本发明涉及电源设计领域,具体涉及一种输出电压可调的高功率因数桥式同步整流电路。
背景技术:
普通的二极管整流技术被广泛运用,但是也具有明显的缺点:一是输出电压不稳定,当市电处于低端或者高端电压时,相应的整流输出电压往往会超出使用范围,会造成后级设备因输入欠压而不能启动或者因输入过压而损坏;二是损耗大,二极管的导通压降大,在输出电流大的情况下,增加了产品热设计的成本和难度;三是可控性差,二极管整流在发生故障的情况下(如输入过欠压、输出过流或短路等),不能控制整流电路关闭输出,会造成设备损坏。将二极管不可控整流替换为高效率的n沟道mosfet同步整流,利用mosfet导通电阻低的优点,可以有效的减少损耗和提高效率。在工频交流输入的情况下,mosfet的开关频率低,产生的开关干扰也较小。全桥同步整流电路前级的工频变压器将输入电压降低到合适的交流输入,通过全桥同步整流电路将输入的交流电压整流为直流输出。由于mosfet一般具有寄生的体二极管,因此即使在mosfet没有驱动信号的情况下,电流仍然可以通过mosfet的体二极管形成回路,所以输出电压不可控,而且在负载电流大的情况下,由于体二极管的通流能力有限,会损坏体二极管甚至mosfet。
技术实现要素:
为解决上述技术问题,本发明的目的在于提供一种输出电压可调的高功率因数桥式同步整流电路,能够灵活调节输出电压,实现同步整流,且具有高功率因素。
为了实现上述目的,本发明提供一种输出电压可调的高功率因数桥式同步整流电路,包括用于降压隔离的变压器t、电容c0、电感l1、整流电路1、驱动控制电路以及滤波电路2,所述整流电路1输出端经滤波电路2与负载相连,整流电路1包括功率管q1、q2、q3、q4、q5、q6,所述功率管q1的源极与功率管q3的漏极连接,功率管q3的源极与功率管q5的源极连接,所述功率管q2的源极与功率管q4的漏极连接,功率管q4的源极与功率管q6的源极连接,所述功率管q1的漏极与功率管q2的漏极连接,所述功率管q5的漏极与功率管q6的漏极连接,功率管q2和q6的漏极分别为整流电路1的输出正端和输出负端;变压器t的原边绕组的一端连接交流输入的l线,其另一端连接交流输入的n线,副边绕组的一端连接到功率管q1和q3之间的节点,其另一端连接到功率管q2和q4之间的节点;所述驱动控制电路用于采集变压器t的原边及滤波电路2输出端的电压及电流信号,通过相互隔离的驱动信号控制功率管q1、q2、q3、q4、q5、q6的导通与关断,使功率管q1与功率管q4的驱动信号一致,功率管q2与功率管q3的驱动信号一致,功率管q1与功率管q3的驱动信号互补,功率管q2与功率管q4的驱动信号互补,功率管q5的驱动信号延迟于功率管q2、q3的驱动信号,功率管q6的驱动信号延迟于功率管q1、q4的驱动信号;所述电容c0连接于交流输入的l线和n线之间,所述电感l1的一端与功率管q1和q2的漏极相连,其另一端连接滤波电路2的输入端。
具体地说,所述滤波电路2是由电感l2和电容c1、c2组成,电感l2一端连接电感l1,其另一端连接负载;电容c1一端连接电感l2与l1之间的节点,其另一端连接q5和q6的漏极,电容c2一端连接电感l2与负载之间的节点,其另一端连接q5和q6的漏极。
具体地说,所述功率管q1、q2、q3、q4、q5、q6均为n沟道mosfet。
由以上技术方案可知,本发明提供一种输出电压可调节的高功率因数的桥式同步整流电路,在交流输入侧设计了工频变压器,实现了原副边的隔离和一级调压,方便后级mosfet的选型;使用mosfet替代传统的桥式同步整流电路中的二极管,并在每一个桥臂上增加了一个反向连接的mosfet,驱动控制电路通过控制两个反向连接的mosfet的延时导通时间,实现输出电压的灵活调节;整流电路可实现同步整流,降低干扰;通过在交流侧的输入电容c0和直流侧的pfc电感l1实现功率因数校正。所有的功率管均为n沟道mosfet,造价低廉。本发明具有电路结构简单、可靠性高、功率因数高、效率高的优点,特别适用于交流输入、低压大电流输出的应用场合。
附图说明
图1是本发明的电路框图。
图2是本发明电路的mosfet的驱动波形图。
图3为本发明推广应用于三相输入的电路框图。
具体实施方式
如图1所示的本发明的电路图,本发明提供的一种输出电压可调的高功率因数桥式同步整流电路,包括用于降压隔离的变压器t、电容c0、pfc电感l1、整流电路1、驱动控制电路以及滤波电路2。整流电路1输出端经滤波电路2与负载相连,整流电路1包括功率管q1、q2、q3、q4、q5、q6,所有功率管均为导通损耗小的n沟道mosfet。两个反向功率管q5、q6,可以在没有驱动信号的情况下阻断电流流通路径,避免通过功率管寄生的体二极管产生电流回路。
功率管q1的源极与功率管q3的漏极连接,功率管q3的源极和q5的源极连接;功率管q2的源极与功率管q4的漏极连接,功率管q4的源极和q6的源极连接;功率管q1的漏极和q2的漏极连接,功率管q5的漏极和q6的漏极连接,功率管q2和q6的漏极分别为整流电路1的输出正端和输出负端;工频变压器t将原副边隔离,并将输入的工频交流电压通过匝比降低为成比例的低电压的交流电压,实现了一级调压,也方便后级的mosfet的选型;工频变压器t原边绕组的一端连接交流输入的l线,其另一端连接交流输入的n线;副边绕组的一端连接到功率管q1和q3之间的节点,其另一端连接到功率管q2和q4之间的节点;电容c0连接于交流输入的l线和n线之间,pfc电感l1一端连接功率管q1和q2的漏极,其另一端连接滤波电路2的输入端,设置于交流侧的输入电容c0和直流侧的pfc电感l1,可以提高电路的功率因数。
驱动控制电路从工频变压器t的原边采集输入电压及电流信号,从滤波电路2的输出端采集输出电压及电流信号,产生桥式同步整流mosfet和一对反向mosfet的驱动控制信号,驱动控制信号通过光耦隔离后再通过驱动芯片驱动对应的mosfet,6组驱动芯片的供电相互隔离,对应的6组驱动控制信号相互隔离。其中,功率管q1与功率管q4的驱动控制信号一致,功率管q2和q3的驱动控制信号一致,功率管q1和q3的驱动控制信号互补,功率管q2和q4的驱动控制信号互补,中间的间隔时间即为死区时间,功率管q5的驱动控制信号延迟于功率管q2与q3的驱动控制信号,功率管q6的驱动控制信号延迟于功率管q1与q4的驱动控制信号,通过调节功率管q5、功率管q6驱动控制信号的延迟时间实现对输出电压的调节,如图2所示。驱动控制电路还加入了输入过欠压、输出过流、短路保护功能,在发生故障时可以快速响应,关闭电源输出。具体地说,采集输入电压来进行输入过欠压保护,采集输入电流可以进行过零点和峰值判断,从滤波电路2的输出端采集输出电压形成反馈,控制两个反向连接的mosfet的延时导通时间,调节输出电压,实现输出过压保护功能,通过对输出电流进行采集,可以实现输出过流和短路保护功能。
滤波电路2优选由电感l2和电容c1、c2组成的π型滤波电路,电感l2一端连接电感l1,其另一端连接负载;电容c1一端连接电感l2与l1之间的节点,其另一端连接q5和q6的漏极,电容c2一端连接电感l2与负载之间的节点,其另一端连接q5和q6的漏极。π型滤波电路可以有效降低输出电压的纹波,保证负载的供电平稳。
如图3所示,本发明提供的输出电压可调的高功率因数桥式同步整流电路,也可以扩充推广应用到三相输入的场合。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。