一种锂硫电池负极材料及其制备方法

文档序号:9789423阅读:813来源:国知局
一种锂硫电池负极材料及其制备方法
【技术领域】
[0001]本发明属于电极材料制备领域,尤其涉及一种锂硫电池电极材料及利用该种电极材料制备锂硫电池的方法。
【背景技术】
[0002]锂离子电池(Lithium-1on battery, LIB),又称为锂二次电池,是一种可循环充电的移动电源设备。LIB具有高能量密度、高功率密度、循环寿命长、清洁无毒和无记忆效应等诸多优点,自从上世纪90年代索尼公司将LIB商业化以来,LIB得到了迅速而广泛的发展。目前LIB己经成为大多数移动电子设备的电源。近几年,人们对LIB进行了深入和广泛的研究。在LIB中,负极材料对电池的性能有着很大的影响,发展优异的负极材料也是提高LIB性能的关键因素之一。碳材料是最主要的一种LIB负极材料,目前己经有上百种拥有不同结构的碳材料被用作锂离子电池负极,这些材料包括天然石墨、人工石墨、焦炭、碳纤维、中间相碳微球、碳黑等。
[0003]单质硫无毒、全球储量丰富,而且有着较高的理论比容量(1675mAh/g)。金属锂有着低密度(0.534g/cm3)、低电势(-3.045V)和高比容量(3861mAh/g),因此锂硫电池可以达到较高的能量密度,从而可在能量存储、再生能源利用等方面发挥重要作用。然而,锂硫电池商业化过程中存在诸多问题,如金属锂化学性质不稳定,使用时存在潜在的危险;当负极采用金属锂箔时,电池经过多次充放电后,金属锂箔表面易形成枝晶。枝晶的不断生长导致电池容量下降,且枝晶生长可能刺穿隔膜,造成电池短路,引发安全问题。
[0004]硬碳是高分子聚合物的热解碳,即使在高温下也难以石墨化。硬碳的可逆容量能较高,循环性能也很好。但是硬碳也存在电极电位过高、电位滞后(即嵌锂电位小于脱锂电位)以及首次循环不可逆容量大等缺点。
[0005]目前,大部分锂硫电池都采用金属锂作为负极。锂作为负极在多次充放电过程中会由十电流密度不均导致枝品的形成。枝品会导致隔膜穿透,进而使电池发生短路,是主要的安全隐患来源。如果在负极中添加石墨烯,负极的比表面积变大,面电流密度减小,同时,疏松的石墨烯提供了锂沉积的空间,从而使锂枝品的生长越来越困难。针对锂负极存在的问题,科研工作者进行的改进和研究较少。归结起来主要包括两个方面:一是从电解液添加剂进行改性,通过加入不同的添加剂,如LiNO3和PEO等,促使锂负极表面在充放电过程中快速形成更为稳定的SEI膜,希望能抑制锂枝晶和提高循环性能。然而添加剂在充放电过程中逐渐被消耗,影响电池的稳定性和连续性。二是从锂电极的制备工艺入手,通过使用锂化合物包覆锂粉或者电沉积金属锂,锂箔表面增加保护层等方法,提高了循环效率和循环寿命,但操作过程也较为复杂。

【发明内容】

[0006]为了解决现有技术中存在的问题,本发明的目的是提供一种由稳态锂粉和特殊配比碳材料制备而成的负极浆料,以及由该浆料制备而成的锂硫电池,其解决了现有技术中采用硬碳等材料带来的技术缺陷、并且解决了锂电池负极改进的中存在的稳定性和连续性差以及操作复杂等技术问题。
[0007]—种锂硫电池负极材料,其特征在于包括:以质量份数计,由以下原料组合物组成:5-10份稳态锂粉、3-7份碳材料、I份粘结剂和溶剂。
[0008]进一步,所述的稳态锂粉由滴液乳化技术(DET)制成,锂粉直径为60μπι-90μπι。
[0009]进一步,所述的碳材料为炭纳米球、碳纳米管和介孔碳按照质量比为5:2:1混合而成的混合物。
[0010]进一步,所述粘结剂为聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成的粘结剂;所述溶剂为碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3:2:1混合而成的混合溶剂。
[0011]—种锂硫电池的制备方法,采用上述负极材料作为负极,其特征在于包括如下步骤:
(1)将含硫的正极浆料涂在集流体制成正极片;
(2)把稳态锂粉、碳材料和粘结剂按照质量比称量,以碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3: 2:1的混合而成的混合物为溶剂;先把所述粘结剂溶解于所述溶剂中,而后把稳态锂粉和碳材料倒入上述溶液中,混合均匀后涂抹于泡沫镍中从而得到负极片;把负极片置于加热片上加热以使溶剂挥发;而后把负极片压平待用;
(3)将正极、负极、隔膜组装成纽扣电池。
[0012]进一步,步骤(I)中所述的含硫的正极浆料包含:升华硫、导电剂、粘结剂和溶剂;所述的导电剂由纳米碳纤维和膨胀石墨按照质量比为1:1组合而成,所述粘结剂中的聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成;所述溶剂由碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3:2:1混合而成;先将粘结剂溶解于的混合溶剂中,再将升华硫与导电剂按质量比混合均匀后,倒入已溶解粘结剂的溶剂中,制作成正极浆料,然后将正极浆料均匀涂抹在集流体,制成正极片。
[0013]进一步,所述正极片需在真空干燥箱中加热去除水分和溶剂,然后将其表面刮平和压平;所述的真空干燥箱中的温度为50°C,干燥时间为10h。
[0014]进一步,所述的含硫的正极浆料中的升华硫、导电剂与粘结剂的质量比为9:7:1。
[0015]进一步,步骤(2)中所述负极片需在40°C_70°C加热Sh-1lh以去除溶剂,而后压平待用。
[0016]进一步,步骤(2)和(3)中的操作均在充满氩气的真空手套箱中完成。
[0017]本发明制备得到的锂硫电池负极材料以及锂硫电池具有如下有益效果:
(I)本发明制备得到的锂硫电池负极材料由稳态锂粉和特定配比的碳材料制作的负极与普通锂箔电极相比,比表面积更大,孔隙率更高,与电解液接触更完全,从而有效放电面积更大,阻抗更小,且能有效抑制锂枝晶的生长,可表现出较好的循环性能和倍率性能。
[0018](2)本发明制备得到的锂硫电池负极材料中采用碳纳米球材料,碳纳米球具有独特的形貌结构,在电化学表现上有独特的优势:a、球状的外形可以实现最紧密的堆积,使锂离子电池具有更高的体积能量密度;b、球状的石墨片层结构使Li+可以从球的各个方向进行嵌入和脱嵌,克服了石墨由于各向异性过高而引发的石墨片层溶涨、塌陷和不能快速充放电的问题;c、球状颗粒的外形更便于电极的加工。其又充分结合了碳纳米管和介孔碳的结构优势,高度有序介孔碳具有比表面积大、孔径均匀、孔隙体积非常高、相互关联的多孔结构和高导电性等特点;而碳纳米管又具有良好的取向,可与集流体形成良好的接触并形成高效定向导电骨架,有效提高锂硫电池电极材料中骨架导电性,而其内部的规则孔道也有利十多硫化物的储存。本发明充分利用这三者结构的优势,能有效减弱连续充放电过程中的穿梭效应和枝晶生长,比常规电极表现出更好的循环性能和倍率性能。
[0019](3)在正极的导电添加剂方面,本发明添加纳米碳纤维和膨胀石墨,前者可形成三维导电网络,既能增加极片中的远程导电能力,又不易被允放电过程中形成的产物完全覆盖,从而改善了极片的表面结构;后者利用膨胀石墨的丰富网络空隙结构及良好吸附性能,也可提尚单质硫的利用率和循环性能。
[0020](4)本发明还特别选用了采用聚乙烯吡咯烷酮和聚乙烯亚胺的混合体系作为粘结剂,从而跟有力的保持硫正极在循环过程中的多孔结构。
[0021](5)本发明选用了三种物质的混合体系作为溶剂,经过实验,该溶剂能更好的保持各种极片的原材料的结构特征以及优势,使得最终制备得到的产品具有更好的稳定性和更尚的品质。
【具体实施方式】
[0022]实施例一:
一种锂硫电池及其制备方法如下:
1、正极片的制备:以升华硫为正极活性物质、纳米碳纤维和膨胀石墨按照质量比为I: I组合而成的混合物为导电剂,聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成的混合体系为粘结剂。
[0023]含硫的正
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1