基于超声驻波场的包覆压电单元薄膜的制造方法及装置的制造方法
【技术领域】
[0001]本发明涉及复合压电薄膜制造技术,尤其是涉及了一种基于超声驻波场的包覆压电单元薄膜的制造方法及装置。
【背景技术】
[0002]压电材料是一种可以实现机械能与电能相互转化的功能材料,在工业、军事和医学等领域有广泛的应用。常规压电材料根据其化学成分的不同,可以分为压电陶瓷、压电晶体以及有机压电材料。压电陶瓷包括钛酸钡、钛酸铅和锆酸铅等,由于压电陶瓷具有压电常数高,介电常数大,以及易于机械加工等特点,因此适用于制造大功率压电换能器和滤波器,比如海洋声呐、超声清洗机、金属探伤机和超声医疗设备等。此外,由于压电陶瓷在电场作用下的形变量很小,因此基于其逆向压电效应制造的压电驱动器可以实现高精度的运动控制。但由于电损耗大,并且稳定性较低,因此压电陶瓷不适用于高频场合。压电晶体包含石英、锗酸锂和铌酸锂等,其特点为稳定性高,因而适用于对频率稳定性要求严格的场合,以及制造高频电子元器件,如振荡器和延迟线等。但压电晶体压电常数低,介电常数很小,并且存在切型约束而无法加工到特殊尺寸与形状,因而限制了压电晶体应用领域。以PVDF为代表的有机压电聚合物具有柔韧性好、密度低和压电常数高等优点,但是较低的压电应变常数致使其不适于制作有源发射端,因此应用范围受到了制约。
[0003]与上述三种常规压电材料化学组成和制造方法不同,复合压电材料是通过将单一或多种压电陶瓷粉末与聚合物按照一定比例进行混合,并采用热压等方法制备而成。由于其特殊的材料组成,复合压电材料兼具压电陶瓷、压电晶体和有机压电材料的优点,包括较好的机械性能,如高柔韧性、低低密等,并且具有机电、压电耦合系数大、灵敏度高及大范围温度内压电常数稳定等特点。
[0004]基于压电效应的柔性传感器被广泛的应用于生机电系统和工业传感测量领域,如电子皮肤和加速度计等。构成柔性压电传感器的关键部分是柔性传感层,常见的制备柔性传感层的材料有PVDF和具有压电陶瓷夹层的柔性薄膜,然而上述两类材料不能兼具高压电常数、高柔韧性和较大的压电应变常数等优点。近年来,国外研究者提出了一种新型的复合压电材料制备方法,首先将压电陶瓷粉末与液态有机柔性薄材料进行混合,然后采用光固化的方式使材料从液态转变为固态,他们制造的复合压电材料具有柔性好和压电性能高的特点。但是无论采用传统还是新型压电材料,在制造含有高重复性阵列排布压电单元的传感层时,如压电式柔性触觉传感器的受力层,都需要对压电材料进行高精度的机械切割及装配,因而导致生产效率很低。因此,制造一种兼具高柔性和高压电性能,且免于机械装配的含有周期性单元的压电材料是十分必要的。
【发明内容】
[0005]为了解决【背景技术】中存在的问题,本发明提出了一种基于超声驻波场的包覆压电单元薄膜的制造方法及装置。
[0006]本发明解决其技术问题所采用的技术方案是:
[0007]一、一种基于超声驻波场的包覆压电单元薄膜的制造方法:
[0008]I)构建两对正交排布的叉指换能器,每对叉指换能器由压电晶片和铜质叉指电极组成,并在声表面波换能器之间放置PDMS微流道,使PDMS微流道覆盖在压电晶片正中央,通过注射栗的控制将由液态预聚物、经耦合剂接枝的压电粉末颗粒和光引发剂组成的光敏压电混合液注入PDMS微流道并铺设一层;
[0009]2)将叉指换能器与信号发生器的两个输出通道相连,启动信号发生器,两对正交排布的叉指换能器在铌酸锂晶片上激发四列声表面波,四列行波在PDMS微流道覆盖区域叠加形成稳定的二维驻波场;
[0010]3)光敏压电混合液中的压电粉末颗粒在驻波场中受到声辐射力的作用,向附近的节点移动,从而在液体中形成阵列排布的压电单元;
[0011]4)待液体中的压电单元阵列排布稳定后,采用紫外光源对光敏压电混合液进行照射使其交联固化,最后对固化后的材料进行剥离获得包覆阵列压电单元的柔性薄膜。
[0012]所述步骤中,通过调整信号发生器的频率和相位,可以改变驻波场的节点间距和位置,进而调节压电单元阵列排布的间距和整体位置,最终形成具有不同排布间距的包覆压电单元薄膜。
[0013]所述的光敏压电混合液,液态预聚物采用聚乙二醇二丙烯酸酯,耦合剂采用3_(甲基丙烯酰氧)丙基三甲氧基硅烷,压电材料为经3_(甲基丙烯酰氧)丙基三甲氧基硅烷接枝处理的钛酸钡粉末,并采用安息香双甲醚作为光引发剂,聚乙二醇二丙烯酸酯,安息香双甲醚和经3-(甲基丙烯酰氧)丙基三甲氧基硅烷接枝处理后的钛酸钡粉末的配置质量比为89:
10:1ο
[0014]所述的叉指换能器是具有多种共振频率的铜质叉指换能器,每个铜质叉指电极的指宽和间距由外向内逐渐递减。
[0015]所述的压电晶片采用128°Y切型、延X向传播的双面抛光铌酸锂。
[0016]二、一种基于超声驻波场的包覆压电单元薄膜的制造装置:
[0017]包括铌酸锂晶片、铜质叉指电极、PDMS微流道和紫外光源,铌酸锂晶片的上表面形成有两对正交排布的铜质叉指电极,铜质叉指电极与铌酸锂晶片构成叉指换能器,各个铜质叉指电极与信号发生器的输出通道相连,PDMS微流道覆盖在铌酸锂晶片的正中央,四个铜质叉指电极分别位于PDMS微流道的周围四边并呈对称分布,PDMS微流道内有光敏压电混合液,紫外光源置于铌酸锂晶片下方。
[0018]所述的铜质叉指电极通过光刻与溅射方法在铌酸锂晶片上制备。
[0019]所述的PDMS微流道为内部中空且无底板的方壳体,壳体顶部钻有注射孔和排气孔,所述的光敏压电混合液通过注射栗的控制由注射孔进入PDMS微流道。
[0020]所述的叉指换能器是具有多种共振频率的铜质叉指换能器,每个铜质叉指电极的指宽和间距由外向内逐渐递减。
[0021]所述的压电晶片采用128°Y切型、延X向传播的双面抛光铌酸锂。
[0022]本发明首先利用四列声表面波产生稳定的正交驻波场,在驻波场的声辐射力作用下,光敏压电混合液中的钛酸钡向驻波场节点移动,从而产生阵列排布的压电单元。当排布稳定后,打开紫外光源使光敏压电混合液交联固化,最后对固化后的材料进行剥离,即获得包覆阵列压电单元薄膜。在制造过程中改变信号发生器的输出频率、相位,可以调节压电单元的排布规律。
[0023]本发明的PDMS微流道即为聚二甲基硅氧烷微流道。
[0024]本发明具有的有益效果是:
[0025]本发明通过声表面波驻波场的声辐射力作用,实现钛酸钡在预聚物液体中阵列排布,结合紫外光固化成型,实现包覆阵列压电单元薄膜的快速高精度制造;
[0026]本发明通过改变信号发生器的频率和相位,控制压电单元的排布规则,可以实现多样性制造,可控性强,适用范围广;
[0027]本发明具有装置简单,体积小,能耗低的特点。
【附图说明】
[0028]图1是本发明的装置结构图。
[0029]图2是本发明启动叉指换能器后的装置俯视图。
[0030]图3是本发明启动叉指换能器及紫外光源后的成型示意图。
[0031 ]图4是本发明实施例制备得到的包覆阵列压电单元薄膜的示意图。
[0032]图5是实施例经过3_(甲基丙烯酰氧)丙基三甲氧基硅烷处理后的钛酸钡粉末的光谱图。
[0033]图中:1.铜质叉指电极,2.铌酸锂晶片,3.PDMS微流道,4.光敏压电混合液,5.信号发生器,6.注射栗,7.阵列压电单元,8.紫外光源。
【具体实施方式】
[0034]下面结合附图和实施例对本发明作进一步说明,但本发明的实施方式不限于此。
[0035]如图1和图2所示,本发明的制造装置包括铌酸锂晶片2、铜质叉指电极UPDMS微流道3和紫外光源8,铌酸锂晶片2的上表面制作有两对正交排布的铜质叉指电极I,铜质叉指电极I与铌酸锂晶片2构成叉指换能器,每对铜质叉指电极I与信号发生器5的输出通道相连,无底的PDMS微流道3覆盖在铌酸锂晶片2的正中央,四个铜质叉指电极I分别位于PDMS微流道3的周围四边并呈中心对称分布,PDMS微流道3内均布有光敏压电混合液4,紫外光源8置于铌酸锂晶片2下方。
[0036]铜质叉指电极I通过光刻与溅射方法在铌酸锂晶片2上制备。
[0037]PDMS微流道3为内部中空且无底板的方壳体,壳体顶部钻有注射孔和排气孔,所述的光敏压电混合液