
本发明涉及光伏并网逆变器的控制方法,具体是考虑线路阻抗及运行环境对光伏逆变器影响下的,一种防止低压配电网电压越限的光伏并网逆变器控制方法。
背景技术:
目前,由于能源紧缺的形势日益严峻,光伏等新能源技术得到了迅猛发展。大规模新能源光伏并网运行能够在一定程度上减少资源投资与环境污染,但随着光伏渗透率在电力系统各级中的不断提高,光伏并网运行所造成的电网电能质量问题不容小觑。《电能质量供电电压偏差》中规定20kv及以下三相供电电压偏差为标称电压的±7%。光伏渗透率增大时,并网点电压受低压配电网线路阻抗的影响易发生电压越限(电压偏差大于±7%),降低了电网的稳定性、加剧了电网电能质量的恶化,严重时甚至影响光伏并网。而光伏逆变器是光伏板与电网的关键枢纽,所以有必要深入研究低压配电网线路阻抗及运行环境对光伏逆变器控制方法的影响。
对于光伏并网技术,现有的研究主要考虑单位功率因数并网,并没有利用光伏逆变器的剩余容量来改善电能质量。有学者对并网逆变器的控制研究往往利用光伏逆变器与有源滤波器(apf)拓扑结构的相似性,通过检测负荷无功电流作为指令进行无功补偿,但却并未考虑光伏接入对电网电压的影响。有学者采用恒无功功率q控制方法来抑制并网点电压越限,并未涉及如何合理地设定无功参考值以适应负荷与光伏出力变化对电压的影响。有学者采用有功输出的恒功率控制但在光伏出力很大且恰逢用电高峰时电压未越限的情况下同样输出大量无功功率,造成电网损耗。有学者采用恒功率因数控制但在电压未越限时为维持功率因数恒定,光伏逆变器仍需发出一定的无功功率,同样增大了电网损耗。光伏逆变器作为光伏电池与电网的关键枢纽,因此亟待提出一种低压配电网光伏逆变器的控制方法,其在实现防止电压越限的同时减小光伏弃光量。
技术实现要素:
本发明的目的在于提供一种防止低压配电网电压越限的光伏并网逆变器控制方法,该控制方法能防止逆变器并网点电压发生越限,并能够在电压越上限时利用逆变器剩余容量在保证并网点电压质量的前提下尽可能地减少弃光量。
本发明是采用如下技术方案实现的:防止低压配电网电压越限的光伏并网逆变器控制方法,是由如下步骤实现的:
1)采集并网点三相电压ua、ub、uc和并网点三相电流ia、ib、ic;
2)采集网侧三相电压usa、usb、usc和网侧三相电流isa、isb、isc;
3)采集负荷侧三相电压ula、ulb、ulc和负荷侧三相电流ila、ilb、ilc;
4)将并网点三相电压ua、ub、uc输入matlab的abc/dq0模块,得到并网点电压d、q轴分量ud、uq;
5)将并网点三相电流ia、ib、ic输入matlab的abc/dq0模块,得到并网点电流d、q轴分量id、iq;
6)计算并网点有功功率p2=ua*ia+ub*ib+uc*ic,并网点无功功率
7)计算网侧有功功率p1=usa*isa+usb*isb+usc*isc,网侧无功功率
8)计算负荷侧有功功率pload=ula*ila+ulb*ilb+ulc*ilc,负荷侧无功功率
9)计算并网点线电压uab=ua-ub,输入matlab的有效值计算模块rms,得到并网点线电压有效值v2;计算网侧线电压usab=usa-usb,输入matlab的有效值计算模块rms,得到网侧线电压有效值v1;
10)计算并网点线电压有效值下限偏差δvdown=v2-v1*(1-7%);
11)计算并网点线电压有效值上限偏差δvup=v2-v1*(1+7%);
12)计算低压配电网线路电抗值x=xl,x为单位线路电抗值,l为线路长度;
13)计算低压配电网线路电阻值r=rl,r为单位线路电阻值,l为线路长度;
14)判断δvdown与δvup的正负;
15)当δvdown<0,δvup<0时(即并网点电压越下限),计算此时电压越下
限无功功率参考值补偿量
16)计算此时电压越下限无功功率参考值qdownref(i)=qdownref(i-1)+δq,其中qdownref(i-1)为上一时刻的电压越下限无功功率参考值,且初始无功功率参考值qdownref(0)=qload(0),qload(0)为初始负荷无功功率;
17)计算此时电压越下限有功功率参考值pdownref(i)=pdownref(i-1),其中pdownref(i-1)为上一时刻的电压越下限有功功率参考值,且初始有功功率参考值pdownref(0)=p2(0),p2(0)为初始光伏并网点有功功率;
18)经过功率外环控制计算此时电流有功参考值
电流无功参考值
19)当δvdown>0,δvup>0时(即并网点电压越上限),计算此时电压越上限有功功率参考值原始弃光量
20)计算此时电压越上限光伏弃光量占原始弃光量的比例系数
其中此时光伏逆变器功率因数取-0.8;
21)计算此时电压越上限有功功率参考值弃光量δp'=λδp;计算此时电压越上限无功功率参考值补偿量
22)计算此时电压越上限有功功率参考值pupref(i)=pupref(i-1)-δp',其中pupref(i-1)为上一时刻的电压越上限有功功率参考值,且初始有功功率参考值pupref(0)=p2(0);
23)计算此时电压越上限无功功率参考值qupref(i)=qupref(i-1)-δq',其中qupref(i-1)为上一时刻的电压越上限无功功率参考值,且初始无功功率参考值qupef(0)=qload(0);
24)经过功率外环控制计算此时电流有功参考值
电流无功参考值
25)当δvdown>0,δvup<0时(即并网点电压未越限),计算此时电压未越限有功功率参考值pnoneref(i)=pnoneref(i-1),其中pnoneref(i-1)为上一时刻的电压未越限有功功率参考值,且初始有功功率参考值pnoneref(0)=p2(0);
26)计算此时电压未越限无功功率参考值qnoneref(i)=0;
27)经过功率外环控制计算此时电流有功参考值
电流无功参考值
28)经过电流内环控制计算:将不同状态下(并网点电压越上限、并网点电压越下限和并网点电压未越限)的功率外环控制得到的电流有功参考值idref与并网点电流d分量id的差值idref-id输入matlab的pi控制模块得到d轴电压分量前级u'd前,将电流无功参考值iqref与并网点电流q分量iq的差值iqref-iq输入pi控制环节得到q轴电压分量前级u'q前,再计算调节后的并网点电压d、q轴分量u'd=u'd前-wliq+ud、u'q=u'q前+wlid+uq;其中,w=2πf为角频率,l=7mh为逆变器输出端所接的滤波电感;将d、q、0轴分量u'd、u'q及u'0=0输入matlab的dq0/abc模块,得到并网点电压a、b、c轴分量u'a、u'b、u'c;再将a、b、c轴分量u'a、u'b、u'c输入matlab的pwm脉冲发生器pwmgenerator,最终得到控制光伏逆变器输出的pwm脉冲信号,实现对光伏逆变器的控制。
与现有技术相比,本发明所具有的有益效果如下:
(1)低压配电网中线路电阻电抗比较大,线路电压受线路阻抗、光伏渗透率及负荷波动的影响极易发生越限。相比于传统逆变器控制方法,使用本发明建立的引入功率参考值动态响应模块的光伏并网逆变器控制方法,可以防止光伏并网逆变器并网点电压发生越限;
(2)本发明所用方法可在并网点电压未发生越限的情况下,自动将光伏并网逆变器动态调整为单位功率因数输出运行,减小了光伏发电系统无功损耗;
(3)相对于传统方法,考虑在并网点电压越上限时,在保证电压质量的前提下利用逆向思维设计有功、无功功率相匹配方法,利用逆变器剩余容量来减少弃光量。
本发明采用低压配电网线路参数,线路全长取2km,改变等效负荷大小和光伏渗透率来模拟光伏逆变器并网点电压越限的三种情况:并网点电压越上限、并网点电压越下限和并网点电压未越限;并通过matlab/simulink软件进行了仿真对比分析;分析结果见附图4-10
附图说明
图1是本发明所涉及的低压配电网光伏并网逆变器控制结构原理图;图中,采取并网点三相电压电流、网侧三相电压电流、负荷侧三相电压电流,输入所设计的光伏并网逆变器的控制器,最终得到控制逆变器输出的pwm脉冲信号。
图2是本发明所涉及的并网点电压越上限时减小弃光量原理图;图中,δp为并网点电压越上限时为了使电压偏差不超过7%的原始弃光量,为了达到同样的并网点电压调节量,设计了有功无功相互匹配的策略,即电压越上限时弃光量只需δp'(设计为原始弃光量的λ倍),对应剩余电压调节量δu-δu'利用无功补偿量δq'来实现。
图3是本发明所涉及的功率参考值动态响应环节的控制框图;根据线路末端即并网点电压与网侧电压之间的差值关系,设计了功率参考值动态响应环节,得到维持并网点电压质量的合理有功、无功功率参考值pref、qref;图中,通过电压rms计算得到线电压有效值,经过switchcontrol开关判断选择环节分析此时光伏并网点电压越限情况,当发生越上限时,switchcontrol1选择输出并网点电压越上限差值,进一步计算越上限所需削减的和所需吸收的,动态得到此时刻的有功参考值;当发生越下限时,switchcontrol2选择输出并网点电压越下限差值,进一步计算越下限所需补偿的,动态得到此时刻的无功参考值;当未发生越上限及越下限时,switchcontrol3选择输出0,即此时刻的有功参考值和无功参考值维持不变。
图4是本发明所涉及的并网点电压越上限时光伏逆变器的有功无功功率输出;图中,0-0.25s为初始条件;0.25s-0.5s逆变器输出功率p约为15000w、q约为0,对应电压越上限;0.5s之后逆变器动态调整输出p约为11300w,q约为-1200var,对应电压偏差调节回7%以内。
图5是本发明所涉及的并网点电压越上限时4种不同参数的并网点电压;图中,s1为网侧线电压有效值,s2-5分别为4种不同功率参数对应的并网点线电压有效值。可看出:4种参数在0.25s-0.5s内采用传统功率控制时均发生电压越上限;0.5s之后启动动态响应环节,并网点线电压有效值恢复到约406v(电压偏差+7%),满足供电电能质量要求。
图6是本发明所涉及的并网点电压越下限时光伏逆变器的有功无功功率输出;图中,0-0.25s为初始条件;0.25s-0.5s逆变器输出功率p约为100w,q约为100var,对应电压越下限;0.5s之后逆变器动态调整输出p不变,q约为3400var,对应电压偏差调节回-7%以内。
图7是本发明所涉及的并网点电压越下限时4种不同参数的并网点电压;图中,s1为网侧线电压有效值,s2-5分别为4种不同功率参数对应的并网点线电压有效值。可看出:4种参数在0.25s-0.5s内采用传统功率控制时均发生电压越下限;0.5s之后启动动态响应环节,并网点线电压有效值恢复到约354v(电压偏差-7%),满足供电电能质量要求。
图8是本发明所涉及的并网点电压未越限时光伏逆变器的有功无功功率输出;图中,0-0.25s为初始条件;0.25s-0.5s逆变器输出功率p约为15000w,q约为1000var,对应电压未越限;0.5s之后逆变器动态调整输出p不变,q约为0var对应电压偏差调节回±7%以内。
图9是本发明所涉及的并网点电压未越限时4种不同参数的并网点电压;图中,s1为网侧线电压有效值,s2-5分别为4种不同功率参数对应的并网点线电压有效值;可看出:4种参数在0.25s-0.5s内采用传统功率控制时均未发生电压越限;0.5s之后启动动态响应环节,调整逆变器单位功率因数运行,满足供电电能质量要求(电压偏差内)。
图10是本发明所涉及的并网点电压越上限时的光伏弃光量与原始弃光量;图中,δp'为有功无功相匹配法的光伏弃光量,δp为原始弃光量;0.25s-0.5s电压越上限时的光伏弃光量如图所示;由图见:设置达到同样的电压恢复效果时,原始弃光量为3615w,而采用有功、无功功率相匹配方法时的弃光量为2380w,大大的减小了并网点电压越上限时的光伏弃光量。
具体实施方式
防止低压配电网电压越限的光伏并网逆变器控制方法,是由如下步骤实现的:
1)采集并网点三相电压ua、ub、uc和并网点三相电流ia、ib、ic;
2)采集网侧三相电压usa、usb、usc和网侧三相电流isa、isb、isc;
3)采集负荷侧三相电压ula、ulb、ulc和负荷侧三相电流ila、ilb、ilc;
4)将并网点三相电压ua、ub、uc输入matlab的abc/dq0模块,得到并网点电压d、q轴分量ud、uq;
10)将并网点三相电流ia、ib、ic输入matlab的abc/dq0模块,得到并网点电流d、q轴分量id、iq;
11)计算并网点有功功率p2=ua*ia+ub*ib+uc*ic,并网点无功功率
12)计算网侧有功功率p1=usa*isa+usb*isb+usc*isc,网侧无功功率
13)计算负荷侧有功功率pload=ula*ila+ulb*ilb+ulc*ilc,负荷侧无功功率
14)计算并网点线电压uab=ua-ub,输入matlab的有效值计算模块rms,得到并网点线电压有效值v2;计算网侧线电压usab=usa-usb,输入matlab的有效值计算模块rms,得到网侧线电压有效值v1;
10)计算并网点线电压有效值下限偏差δvdown=v2-v1*(1-7%);
11)计算并网点线电压有效值上限偏差δvup=v2-v1*(1+7%);
12)计算低压配电网线路电抗值x=xl,x为单位线路电抗值,l为线路长度;
13)计算低压配电网线路电阻值r=rl,r为单位线路电阻值,l为线路长度;
14)判断δvdown与δvup的正负;
15)当δvdown<0,δvup<0时(即并网点电压越下限),计算此时电压越下限无功功率参考值补偿量
16)计算此时电压越下限无功功率参考值qdownref(i)=qdownref(i-1)+δq,其中qdownref(i-1)为上一时刻的电压越下限无功功率参考值,且初始无功功率参考值qdownref(0)=qload(0),qload(0)为初始负荷无功功率;
17)计算此时电压越下限有功功率参考值pdownref(i)=pdownref(i-1),其中pdownref(i-1)为上一时刻的电压越下限有功功率参考值,且初始有功功率参考值pdownref(0)=p2(0),p2(0)为初始光伏并网点有功功率;
18)经过功率外环控制计算此时电流有功参考值
电流无功参考值
19)当δvdown>0,δvup>0时(即并网点电压越上限),计算此时电压越上限有功功率参考值原始弃光量
20)计算此时电压越上限光伏弃光量占原始弃光量的比例系数
其中此时光伏逆变器功率因数取-0.8;
21)计算此时电压越上限有功功率参考值弃光量δp'=λδp;计算此时电压越上限无功功率参考值补偿量
22)计算此时电压越上限有功功率参考值pupref(i)=pupref(i-1)-δp',其中pupref(i-1)为上一时刻的电压越上限有功功率参考值,且初始有功功率参考值pupref(0)=p2(0);
23)计算此时电压越上限无功功率参考值qupref(i)=qupref(i-1)-δq',其中qupref(i-1)为上一时刻的电压越上限无功功率参考值,且初始无功功率参考值qupef(0)=qload(0);
24)经过功率外环控制计算此时电流有功参考值
电流无功参考值
25)当δvdown>0,δvup<0时(即并网点电压未越限),计算此时电压未越限有功功率参考值pnoneref(i)=pnoneref(i-1),其中pnoneref(i-1)为上一时刻的电压未越限有功功率参考值,且初始有功功率参考值pnoneref(0)=p2(0);
26)计算此时电压未越限无功功率参考值qnoneref(i)=0;
27)经过功率外环控制计算此时电流有功参考值
电流无功参考值
28)经过电流内环控制计算:将不同状态下(并网点电压越上限、并网点电压越下限和并网点电压未越限)的功率外环控制得到的电流有功参考值idref与并网点电流d分量id的差值idref-id输入matlab的pi控制模块得到d轴电压分量前级u'd前,将电流无功参考值iqref与并网点电流q分量iq的差值iqref-iq输入pi控制环节得到q轴电压分量前级u'q前,再计算调节后的并网点电压d、q轴分量u'd=u'd前-wliq+ud、u'q=u'q前+wlid+uq;其中,w=2πf为角频率,l=7mh为逆变器输出端所接的滤波电感;将d、q、0轴分量u'd、u'q及u'0=0输入matlab的dq0/abc模块,得到并网点电压a、b、c轴分量u'a、u'b、u'c;再将a、b、c轴分量u'a、u'b、u'c输入matlab的pwm脉冲发生器pwmgenerator,最终得到控制光伏逆变器输出的pwm脉冲信号,实现对光伏逆变器的控制。