂正极材料的制备方法反应体系简单,工艺参数容易控制,流程短,制备成本低,易于规模化生产,进一步拓展了磷酸锰锂制备领域的研宄工作。
[0020]本发明磷酸锰锂纳米棒产品纯度高、尺寸小、颗粒分散性好,有利于电极材料与电解液的有效接触,缩短锂离子的扩散距离,提高锂离子电池的倍率性能。该磷酸锰锂正极材料中碳含量较少,少量的碳包覆在提高材料电子电导率的同时,也能确保以该产品作为正极材料的锂离子电池获得较高的能量密度。
【附图说明】
[0021]图1为本发明实施例1所制备的磷酸锰锂纳米棒的X射线衍射图;
[0022]图2a?图2c依次为本发明实施例1?实施例3中所制备的磷酸锰锂纳米棒的扫描电镜图;
[0023]图3为本发明实施例1所制备的电池在不同倍率下的电压-比容量曲线图;
[0024]图4为本发明实施例1所制备的电池在0.5C下的循环稳定性图;
[0025]图5为本发明实施例2所制备的电池在不同倍率下的电压-比容量曲线图;
[0026]图6为本发明实施例2所制备的电池在0.5C下的循环稳定性图;
[0027]图7为本发明实施例3所制备的电池在不同倍率下的电压-比容量曲线图;
[0028]图8为本发明实施例3所制备的电池在0.5C下的循环稳定性图。
【具体实施方式】
[0029]本发明提供了一种纳米棒状磷酸锰锂正极材料及其制备方法,下面结合附图和【具体实施方式】对本发明做进一步说明。
[0030]实施例1
[0031](I)称取1mmol磷酸和1mmol —水合硫酸锰,将两者溶于5mL水中,加入25mL乙二醇溶液充分搅拌,得到磷酸和一水合硫酸锰的混合溶液,其中水和乙二醇的体积比为1: 5,磷酸和一水合硫酸猛浓度均为0.33mol/L ;
[0032](2)称取30mmol —水合氢氧化锂,溶于30mL乙二醇中得到氢氧化锂溶液,其中氢氧化锂的浓度为lmol/L ;
[0033](3)将步骤⑵所制备的氢氧化锂溶液以2mL/min的速率加入到步骤⑴制备的磷酸和一水合硫酸锰的混合溶液中,充分搅拌得到均匀的悬浊液;
[0034](4)将步骤(3)中的悬浊液转移到高压反应釜中进行溶剂热反应,反应温度为180°C,反应时间为1h ;反应结束后,待反应釜降至室温,采用去离子水和无水乙醇对生成的产物反复洗涤并过滤,经80°C真空干燥后得到磷酸锰锂纳米棒;
[0035](5)称取Ig步骤⑷中所制备的磷酸锰锂纳米棒和0.2g蔗糖,将两者在无水乙醇介质中球磨混合,经75°C干燥后在600°C下氩气气氛中热处理4h,得到碳包覆的磷酸锰锂材料。
[0036]本实施例所制备的磷酸锰锂纳米棒其X射线衍射图谱见图1,扫描电子显微镜照片见图2a。由图1可知,所制备的材料为单一的磷酸锰锂物相,无其他杂质。由图2a可见,磷酸猛锂纳米棒长约为80nm?150nm,宽和高约为30nm
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1