本发明涉及智能功率模块技术领域,具体而言,涉及一种智能功率模块和一种空调器。
背景技术:智能功率模块(IntelligentPowerModule,简称IPM)是一种将电力电子分立器件和集成电路技术集成在一起的功率驱动器,智能功率模块包含功率开关器件和高压驱动电路,并带有过电压、过电流和过热等故障检测电路。智能功率模块的逻辑输入端接收主控制器的控制信号,输出端驱动压缩机或后续电路工作,同时将检测到的系统状态信号送回主控制器。相对于传统分立方案,智能功率模块具有高集成度、高可靠性、自检和保护电路等优势,尤其适合于驱动电机的变频器及各种逆变电源,是变频调速、冶金机械、电力牵引、伺服驱动、变频家电的理想电力电子器件。现有的智能功率模块电路的结构如图1所示,MTRIP端口作为电流检测端,以根据检测到的电流大小对智能功率模块100进行保护。PFCIN端口作为智能功率模块的PFC(PowerFactorCorrection,功率因数校正)控制输入端。在智能功率模块工作过程中,PFCINP端按一定的频率在高低电平间频繁切换,使IGBT(InsulatedGateBipolarTransistor,绝缘栅双极型晶体管)管127持续处于开关状态而FRD管131持续处于续流状态,该频率一般为LIN1~LIN3、HIN1~HIN3开关频率的2~4倍,并且与LIN1~LIN3、HIN1~HIN3的开关频率没有直接联系。如图2所示,UN、VN、WN接毫欧电阻138的一端,毫欧电阻138的另一端接GND,MTRIP是电流检测引脚,接毫欧电阻138的一端,通过检测毫欧电阻的压降测算电流,如图3所示,当电流过大时,使智能功率模块100停止工作,避免因过流产生过热后,对智能功率模块100产生永久性损坏。-VP、COM、UN、VN、WN在实际使用中有电连接关系。因此,IGBT管121~IGBT管127开关时的电压噪声以及FRD(FastRecoveryDiode,快恢复二极管)管111~FRD管116、FRD管131续流时的电流噪声都会相互耦合,对各低电压区的输入引脚造成影响。在各输入引脚中,HIN1~HIN3、LIN1~LIN3、PFCINP的阈值一般在2.3V左右,而ITRIP的阈值电压一般只有0.5V以下,因此,ITRIP是最容易受到干扰的引脚。当ITRIP受到触发,智能功率模块100就会停止工作,而因为此时并未真正发生过流,所以ITRIP此时的触发属于误触发。如图4所示,在PFCIN为高电平,IGBT管127开通瞬间时,因为FRD管131的反向恢复电流的存在,叠加出I131的电流波形,该电流有较大的震荡噪声,通过-VP、COM、UN、VN、WN在外围电路中的电连接,震荡噪声在MTRIP端会藕合出一定的电压抬高。设使MTRIP触发的条件为:电压>Vth,且持续时间>Tth;在图4中,设Ta<Tth<Tb,则在前三个周期的电压太高不足以使MTRIP产生误触发,到第四个周期,MTRIP将产生误触发。事实上,因为FRD管的反向恢复时间和反向恢复电流与IGBT管的导通速度相关,当IGBT管的导通速度越快反向恢复时间越长,因此在IGBT开关速度要求越高的场合,MTRIP被触发的几率越来越大。如图5所示,当IGBT的开通时的斜率tf较小时,FRD的反向恢复效应引起的电压波动不足以引起MTRIP触发,而当IGBT的开通时的斜率tf较大时,MTRIP被触发,使系统停止工作。在IGBT的开关速度与MTRIP触发机制无相关性的情况下,虽然这种误触发在一段时间后会恢复而不会对系统形成破坏,但无疑会对用户造成困扰。如对于变频空调器的应用场合,用户追求节能而希望PFC持续工作,但是若MTRIP受误触发的机会成倍增加,则在MTRIP被误触发时,空调系统会因误认为发生过流而停止工作3~5分钟,使用户在这段时间内无法获得冷风,这是造成空调系统因制冷能力不足受客户投诉的主要原因之一。同时,在某些应用电路布线考虑不周的场合,若现行技术的智能功率模块不会自动调节PFC电路的工作状态,无疑提高了智能功率模块的使用门槛,影响了智能功率模块的普及。
技术实现要素:本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。为此,本发明的一个目的在于提出了一种新的智能功率模块,可以在实现过流保护的前提下,通过自行判断应用电路的布线环境来调节PFC电路的工作状态,以提高智能功率模块在工作时的稳定性。本发明的另一个目的在于提出了一种具有该智能功率模块的空调器。为实现上述目的,根据本发明的第一方面的实施例,提出了一种智能功率模块,包括:三相上桥臂信号输入端、三相下桥臂信号输入端、三相低电压参考端、电流检测端、PFC端和PFC低电压参考端;HVIC(HighVoltageIntegratedCircuit,高压集成电路)管,所述HVIC管上设置有分别连接至所述三相上桥臂信号输入端和所述三相下桥臂信号输入端的接线端,以及连接至所述电流检测端的第一端口,所述HVIC管上还设置有PFC驱动电路的信号输出端;自适应电路,所述自适应电路的输入端连接至所述第一端口,所述自适应电路的第一输出端作为所述HVIC管的使能端;PFC开关电路,所述PFC开关电路的第一输入输出端、第二输入输出端、第三输入输出端和第四输入输出端分别对应连接至所述PFC驱动电路的信号输出端、所述PFC低电压参考端、所述PFC端和所述自适应电路的第二输出端;其中,所述PFC开关电路根据其第四输入输出端输入的电平信号,实现具有第一开关速度和第一饱和压降的功率开关管的功能,或实现具有第二开关速度和第二饱和压降的功率开关管的功能,所述第一开关速度大于所述第二开关速度,所述第一饱和压降大于所述第二饱和压降;所述自适应电路根据其输入端的输入信号的大小,通过其第一输出端输出相应电平的使能信号,并通过其第二输出端输出控制所述PFC开关电路实现相应功能的功率开关管的电平信号。根据本发明的实施例的智能功率模块,自适应电路通过根据其输入端(即第一端口,也即电流检测端)的输入信号的大小,通过其第一输出端输出相应电平的使能信号,可以保证智能功率模块实现过流保护;同时,自适应电路通过根据其输入端的输入信号的大小,由其第二输出端输出控制PFC开关电路实现相应功能的功率开关管的电平信号,使得自适应电路能够根据其输入端的输入信号确定应用电路的布线环境,控制PFC开关电路实现开关速度较快且饱和压降较高的功率开关管的功能或实现开关速度较慢且饱和压降较低的功率开关管的功能,以通过调整PFC电路中的功率开关管(由PFC开关电路来实现)的开关速度及饱和压降来降低电路中的电压噪声,确保智能功率模块在工作时的稳定性。根据本发明的上述实施例的智能功率模块,还可以具有以下技术特征:根据本发明的一个实施例,所述自适应电路在其输入端的输入信号的值小于第一设定值时,通过其第一输出端输出第一电平的使能信号,以允许所述HVIC管工作,并通过其第二输出端输出所述第一电平的信号;所述自适应电路在其输入端的输入信号的值大于或等于所述第一设定值且小于第二设定值时,通过其第一输出端输出所述第一电平的使能信号,并通过其第二输出端输出第二电平的信号;所述自适应电路在其输入端的输入信号的值大于或等于所述第二设定值时,通过其第一输出端输出所述第二电平的使能信号,以禁止所述HVIC管工作,并通过其第二输出端输出所述第二电平的信号。根据本发明的实施例的智能功率模块,当自适应电路的输入端的输入信号的值小于第一设定值时,说明智能功率模块的应用电路中的电流值处于正常范围内,因此可以通过第一输出端输出第一电平的信号,以允许HVIC管工作;同时通过第二输出端输出第一电平的信号,以使PFC开关电路实现开关速度较快且饱和压降较高的功率开关管的功能,以保证系统具有较高的效率。当自适应电路的输入端的输入信号的值大于或等于第一设定值且小于第二设定值时,说明智能功率模块的应用电路中的电流值较大,但仍处于不必触发过流保护的范围内,因此可以通过第一输出端输出第一电平的信号,以保证HVIC管继续工作;同时通过第二输出端输出第二电平的信号,使PFC开关电路实现开关速度较慢且饱和压降较低的功率开关管的功能,进而可以降低电压噪声对智能功率模块进行过流保护的干扰,提高了智能功率模块的稳定性。当自适应电路的输入端的输入信号的值大于或等于第二设定值时,说明智能功率模块的应用电路中的电流值达到了触发过流保护的范围,因此可以通过第一输出端输出第二电平的使能信号,以禁止HVIC管工作,确保智能功率模块的安全性。根据本发明的一个实施例,所述自适应电路包括:第一电压比较器,所述第一电压比较器的正输入端作为所述自适应电路的输入端,所述第一电压比较器的负输入端连接至第一电压源的正极,所述第一电压源的负极连接至所述自适应电路的供电电源负极,所述第一电压比较器的输出端连接至与非门的第一输入端和第一非门的输入端,所述第一非门的输出端连接至第二非门的输入端,所述第二非门的输出端作为所述自适应电路的第二输出端;第二电压比较器,所述第二电压比较器的正输入端连接至所述第一电压比较器的正输入端,所述第二电压比较器的负输入端连接至第二电压源的正极,所述第二电压源的负极连接至所述自适应电路的供电电源负极,所述第二电压比较器的输出端连接至所述与非门的第二输入端,所述与非门的输出端连接至第三非门的输入端,所述第三非门的输出端作为所述自适应电路的第一输出端;其中,所述自适应电路的供电电源正极和负极分别对应连接至所述智能功率模块的低压区供电电源正端和负端。根据本发明的一个实施例,所述PFC开关电路在其第四输入输出端输入第一电平的信号时,实现具有所述第一开关速度和所述第一饱和压降的功率开关管的功能;所述PFC开关电路在其第四输入输出端输入第二电平的信号时,实现具有所述第二开关速度和所述第二饱和压降的功率开关管的功能。根据本发明的一个实施例,所述PFC开关电路包括:第一模拟开关,所述第一模拟开关的固定端作为所述PFC开关电路的第三输入输出端,所述第一模拟开关的第一选择端连接至第一功率开关管的集电极,所述第一模拟开关的第二选择端连接至第二功率开关管的集电极;第二模拟开关,所述第二模拟开关的固定端作为所述PFC开关电路的第二输入输出端,所述第二模拟开关的第一选择端连接至所述第一功率开关管的发射极,所述第二模拟开关的第二选择端连接至所述第二功率开关管的发射极;其中,所述第二模拟开关的控制端与所述第一模拟开关的控制端相连,并作为所述PFC开关电路的第四输入输出端;所述第一功率开关管的栅极和所述第二功率开关管的栅极相连,并作为所述PFC开关电路的第一输入输出端。其中,第一功率开关管和第二功率开关管可以是IGBT。根据本发明的一个实施例,还包括:自举电路,所述自举电路包括:第一自举二极管,所述第一自举二极管的阳极连接至所述智能功率模块的低压区供电电源正端,所述第一自举二极管的阴极连接至所述智能功率模块的U相高压区供电电源正端;第二自举二极管,所述第二自举二极管的阳极连接至所述智能功率模块的低压区供电电源正端,所述第二自举二极管的阴极连接至所述智能功率模块的V相高压区供电电源正端;第三自举二极管,所述第三自举二极管的阳极连接至所述智能功率模块的低压区供电电源正端,所述第三自举二极管的阴极连接至所述智能功率模块的W相高压区供电电源正端。根据本发明的一个实施例,还包括:三相上桥臂电路,所述三相上桥臂电路中的每一相上桥臂电路的输入端连接至所述HVIC管的三相高压区中对应相的信号输出端;三相下桥臂电路,所述三相下桥臂电路中的每一相下桥臂电路的输入端连接至所述HVIC管的三相低压区中对应相的信号输出端。其中,三相上桥臂电路包括:U相上桥臂电路、V相上桥臂电路、W相上桥臂电路;三相下桥臂电路包括:U相下桥臂电路、V相下桥臂电路、W相下桥臂电路。根据本发明的一个实施例,所述每一相上桥臂电路包括:第三功率开关管和第一二极管,所述第一二极管的阳极连接至所述第三功率开关管的发射极,所述第一二极管的阴极连接至所述第三功率开关管的集电极,所述第三功率开关管的集电极连接至所述智能功率模块的高电压输入端,所述第三功率开关管的基极作为所述每一相上桥臂电路的输入端,所述第三功率开关管的发射极连接至所述智能功率模块对应相的高压区供电电源负端。其中,第三功率开关管可以是IGBT。根据本发明的一个实施例,所述每一相下桥臂电路包括:第四功率开关管和第二二极管,所述第二二极管的阳极连接至所述第四功率开关管的发射极,所述第二二极管的阴极连接至所述第四功率开关管的集电极,所述第四功率开关管的集电极连接至对应的上桥臂电路中的所述第一二极管的阳极,所述第四功率开关管的基极作为所述每一相下桥臂电路的输入端,所述第四功率开关管的发射极作为所述智能功率模块的对应相的低电压参考端。其中,第四功率开关管可以是IGBT。根据本发明的一个实施例,所述智能功率模块的高电压输入端的电压为300V。根据本发明的一个实施例,所述智能功率模块的每一相高压区供电电源的正端和负端之间连接有滤波电容。根据本发明第二方面的实施例,还提出了一种空调器,包括:如上述任一项实施例中所述的智能功率模块。本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。附图说明本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:图1示出了相关技术中的智能功率模块的结构示意图;图2示出了智能功率模块的外部电路示意图;图3示出了电流信号触发智能功率模块停止工作的波形示意图;图4示出了相关技术中的智能功率模块产生的噪声的一种波形示意图;图5示出了相关技术中的智能功率模块产生的噪声的另一种波形示意图;图6示出了根据本发明的实施例的智能功率模块的结构示意图;图7示出了根据本发明的实施例的自适应电路的内部结构示意图;图8示出了根据本发明的实施例的PFC开关电路的内部结构示意图。具体实施方式为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。图6示出了根据本发明的实施例的智能功率模块的结构示意图。如图6所示,根据本发明的实施例的智能功率模块,包括:HVIC管1101和自适应电路1105。HVIC管1101的VCC端作为智能功率模块1100的低压区供电电源正端VDD,VDD一般为15V;在HVIC管1101内部:ITRIP端连接自适应电路1105的输入端;VCC端连接自适应电路1105的供电电源正端;GND端连接自适应电路1105的供电电源负端;自适应电路1105的第一输出端记为ICON,用于控制HIN1~HIN3、LIN1~LIN3、PFCINP信号的有效性;自适应电路1105的第二输出端连接至HVIC管1101的PFCC端。HVIC管1101内部还有自举电路结构如下:VCC端与自举二极管1102、自举二极管1103、自举二极管1104的阳极相连;自举二极管1102的阴极与HVIC管1101的VB1相连;自举二极管1103的阴极与HVIC管1101的VB2相连;自举二极管1104的阴极与HVIC管1101的VB3相连。HVIC管1101的HIN1端为智能功率模块1100的U相上桥臂信号输入端UHIN;HVIC管1101的HIN2端为智能功率模块1100的V相上桥臂信号输入端VHIN;HVIC管1101的HIN3端为智能功率模块1100的W相上桥臂信号输入端WHIN;HVIC管1101的LIN1端为智能功率模块1100的U相下桥臂信号输入端ULIN;HVIC管1101的LIN2端为智能功率模块1100的V相下桥臂信号输入端VLIN;HVIC管1101的LIN3端为智能功率模块1100的W相下桥臂信号输入端WLIN;HVIC管1101的ITRIP端为智能功率模块1100的MTRIP端;HVIC管1101的PFCINP端作为智能功率模块100的PFC控制输入端PFCIN;HVIC管1101的GND端作为智能功率模块1100的低压区供电电源负端COM。其中,智能功率模块1100的UHIN、VHIN、WHIN、ULIN、VLIN、WLIN六路输入和PFCIN端接收0V或5V的输入信号。HVIC管1101的VB1端连接电容1131的一端,并作为智能功率模块1100的U相高压区供电电源正端UVB;HVIC管1101的HO1端与U相上桥臂IGBT管1121的栅极相连;HVIC管1101的VS1端与IGBT管1121的射极、FRD管1111的阳极、U相下桥臂IGBT管1124的集电极、FRD管1114的阴极、电容1131的另一端相连,并作为智能功率模块1100的U相高压区供电电源负端UVS。HVIC管1101的VB2端连接电容1132的一端,并作为智能功率模块1100的V相高压区供电电源正端VVB;HVIC管1101的HO2端与V相上桥臂IGBT管1123的栅极相连;HVIC管1101的VS2端与IGBT管1122的射极、FRD管1112的阳极、V相下桥臂IGBT管1125的集电极、FRD管1115的阴极、电容1132的另一端相连,并作为智能功率模块1100的V相高压区供电电源负端VVS。HVIC管1101的VB3端连接电容1133的一端,作为智能功率模块1100的W相高压区供电电源正端WVB;HVIC管1101的HO3端与W相上桥臂IGBT管1123的栅极相连;HVIC管1101的VS3端与IGBT管1123的射极、FRD管1113的阳极、W相下桥臂IGBT管1126的集电极、FRD管1116的阴极、电容1133的另一端相连,并作为智能功率模块1100的W相高压区供电电源负端WVS。HVIC管1101的LO1端与IGBT管1124的栅极相连;HVIC管1101的LO2端与IGBT管1125的栅极相连;HVIC管1101的LO3端与IGBT管1126的栅极相连;IGBT管1124的射极与FRD管1114的阳极相连,并作为智能功率模块1100的U相低电压参考端UN;IGBT管1125的射极与FRD管1115的阳极相连,并作为智能功率模块1100的V相低电压参考端VN;IGBT管1126的射极与FRD管1116的阳极相连,并作为智能功率模块1100的W相低电压参考端WN。VDD为HVIC管1101供电电源正端,GND为HVIC管1101的供电电源负端;VDD-GND电压一般为15V;VB1和VS1分别为U相高压区的电源的正极和负极,HO1为U相高压区的输出端;VB2和VS2分别为V相高压区的电源的正极和负极,HO2为V相高压区的输出端;VB3和VS3分别为U相高压区的电源的正极和负极,HO3为W相高压区的输出端;LO1、LO2、LO3分别为U相、V相、W相低压区的输出端。HVIC管1101的PFCO端为PFC驱动电路输出端,与PFC开关电路1127的第一输入输出端相连;PFC开关电路1127的第二输入输出端与FRD管1117的阳极相连,并作为智能功率模块1100的PFC低电压参考端-VP;PFC开关电路1127的第三输入输出端与FRD管1117的阴极、FRD管1141的阳极相连,并作为智能功率模块1100的PFC端,HVIC管1101的PFCC端连接PFC开关电路1127的第四输入输出端。PFC开关电路1127的供电电源正端与VCC相连,PFC开关电路1127的供电电源负端与COM相连。FRD管1141的阴极、IGBT管1121的集电极、FRD管1111的阴极、IGBT管1122的集电极、FRD管1112的阴极、IGBT管1123的集电极、FRD管1113的阴极相连,并作为智能功率模块1100的高电压输入端P,P一般接300V。HVIC管1101的作用是:当ICON为低电平时,将输入端HIN1、HIN2、HIN3的0或5V的逻辑输入信号分别传到输出端HO1、HO2、HO3,将LIN1、LIN2、LIN3的信号分别传到输出端LO1、LO2、LO3,将PFCINP的信号传到输出端PFCO,其中HO1是VS1或VS1+15V的逻辑输出信号、HO2是VS2或VS2+15V的逻辑输出信号、HO3是VS3或VS3+15V的逻辑输出信号,LO1、LO2、LO3、PFCO是0或15V的逻辑输出信号。即在ICON输出低电平时,HVIC管1101使能。当ICON为高电平时,HO1、HO2、HO3、LO1、LO2、LO3、PFCO全部都置为低电平。即在ICON输出高电平时,HVIC管1101停止工作。自适应电路1105的作用是:当检测到ITRIP的实时数值小于某一电压值V1时,ICON输出低电平,并且自适应电路1105的第二输出端输出低电平;当检测到ITRIP的实时数值大于或等于V1而小于某一电压值V2时,ICON输出低电平,并且自适应电路1105的第二输出端输出高电平;当检测到ITRIP的实时数值大于或等于V2时,ICON输出高电平,并且自适应电路1105的第二输出端输出高电平;其中,V2>V1。PFC开关电路1127的作用是:当PFCC为低电平时,PFC开关电路1127在第一输入输出端、第二输入输出端、第三输入输出端表现为一个开通速度较快而饱和压降较大的IGBT管;当PFCC为高电平时,PFC开关电路1127在第一输入输出端、第二输入输出端、第三输入输出端表现为一个开通速度较慢而饱和压降较小的IGBT管。在本发明的一个实施例中,自适应电路1105的具体电路结构如图7所示,具体为:ITRIP接电压比较器2010的正输入端、电压比较器2014的正输入端;电压比较器2010的负输入端接电压源2018的正端;电压源2018的负端接GND;电压比较器2014的负输入端接电压源2019的正端;电压源2019的负端接GND;电压比较器2010的输出端接与非门2011的其中一个输入端和非门2012的输入端;非门2012的输出端接非门2013的输入端;非门2013的输出端即为自适应电路1105的第二输出端。电压比较器2014的输出端接与非门2011的另一个输入端;与非门2011的输出端接非门2016的输入端;非门2016的输出端即为自适应电路1105的ICON端。在本发明的一个实施例中,PFC开关电路1127的具体电路结构如图8所示,具体为:PFC开关电路1127的第四输入输出端连接模拟开关2003的控制端和模拟开关2004的控制端;模拟开关2003的固定端即为PFC开关电路1127的第三输入输出端;模拟开关2004的固定端即为PFC开关电路1127的第二输入输出端;模拟开关2003的1选择端接IGBT管2001的集电极;模拟开关2003的0选择端接IGBT管2002的集电极;模拟开关2004的1选择端接IGBT管2001的射极;模拟开关2004的0选择端接IGBT管2002的射极;PFC开关电路1127的第一输入输出端接IGBT管2001的栅极和IGBT管2002的栅极。以下说明上述实施例的工作原理及关键参数取值:电压源2018可考虑设计为0.5V,电压源2019可考虑设计为0.6V。在上述参数的基础上,本发明提出的智能功率模块在实际工作时可能会出现以下情况:情况1:当ITRIP电压<0.5V时,电压比较器2010输出低电平,从而自适应电路1105的第二输出端输出低电平,并且与非门2011输出高电平,从而非门2016输出低电平使ICON输出低电平。因为自适应电路1105的第二输出端输出低电平,此时PFC开关电路1127的第一输入输出端与PFC管2002的阴极相连,PFC开关电路1127的第二输入输出端与PFC管2002的阳极相连。情况2:当ITRIP电压≥0.6V时,电压比较器2010输出高电平,并且电压比较器2014输出高电平,与非门2011输出低电平,从而非门2016输出高电平使ICON输出高电平,智能功率模块1100进入保护状态停止工作。情况3:当0.5V≤ITIRP电压<0.6V时,电压比较器2010输出高电平,从而自适应电路1105的第二输出端输出高电平;并且电压比较器2014输出低电平,与非门2011的输出端高电平,从而非门2016输出低电平使ICON输出低电平;因为自适应电路1105的第二输出端输出高电平,此时PFC开关电路1127的第一输入输出端与PFC管2001的阴极相连,PFC开关电路1127的第二输入输出端与PFC管2001的阳极相连。在相同工艺下,通过调节参杂浓度等方式,调节IGBT管开通速度和饱和压降的关系,获得IGBT管2001和IGBT管2002,IGBT管2001选择开通速度较慢但饱和压降较低的IGBT管,IGBT管2002选择开通速度较快但饱和压降较高的IGBT管。一般地,IGBT管2001的开通时间(电流上升、电压下降时间)选择百纳秒级别,IGBT管2002的开通时间(电流上升、电压下降时间)选择十纳秒级别。由上述实施例的技术方案可知,本发明提出的智能功率模块与现行智能功率模块完全兼容,可以直接与现行智能功率模块进行替换。ITRIP先与一个较低的电压比较,确保对智能功率模块过流保护的灵敏度的前提下,通过调整PFC电路中IGBT的开关速度(通过使PFC开关电路1127实现相应功能的功率开关管来实现)降低电压噪声兼顾智能功率模块工作的稳定性;而当ITRIP高于一个较高的电压时,为保证智能功率模块的安全而停止智能功率模块工作;从而使本发明的智能功率模块在正常保护机制持续生效的前提下,维持了系统的稳定性、可用性、健壮性,提高了产品的用户满意度,降低产品投诉。以上结合附图详细说明了本发明的技术方案,本发明提出了一种新的智能功率模块,可以在实现过流保护的前提下,通过自行判断应用电路的布线环境来调节PFC电路的工作状态,以提高智能功率模块在工作时的稳定性。以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。