钠硫电池电站的制作方法

文档序号:12485785阅读:436来源:国知局
钠硫电池电站的制作方法与工艺

本发明涉及一种电池电站,特别涉及一种钠硫电池电站,属于储能电站领域。



背景技术:

储能是指通过介质或者设备,利用化学或者物理的方法把能量存储起来,根据应用的需求以特定能量形式释放的过程,通常说的储能是指针对电能的储能。电力储能技术为实现电网可持续发展目标,解决电量供需不平衡矛盾和提高供电可靠性问题提供了一揽子解决方案。采用大规模储能装置,可以减少和延缓用于发、输、变、配电设备的投资,提高现有电力设备的利用率和供电可靠性,降低发电煤耗、供电线损。同时,电网发展本身也面临着用电峰谷差逐渐增大,电网规模增大后电网安全运行风险增大,大都市电网对电能质量要求上升,新能源并网运行技术新要求等问题,解决这些问题建设智能电网,也对发展电力储能技术提出了迫切的要求。在智能电网的各项关键核心技术中,储能技术起步相对较晚,技术成熟性与产业化研究存在明显不足,国内更是处于起步阶段,亟需大力推进。储能按照储能介质分为三类:物理储能、化学储能以及其他形式的储能。物理储能主要包括抽水蓄能、压缩空气储能、飞轮储能等,化学储能主要包括铅酸电池、锂电池、液流电池、钠硫电池、镍镉电池等电池形式的储能等,其它形式的储能包括超级电容器、超导电磁储能等。

随着社会对电力的需求和生产持续增长,电网内的装机容量、覆盖区域及负荷峰谷差不断扩大,如此大量的电力需求对电网的稳定性、安全性、智能化提出了更高的要求。为此迫切需要这样的电力储能系统与之相配套,以平衡电力负荷,提高设备运行效率和经济性,减少或延缓电力建设的投资,提高电网突发事故的应对能力,保证电力系统运行安全。更为重要的是,电力储能系统可以将间歇性的可再生能源“拼接”起来,提高电力系统的稳定性,从而解决可再生能源发展的瓶颈问题。作为负荷平衡装置和备用电源,电力储能系统也是智能电网和分布式能源系统必需的关键技术,用于解决其故障率高、系统容量小、负荷波动大等问题。

钠硫储能电池(以下简称钠硫电池)因其容量大、体积小、能量储存和转换效率高、寿命长、不受地域限制等优点,非常适合电力储能使用。经综合比较分析,钠硫电池是目前能量密度、功率密度最大的储能方式之一,是目前唯一的一种同时完全适用于功率型储能和能量型储能的储能电池。钠硫电池作为化学电源家族中的一个新成员出现后,已在世界上许多国家受到极大的重视和发展。由于钠硫电池具有高能电池的一系列特点,在80年代末和90年代初开始,国外重点发展钠硫电池作为固定场合下(如电站储能)应用,并越来越显示其优越性。钠硫电池已经成功用于削峰填谷、应急电源、风力发电等可再生能源的稳定输出以及提高电力质量等方面。钠硫电池技术与生产工艺已相对成熟,但目前钠硫电池储能系统的工程化应用缺少实际经验,对钠硫电池储能系统充放电运行特性、循环运行特性、串并联运行特性等仍缺少实践性的认识,在电网接入的系统设计方面仍缺少指导性的规范。



技术实现要素:

本发明钠硫电池电站公开了新的方案,提供了一种具有实用性、指导性的钠硫电池电站,解决了现有技术缺乏实用方案的问题。

本发明钠硫电池电站包括钠硫电池储能装置、能量转换系统、电池管理系统、电站监控系统、储能装置堆仓、电站基础平台,钠硫电池储能装置包括若干钠硫储能模块组,钠硫储能模块组通过能量转换系统与电网母线连接,电池管理系统包括直流管理单元、电池管理单元,直流管理单元设置在汇流柜内,电站监控系统包括就地控制层、集中控制层、调度控制层,就地控制层与集中控制层通信连接,集中控制层与调度控制层通信连接,就地控制层包括能量转换子系统监控模块、电池管理子系统、现场监控设备、电力信息采集装置,集中控制层包括集控服务器、集控交换机、集控人机交互设备,调度控制层包括若干调度控制终端设备,调度控制终端设备包括调度控制服务器、调度控制工作站,钠硫储能模块组包括若干钠硫储能模块串,钠硫储能模块串通过汇流柜与能量转换系统连接,钠硫储能模块串包括若干钠硫储能模块,钠硫储能模块包括钠硫电池模块、电池管理单元,钠硫储能模块安装在储能装置堆仓内,储能装置堆仓设置在电站基础平台上。

进一步,本方案的钠硫电池储能装置包括钠硫储能模块组甲、钠硫储能模块组乙,钠硫储能模块组甲包括钠硫储能模块串A、钠硫储能模块串B,钠硫储能模块串A包括10台5kW能量型钠硫储能模块,钠硫储能模块串B包括10台5kW能量型钠硫储能模块,钠硫储能模块组乙包括钠硫储能模块串C、钠硫储能模块串D,钠硫储能模块串C包括10台5kW功率型钠硫储能模块,钠硫储能模块串D包括2台25kW功率型钠硫储能模块。储能装置堆仓包括堆仓组甲、堆仓组乙,堆仓组甲包括背靠背并排设置的2个5kW模块堆仓排甲,5kW模块堆仓排甲包括3个5kW模块堆仓,堆仓组乙包括3个5kW模块堆仓、1个25kW模块堆仓,5kW模块堆仓是上下两层“田”字形仓柜结构,上述上下两层“田”字形仓柜结构内设有4个5kW模块的仓位,25kW模块堆仓是上下两层“曰”字形仓柜结构,上述上下两层“曰”字形仓柜结构内设有2个25kW模块的仓位。

进一步,本方案的能量转换系统包括双模式储能变流器、若干双向直流变换器,上述若干双向直流变换器的逆变器侧并联接到双模式储能变流器的直流侧,双模式储能变流器的交流侧接入电网母线,钠硫储能模块串通过双向直流变换器与双模式储能变流器连接。双模式储能变流器包括直流侧EMI滤波器、三相PWM整流器、变压器、交流侧BMI滤波器,双模式储能变流器将双向直流变换器输出的直流电转换成三相交流电输入电网或给用电负荷供电,双模式储能变流器将电网中交流电转换成直流电通过双向直流变换器降压后输入钠硫储能模块串。双向直流变换器包括输入直流断路器QF1、输出直流断路器QF2、输入直流接触器KA1、输出直流接触器KA3、输入电容器C1、输出电容器C2、直流EMI滤波器、预充电电阻R1、预充电接触器KA2、电抗器L1、半桥IGBT模块、熔断器FU1,双向直流变换器将逆变器侧的电能降压输入钠硫储能模块串,双向直流变换器将所述钠硫储能模块串的电能升压后通过逆变器侧输入双模式储能变流器。

进一步,本方案的电池管理单元包括电池电压检测模块、电池温度检测控制模块,直流管理单元包括回路电压检测模块、回路电流检测模块、电池管理单元控制模块、数据通信接口,直流管理单元通过数据通信接口向上位机、能量转换系统传送功能信号,直流管理单元通过数据通信接口从上位机监控系统接收运行指令、设置信息,直流管理单元通过电池管理单元控制模块向电池管理单元传送上述运行指令、设置信息。直流管理单元与电池管理单元通过RS485总线通信,直流管理单元与上位机监控系统、能量转换系统通过MODBUS通信。

进一步,本方案的能量转换子系统监控模块包括变流器电压监控模块、变流器电流监控模块、变流器温度监控模块、变流器开关监控模块,变流器电压监控模块采集变流器的直流侧、交流侧的电压信号,变流器电流监控模块采集变流器的电流信号,变流器温度监控模块采集变流器的温度信号,变流器开关监控模块监控变流器的开关状态。

进一步,本方案的储能装置堆仓包括环境监控装置,环境监控装置包括温度传感器、湿度传感器、排风机,温度传感器、湿度传感器设在储能装置堆仓内,排风机设在储能装置堆仓的顶部,环境监控装置根据温度传感器与湿度传感器的检测值大于设定值的比对结果启动排风机,排风机将储能装置堆仓内的热量、水分通过空气流动导出。

进一步,本方案的储能装置堆仓还包括火灾报警控制系统,火灾报警控制系统包括主控制器、烟雾传感器、除烟过滤器、声光报警装置、备用蓄电池电源,主控制器设在二次装备室内,烟雾传感器设在储能装置堆仓内,除烟过滤器包括排烟管道、密闭式过滤腔室,密闭式过滤腔室内设有喷淋过滤器,主控制器根据烟雾传感器的报警信号触发声光报警装置、排风机,排风机将烟雾通过排烟管道排入密闭式过滤腔室内进行过滤。

进一步,本方案的电站基础平台包括堆仓室外摆放平台、设备室内空间,堆仓室外摆放平台上设有储能装置堆仓,设备室内空间内设有汇流柜、能量转换系统、电网交流母线,设备室内空间与堆仓室外摆放平台间设有防火墙,堆仓室外摆放平台周围环设有围栏装置。电站基础平台的地面水平高度高于电站基础平台周围的地面水平高度,电站基础平台内布设有排水管系,排水管系的入口设在储能装置堆仓的基础内,排水管系的出口通往电站基础平台周围地基的排水设施。

进一步,本方案的储能装置堆仓的仓顶是“人”字形结构,仓顶的边缘设有雨檐槽结构,雨檐槽结构与排水管系通过管道连通,落入仓顶的降水汇入雨檐槽结构后通过排水管系排出电站基础平台。

进一步,本方案的电站基础平台还包括遥视技防系统,遥视技防系统包括电子围栏、摄像装置、门禁系统、声光报警器、网路交换机、监控终端,摄像装置包括若干摄像头,摄像装置通过摄像头采集、存储现场视频信息,遥视技防系统的上位机随时通过监控终端调阅现场视频信息。

本发明钠硫电池电站提供了一种具有实用性、指导性的钠硫电池电站,具有良好的商业应用前景。

附图说明

图1是本方案钠硫电池电站的原理示意图。

图2是钠硫储能子系统的原理示意图。

图3是双向直流变换器的原理示意图。

图4是双模式储能变流器的原理示意图。

图5是电站监控系统的原理示意图。

图6是钠硫电池电站设置在电站基础平台上的示意图。

其中,PCS是能量转换系统,BMS是电池管理系统,BMU是电池管理单元,DMU是直流管理单元。

具体实施方式

储能电站的主要设备包括了电池模块、汇流柜、PCS及其它各类控制设备。钠硫电池的特点是高温运行,本身需要保温箱维持其工作温度,对外部环境温度要求较低,可以适用室内、外各种安装环境。电池是能量的存储体,钠硫电池运行在高温环境下,安全问题一直是钠硫电池最重要的问题之一,除在电池本体、模块增加本安型设计外,设计安全防护模块堆仓也是不可缺少的安全手段之一。每个模块间安装隔离防护板,有效防止个别电池出现失效后影响其他设备安全运行。电站所用电池模块包括5kW和25kW两种,依据节约土地,合理利用土地,提高土地利用率的设计原则,模块摆放采用成堆设计。在一个堆仓中有4个5kW或2个25kW电池模块,安装时,采用上下两层的方式。电站分为2组共4个回路,4个回路堆仓是并列排放,2组之间需要预留大约3米空间用于操作。钠硫电池在正常运行时处于300℃左右,考虑安全原因,在堆仓的外围建一面防火墙,或护栏(预留安全空间)。电池模块为立方形,5kW模块尺寸为92cm×81cm×105cm,重量约为1000kg,25kW模块尺寸为2020cm×1510cm×1100cm,重量约为3500kg。模块上面带有BMU箱体,需预留一定操作空间,堆仓和电池模块的安装需要大量预留大量的操作空间,并且在完成安装后,预留的空间不能得到充分利用,如堆仓安装在户内,会造成空间大量浪费。户外安装空间大,相对操作方便,能够方便的利用各种大型设备,也方便运输车辆的进出。因此,在堆仓安装上选择户外方式。

电池模块的堆放采用分层安装。一个回路中,电池模块是串联的,模块的数量根据电站规模不同而不同。模块堆放采用两层结构,并且采取背靠背方式排列,即两个回路背面并列排放,这种方式排布,可以在很大程度上提供空间的利用率,避免为每串堆仓前后都预留操作与安全空间而造成的空间浪费。在每个模块之间安装一块铁板,避免了在极端的情况下,一个电池起火会蔓延到其它模块的可能性。

电站除了电池模块和堆仓外,还有汇流柜、PCS、站用电源及计量柜、UPS控制屏等设备组成。汇流柜是与电池模块进行直接连接的电气设备,每一个回路配置一台汇流柜,所有模块的直流干线汇集到汇流柜中。为避免在大电流放电时由于线缆过长而造成线路上压降过大,汇流柜在设计上必须尽量减少与堆仓的距离。汇流柜尺寸为800cm×800cm×2000cm,在安装时可以选择户内或者户外均可。PCS、站用电源及计量柜、UPS控制屏尺寸均为800cm×800cm×2000cm,需要有工作人员频繁操作,并且设备中有触摸屏、电气元器件等安装在设备的表面,对于环境要求较高,不宜户外安装,因此选择户内安装方式。

为防止雨天时雨量过大,堆仓的上方采用三角式斜面设计,下雨时堆仓上方不会留有雨水。在堆仓上方斜面边缘,设计了雨檐,下雨时,堆仓上方的雨水会流入雨檐中,沿着雨檐最后通过管道排出到护栏或防火墙的外面,避免了雨水直接倾倒入现场中,造成现场水面过高。在有些地区,进入雨季时,雨量比较大,为确保电站现场不能存有积水,电站的地面采用了斜面设计。电站的地面要高于旁边路面20cm,靠近路面的一端水平坡度较小,另一端坡度较大,雨水可以顺着电站的地面流淌到旁边的路面中,雨水再从路面留到别处。在堆仓下方为走线方便,留有2.28m×5.72m设备基础,在基础中布有排水管道,不会因下雨而造成基础里面水面过高。

电池模块运行时处于300℃高温,而有些地区在夏天时天气较为炎热,会造成堆仓中温度过高,影响堆仓中电气设备的运行。为解决这个问题,在堆仓的顶部设有环境监测装置和排风机,装置中设有温度传感器,实时监测堆仓中温度,当温度高于设定值时,排风机自动启动,堆仓中热量会随空气排到堆仓外面,外界空气会从堆仓门板下面通风口或设备基础上面进入到堆仓中,从而堆仓中空气与外界空气形成一种循环,把热量带走,达到给堆仓降温的目的。环境监测装置中另外装有湿度传感器,当堆仓内湿度大于设定值时,同样可以启动排风机,使堆仓内空气与外界空气形成循环,带走堆仓内潮湿的空气。

电站的安全运行是电站运行的前提,包括人员安全与设备安全。安全防护措施分电气防护措施、物理防护措施和安全制度防护措施三类。在电气保护方面,电站储能容量为200kW,故根据《QGDW480-2010分布式电源接入电网技术规定》,采用空气断路器过流脱扣保护,无需另外配置保护装置。为确保人员安全,操作人员在进行电气操作时,下面会摆放耐高压绝缘垫。钠硫电池正常运行时温度达300℃左右,在电站的周围设置防火墙和围栏。设置防火墙距离堆仓1米,由于考虑设备安装的操作范围,现场防火墙距离堆仓为2米。在没有防火墙的其它侧,设置围栏,距离堆仓3米,可确保在发生火灾时人员的安全。如电站发生火灾,不能使用水来进行消防,在电站内部配有黄沙和灭火器。一旦电站发生火灾,电池模块着火后散发大量烟雾,会触动环境监测装置上面的烟雾传感器,堆仓内排风机同时启动,烟雾和挥发性有害物质会随管道进入过滤器内,同时喷淋泵启动,水流进入过滤器后形成水雾,挥发性有害物质融入水中,避免了对周围环境造成损害。变电站的空调与通风系统与消防报警系统联动。火灾报警控制系统由主控制器、各种探测器、手动报警按钮、警铃、电缆等设备组成,当发生火灾时,探测器将火灾信号送至主控制器,在主控制器上能显示火灾发生的时间、地点,并发出声光报警信号。主控制器设在二次设备室内,它负责全站的消防系统的监控。在二次设备室、变流器室内安装空气采样感烟探测器,电缆沟内敷设线型定温探测器,同时将火警信号送入站内监控系统实现远传。火灾报警控制装置所用交流220V电源由不间断电源直接供电,且装置本身带有蓄电池作为交流电源的备用电源。

监控系统经光纤接入电力公司内部网络,在堆仓和控制室中设有摄像头,范围涵盖了示范电站的各个角落。摄像头拍摄视频存储在控制室监控系统柜中,电力公司内部可以远程随时查看电站运行数据,并可以调阅摄像头拍摄视频,实时查看示范电站情况,一旦电站出现异常,可以第一时间了解具体情况,并采取紧急措施。汇流柜中设有GPRS设备,可以通过安装客户端并连接网络的计算机进行远程查看由DMU发送的电池模块的基本数据,随时掌握电站的运行情况。在电站内配置一套遥视技防系统,遥视技防设备仅涉及储能电站范围。遥视技防系统由电子围栏、摄像机、红外报警器、门禁系统、声光报警器、连接电缆、监控屏柜、嵌入式硬盘录像机、液晶显示器、报警主机、综合电源、网路交换机、监控终端等设备组成。

电站主要有三部分组成:钠硫储能子系统、能量转换子系统以及监控系统。钠硫储能子系统主要有钠硫储能电池模块、电池管理系统和汇流柜、堆仓等电气设备,主要实现钠硫电池运行控制和在线检测。能量转换子系统包括双向直流变换(DC/DC)和双模式储能变流(AC/DC),实现电池储能系统直流电池与交流电网之间的双向能量传递。监控系统是以计算机为基础的过程控制与调度自动化系统,主要由现场工作站和服务器等组成。

钠硫储能子系统是电站中最重要的子系统,包括钠硫电池模块、电池管理系统(BMS)和汇流柜,是由钠硫电池储能模块、电池管理子系统、汇流柜及堆仓构成储能模块堆。钠硫储能子系统由2组4串钠硫储能模块组成,接入2台PCS,每个模块串配1台直流管理单元DMU和1台汇流柜,每1个模块配1台电池管理单元BMU。第1组由20台5kW能量型MCN-5E型钠硫电池模块,分2串,每串10台,接入PCSA后联入电网或负荷。第2组是10台5kW功率型MCN-5P型钠硫电池模块组成第1串,由2台25kW功率型MCN-25P型钠硫电池模块组成第2串,分别接入PCSB后联入电网或负荷。5kW电池模块的外型尺寸为907mm×986mm×1038mm,25kW模块的外型尺寸为2120mm×1630mm×1100mm。

钠硫电池管理系统(BMS)主要由直流管理单元(DMU)和电池管理单元(BMU)两部分组成,BMU主要负责电池模块的电压和温度的检测,模块温度的运行控制,DMU负责回路电压和电流的检测,根据BMU检测的电池模块的电压和温度进行电池状态的分析与判断,并在故障时发出故障报警信号和禁能信号给上位机和能量转换系统(PCS),另DMU还负责接收监控系统运行指令和设置信息,将接收到的指令和信息下发到BMU中执行。DMU与BMU之间通过RS485总线通信,DMU与上位机监控系统和PCS之间通过MODBUS通信。

BMU安装在电池模块上,其主要功能和技术参数如下:

⑴检测电池或电池串电压,范围:0~18V;测量精度:±0.020V,每个通道独立采集,互不干扰;

⑵测量模块输出总电压,测量精度±0.1FS%mV;

⑶温度循检,范围:0~500℃,温控精度±5℃。默认出厂升温设置;时间和温度的变化量可智能设置;

⑷温度控制采用PWM脉宽调节,光隔离控制固态继电器调节加热功率;

⑸监测模块在充放电状态时切换到自动温度补偿运行模式;

⑹通过外部RS485/CAN总线与DMU通讯,通讯速率250kb/s,发送电池数据、电池状态及告警信息;

⑺有2路开关量输出控制功能;

⑻有6路开关量输入监测功能;

⑼本体故障自检功能;

⑽抗扰度等级:IECⅣ级。

DMU安装在汇流柜中。DMU为BMU的上一级管理系统,最多可管理12个BMU,主要技术参数和功能如下:

⑴钠硫储能模块串总电压测量,范围:0-640V,精度:±0.1V;

⑵充放电电流测量,范围:0~±1000A,测试精度:±1.5A(取决于传感器精度);

⑶完全独立的RS485及CAN/LAN接口;

⑷总线最多可以和12个BMU模块通讯,读取电池电压和温度信息;

⑸通过CAN与PCS双向通信,可控制直流支路充放电;

⑹LAN接口通过TCP/IP协议和系统监控PC机通讯,上报支路电池电压,温度及其它信息,并接收控制平台的命令;

⑺SOC估算及SOH,SOC估算精度小于10%;

⑻提供14路开关量输入监测功能;

⑼提供6路开关量输出控制功能;

⑽故障诊断及在线报警(电压、电流、温度、和SOC);

⑾实现电池运行状态的实时监控:包含充电过程控制指令、放电过程控制指令、电池组温度控制、电池完全管理;

⑿实现电池故障诊断和安全保护:包含电池故障诊断、失效控制指令;

⒀具有自检和自诊断功能:能诊断和处理各类BMU故障;

⒁电池安全:防止电池过充、过放;对电池运行状态实时监控,及时发出维护请求、维修请求、禁用请求等提示信息;

⒂电池使用一段时间后,需要对电池进行容量检测,通过容检模式可以对使用过电池的容量进行检测;

⒃故障及检修状态上传:在系统运行过程中,若BMU发生故障或需要检修时,通过故障及检修状态上传功能,将装置自身的故障及检修信号上传至储能模块堆监控系统。

汇流柜是钠硫储能子系统中重要的一部分,汇集了回路中所有电池模块的直流线缆,通过汇流柜接入能量转换系统和控制电池模块的服/退役。另外,汇流柜还负责回路中电池模块的工作电源和辅助电源的分配与控制,通过安装在汇流柜中的DMU实现对实现对BMU的运行控制和管理,并对BMU采集数据处理和传输,在电池模块发生故障时发出报警和禁能信号。

电池模块安装在堆仓中,堆仓分上下两层,采用背靠背方式安装,第一、二回路为第一组安装在一起,第三、四回路为第二组安装在一起。每个堆仓可以放置4台5kW电池模块,分上下两层布置,模块编号自堆仓左下方开始顺时针定义。本电站有25kW电池模块2台,安装于一个堆仓组中,分上下安装。

堆仓除作为承载电池模块的载体外,也具有保护和调节电池模块环境的作用,其主要功能如下:

⑴堆仓采用模数化、标准化设计,以部件运输、现场安装形式;

⑵基本堆仓可进行背靠背或平行、垂直拼装成多仓位堆仓。每个模块间可设置防护隔离板,模块就位后需要设置固定装置;

⑶每个基本堆仓在适当位置设置通风口、烟感(温湿度)监测装置,上部设置轴流风机,用于基本堆仓的强制通风;

⑷堆仓防护等级不小于IP54。

⑸堆仓可直接在平整度小于2mm的混凝土基础上直接安装,也可在电气室预留的槽钢基础上安装。

电池储能系统的一个重要组成部分就是能量转换系统(Power Convertion System)。通过PCS可以实现钠硫储能子系统电池模块与交流电网之间的双向能量传递,通过控制策略实现对电池模块的充放电管理,对网侧负荷功率的跟踪,对电池储能系统充放电功率的控制,对离网运行方式下网侧电压的控制等。PCS主要由双向直流变换器(DC/DC)和双模式储能变流器(AC/DC)组成,以实现钠硫储能子系统与交流电网之间的双向能量传递。DC/DC双向直流变换器的作用是将回路的电压抬升到适合AC/DC双模式储能变流器工作的电压等级,一个回路采用一个50kW双向直流变换器(DC/DC),变换器由三个模块交错并联工作,三个模块均分回路中电池模块的充放电功率。DC/DC双向直流变换器的逆变器侧并联接到AC/DC变流器的直流侧。

在双向DC/DC变换器中,输入、输出直流断路器QF1、QF2,输入输出直流接触器KA1、KA3,输入输出电容器C1、C2,直流EMI,预充电电阻R1,预充电接触器KA2,电抗器L1,H桥IGBT模块,熔断器FU1。当双向Buck/Boost变换器(升降压式变换器)正向工作时,T1、D2配合工作,能量AC/DC逆变器流向蓄电池,从左到右,处于Buck降压模式。当T1导通时,C2侧电压加到二极管D1、L1和输出电容C1上,故D2截止。此时加在L上的电压为U1>U2,故电感电流线性增加能量以磁场能的形式存储在L中,并同时向蓄电池充电。当T1关断时,电感电流通过D2续流,电感电流线性减小,L的储能向C1转移。当反向工作时,T2、D1配合工作,能量从蓄电池流向交流AC/DC逆变器,从右到左,处于升压模式。T2导通时,C1全部加到电感上,电感电流线性增加,电能以磁场能的形式存储在L中,二极管D1截止。当T2关断时,电感电流通过D1向输出侧流动,C1和L1上的储能向C2转移,即给C2充电,此时加在电感上的电压为U2-U1小于零,所以电感电流线性减小。DC/DC变换过程中,采用电压、电流双闭环的PI控制。实际输出电压的反馈信号Uo与输出电压的给定值Udref进行比较,其差值经过PI环节生成内环(电流环)的给定电流信号Idref,Idref再与电感电流的反馈值Idl比较,最终生成PWM控制信号,进而控制DC/DC主电路中IGBT的开关状态,实现稳压输出。

AC/DC双模式储能变流器作为电网与钠硫储能子系统之间的接口,是储能系统的重要组成部分,主要作用是将DC/DC双向直流变换器输出的直流电转换成三相交流电输入电网或给用电负荷供电,也可以将电网中交流电转换成直流电通过DC/DC双向直流变换器降压后储存在钠硫电池模块中,实现钠硫电池和电网之间的能量双向流动,并可实现并网、离网运行控制。PCS储能变流器功能设计如下:

⑴直流侧极性反接保护,直流侧过欠压保护,直流侧过流保护,交流侧过流保护,短路保护,交流侧过欠压保护,交流侧过欠频保护,过热保护,浪涌保护;

⑵限压放电、恒功率放电、恒流放电等功能;

⑶孤岛检测功能;

⑷基于钠硫储能子系统的微网系统并、离网无缝切换的控制策略;

⑸有功和无功的控制功能;

⑹结合钠硫电池自身特性的高倍率放电功能;

⑺AC/DC双模式储能变流器的交流侧在V/F离网运行模式下可直接连接离网负载、充电设备,在P/Q模式下连接电网给蓄电池进行充电;

⑻DC/DC双向直流变换器可以兼容多种不同配置和型号的钠硫电池模块;

⑼直流侧和交流侧的多机并联运行控制功能;

⑽人机界面和通讯功能。

AC/DC双模变流器和DC/DC直流变换器在硬件结构上基本一致,由主要包括功率模块和电抗器、接触器和断路器、EMI滤波器、控制器、隔离变压器、UPS等器件组成。

监控系统是以计算机为基础的过程控制与调度自动化系统,它可以对微网内部的分布式发电、储能装置和负荷状态进行监视,在微网并网运行、离网运行和状态切换时,根据电源和符合特性,对其内部的分布式发电、储能装置和负荷进行优化控制,实现对微网的安全稳定运行,提高微网的能源利用效率。监控系统主要由分布式发电监控、储能装置监控、负荷监控、安防监控和电能质量监控所组成。微网系统的设计采用分层控制的方式,在逻辑上可分为三层,即就地控制层、集中控制层、电网调度层。电网调度层为微网与配电网调度系统,从整个电网的安全、经济运行的角度协调调度微网系统。集中控制层是整个微网系统的核心部分,集中管理分布式电源、储能装置和各类负荷,完成微网的监视和控制,根据微网的运行情况,实时优化控制策略,实现并网、离网、停运的平滑过渡,在并网运行时负责实现微网运行优化作用,在离网运行时调节分布式发电出力和各类负荷的用电情况,实现微网的稳态安全运行。就地控制层由微网系统的保护设备和就地控制器组成。微网就地控制器完成分布式发电对频率、电压的一次调节,就地保护设备完成微网系统故障的快速保护。

监控系统主要是采集各个子系统的信息加以汇总,如钠硫储能子系统,能量转换子系统,另外还有安全监控平台等,对采集的信息进行分析和判断,并帮助运行操作人员做出优化的控制方案。监控系统具有数据采集功能、数据处理功能、控制操作功能、故障告警功能、事件处理功能、人机交互功能等。

⑴数据采集功能

对分布式发电、储能装置运行状态参数进行采集,至少包括组端电压、组端电流、荷电状态、温度等遥测信号,以及开关状态、事故信号、异常信号等遥信信号。对变流器的电压、电流、温度等遥测信号,以及开关状态、事故信号、异常信号等遥信信号进行采集。对配电网接口的电压、电流、相位、频率、有功功率、无功功率、功率因数、有功电量、无功电量等遥测信号以及开关状态、事故信号、异常信号等进行采集。

⑵数据处理功能

对采集数据进行计算分析、越线告警、合理性检查等处理,并对相关数据进行存储。

⑶控制操作功能

对储能系统的相应开关设备实现分合控制,以及对储能装置的充放电状态进行控制。

⑷故障告警功能

具备事故信号和异常信号的报警确认与清除、报警查询、自定义报警级别、报警统计分析、报警信息存储等功能,并可通过图形、语音、文字、打印等形式实现。

⑸事件处理功能

可实现对事件的顺序记录、定位和就地故障信息查询等功能。

⑹人机交互功能

画面显示功能。能够对储能系统电气结构图、充放电曲线图及系统实时数据显示,根据需要提供数据饼图、柱状图等图形显示,可提供主要事件顺序显示。交互操作功能。发送遥控、校时等,在人机界面实现人工位、报警确认、挂牌等操作,编辑和修改数据库、图形等信息。报表管理功能。对储能系统进行数据、异常及事故信息、操作记录等信息自动生成报表,对报表进行编辑、存储、查询,并具备定时打印、召唤打印等功能。

⑺与自动化信息系统互联

与调度自动化系统、配电自动化系统、营销管理系统等相关系统互联,实现数据和信息交换。

电站中5kW模块数为30台,25kW模块数2台,其中:

⑴MCN-5E模块20台,配置堆仓5组,构成100kW钠硫储能模块串组,分2路分别接入PCS-A-1及PCS-A-2并网装置DC/DC直流回路。

⑵MCN-5P模块10台,配置堆仓3组,构成50kW钠硫储能模块串,接入PCS-B-1并网装置DC/DC直流回路。

⑶MCN-25P模块2台,配置25kW模块堆仓1组,构成50kW钠硫储能模块串,接入PCS-B-2并网装置DC/DC直流回路。

储能子系统安装区域位置,汇流柜置于室内,开墙设置一维护通道放火门。汇流柜安装位置就近于模块堆仓,便于对模块串的分组及维护,防止误操作。

上述方案中涉及的电力设备、电路、模块以及电子元器件除特别说明之外,根据其实现的具体功能可以选择本领域通用的设计和方案,也可以根据实际需要选择其他设计和方案。

本方案的钠硫电池电站从示范电站的整体设计出发,设计了PCS能量转换系统的功能和结构,规定了双向直流变换器和双模式储能变流器的技术参数,设计了储能监控系统体系结构和层次结构,规定了储能监控系统体的基本功能和扩展功能,提出了储能系统接入配电网监控系统性能指标,优化了系统的通讯结构,并对模块成堆方式进行了设计。基于以上内容和特点,本方案的钠硫电池电站具有突出的实质性特点和显著的进步。

本方案的钠硫电池电站并不限于具体实施方式中公开的内容,实施例中出现的技术方案可以基于本领域技术人员的理解而延伸,本领域技术人员根据本方案结合公知常识作出的简单替换方案也属于本方案的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1