内置并联分时选择开关电压型单级多输入高频环节逆变器的制作方法

文档序号:14574275发布日期:2018-06-02 00:56阅读:222来源:国知局
内置并联分时选择开关电压型单级多输入高频环节逆变器的制作方法

本发明所涉及的内置并联分时选择开关电压型单级多输入高频环节逆变器,属于电力电子变换技术。



背景技术:

逆变器是应用功率半导体器件将一种不稳定、劣质的直流电能变换成稳定、优质的交流电能的静止变流装置,供交流负载使用或实现交流并网。输出交流负载或交流电网与输入直流电源间有低频电气隔离(包括无电气隔离)或高频电气隔离的逆变器,分别称为低频环节、高频环节逆变器。电气隔离元件在逆变器中主要起到了如下作用:(1)实现了逆变器输出与输入之间的电气隔离,提高了逆变器运行的安全可靠性和电磁兼容性;(2)实现了逆变器输出电压与输入电压之间的匹配,即实现了逆变器输出电压高于、等于或低于输入电压的技术效果,其应用范围得到了大大拓宽;(3)当高频变压器或高频储能式变压器的工作频率在20kHz以上时,其体积、重量大大降低了,音频噪音也消除了。因此,在以直流发电机、蓄电池、光伏电池和燃料电池等为主直流电源的二次电能变换场合,逆变器具有重要的应用价值。

太阳能、风能、潮汐能和地热能等新能源(也称为绿色能源),具有清洁无污染、廉价、可靠、丰富等优点,因而具有广泛的应用前景。由于石油、煤和天然气等传统化石能源(不可再生的能源)日益紧张、环境污染严重、导致全球变暖以及核能的生产又会产生核废料和污染环境等原因,新能源的开发和利用越来越受到人们的重视。新能源发电主要有光伏、风力、燃料电池、水力、地热等类型,均存在电力供应不稳定、不连续、随气候条件变化等缺陷,因此需要采用多种新能源联合供电的分布式供电系统。

传统的新能源分布式供电系统,如图1、2所示。该系统通常是采用多个单输入直流变换器将光伏电池、燃料电池、风力发电机等不需能量存储的新能源发电设备分别通过一个单向直流变换器进行电能变换且在输出端并联或串联后连接到公共的逆变器的直流母线上,旨在确保各种新能源联合供电并且能够协调工作。该分布式发电系统实现了多个输入源同时向负载供电和能源的优先利用,提高了系统的稳定性和灵活性,但存在两级功率变换、功率密度低、变换效率低、成本高等缺陷,其实用性受到了很大程度的限制。

为了简化电路结构和减少功率变换级数,需要用图3所示具有单级电路结构的新型多输入逆变器取代图1、2所示具有直流变换器与逆变器两级级联电路结构的传统多输入逆变器构成新型的单级新能源分布式供电系统。单级多输入逆变器允许多种新能源输入,输入源的性质、幅值和特性可以相同,也可以差别很大。新型的单级新能源分布式供电系统具有电路结构简洁、单级功率变换、一个高频开关周期内多个输入源同时或分时向负载供电、成本低等优点。

因此,积极寻求一类允许多种新能源联合供电的单级多输入逆变器及其新能源分布式供电系统已迫在眉睫,对于提高系统的稳定性和灵活性,实现新能源的优先利用或充分利用将具有十分重要的意义。



技术实现要素:

本发明目的是要提供一种具有多种新能源联合供电、输入直流电源共地、多输入单输出高频逆变电路内置并联分时选择开关、输出与输入之间高频隔离、多个输入电源一个开关周期内分时供电、电路拓扑简洁、共用输出高频隔离变压周波变换滤波电路、单级功率变换、变换效率高、输出电压纹波小、输出中小容量、应用前景广泛等特点的内置并联分时选择开关电压型单级多输入高频环节逆变器。

本发明的技术方案在于:一种内置并联分时选择开关电压型单级多输入高频环节逆变器,是由一个多输入单输出高频逆变电路将多个共地的输入滤波器和一个共用的输出高频隔离变压周波变换滤波电路联接构成,多输入单输出高频逆变电路的每个输入端与每个输入滤波器的输出端一一对应联接,多输入单输出高频逆变电路的输出端与所述输出高频隔离变压周波变换滤波电路的高频变压器输入端相联接,所述的多输入单输出高频逆变电路由多个内置并联分时选择四象限功率开关的双向功率流单输入单输出高频逆变电路构成,在任意时刻相当于一个双向功率流单输入单输出高频逆变电路,所述的输出高频隔离变压周波变换滤波电路由高频变压器、周波变换器、输出滤波器依序级联构成,所述的周波变换器由多个能承受双向电压应力和双向电流应力的四象限高频功率开关构成。

本发明是将传统多种新能源联合供电系统的直流变换器与逆变器两级级联而成的多输入逆变器电路结构,构建为新型内置并联分时选择开关的单级多输入逆变器电路结构,提出了内置并联分时选择开关电压型单级多输入高频环节逆变器电路结构与拓扑族及其能量管理控制策略,即该电路结构是通过提供一种内置并联分时选择四象限功率开关的多输入单输出高频逆变电路将多个共地的输入滤波器和一个共用的输出高频隔离变压周波变换滤波电路联接而成。

本发明的内置并联分时选择开关电压型单级多输入高频环节逆变器,能够将多个共地、不稳定的输入直流电压逆变成一个负载所需的稳定优质的输出交流电,具有多输入直流电源共地、多输入单输出高频逆变电路之间未隔离、输出与输入高频隔离、多输入电源一个开关周期内分时供电、电路拓扑简洁、共用输出高频隔离变压周波变换滤波电路、单级功率变换、变换效率高、输出电压纹波小、输出中小容量、应用前景广泛等特点。内置并联分时选择开关电压型单级多输入高频环节逆变器的综合性能,将比传统的直流变换器与逆变器两级级联而成的多输入逆变器优越。

附图说明

图1,传统的多个单向直流变换器输出端并联的两级式新能源分布式供电系统。

图2,传统的多个单向直流变换器输出端串联的两级式新能源分布式供电系统。

图3,新型的单级多输入逆变器原理框图。

图4,内置并联分时选择开关电压型单级多输入高频环节逆变器原理框图。

图5,内置并联分时选择开关电压型单级多输入高频环节逆变器电路结构图----双向功率流。

图6,双极性移相控制内置并联分时选择开关电压型单级多输入高频环节逆变器稳态原理波形图。

图7,单极性移相控制内置并联分时选择开关电压型单级多输入高频环节逆变器稳态原理波形图。

图8,内置并联分时选择开关电压型单级多输入高频环节逆变器电路拓扑实例一----推挽全波式电路原理图。

图9,内置并联分时选择开关电压型单级多输入高频环节逆变器电路拓扑实例二----推挽桥式电路原理图。

图10,内置并联分时选择开关电压型单级多输入高频环节逆变器电路拓扑实例三----推挽正激全波式电路原理图。

图11,内置并联分时选择开关电压型单级多输入高频环节逆变器电路拓扑实例四----推挽正激桥式电路原理图。

图12,内置并联分时选择开关电压型单级多输入高频环节逆变器电路拓扑实例五----半桥全波式电路原理图。

图13,内置并联分时选择开关电压型单级多输入高频环节逆变器电路拓扑实例六----半桥桥式电路原理图。

图14,内置并联分时选择开关电压型单级多输入高频环节逆变器电路拓扑实例七----全桥全波式电路原理图。

图15,内置并联分时选择开关电压型单级多输入高频环节逆变器电路拓扑实例八----全桥桥式电路原理图。

图16,内置并联分时选择开关电压型单级多输入高频环节逆变器的输出电压、输入电流瞬时值反馈双极性移相主从功率分配能量管理控制框图。

图17,内置并联分时选择开关电压型单级多输入高频环节逆变器的输出电压、输入电流瞬时值反馈双极性移相主从功率分配能量管理控制原理波形图。

图18,内置并联分时选择开关电压型单级多输入高频环节逆变器的输出电压、输入电流瞬时值反馈单极性移相主从功率分配能量管理控制框图。

图19,内置并联分时选择开关电压型单级多输入高频环节逆变器的输出电压、输入电流瞬时值反馈单极性移相主从功率分配能量管理控制原理波形图。

图20,内置并联分时选择开关电压型单级多输入高频环节逆变器电路结构图----单向功率流。

图21,具有输出端并接单级隔离双向充放电变换器的内置并联分时选择开关电压型单级多输入高频环节独立供电系统。

图22,具有单级隔离双向充放电变换器输出电压独立控制环路的最大功率输出能量管理控制策略。

图23,独立供电系统的输出电压uo和输出滤波电感电流iLf、iLf′波形。

具体实施方式

下面结合说明书附图及实施例对本发明的技术方案做进一步描述。

内置并联分时选择开关电压型单级多输入高频环节逆变器,是由一个多输入单输出高频逆变电路将多个共地的输入滤波器和一个共用的输出高频隔离变压周波变换滤波电路联接构成,多输入单输出高频逆变电路的每个输入端与每个输入滤波器的输出端一一对应联接,多输入单输出高频逆变电路的输出端与所述输出高频隔离变压周波变换滤波电路的高频变压器输入端相联接,所述的多输入单输出高频逆变电路由多个内置并联分时选择四象限功率开关的双向功率流单输入单输出高频逆变电路构成,在任意时刻相当于一个双向功率流单输入单输出高频逆变电路,所述的输出高频隔离变压周波变换滤波电路由高频变压器、周波变换器、输出滤波器依序级联构成,所述的周波变换器由多个能承受双向电压应力和双向电流应力的四象限高频功率开关构成。

内置并联分时选择开关电压型单级多输入高频环节逆变器的原理框图、电路结构(双向功率流)、双极性移相控制和单极性移相控制逆变器的稳态原理波形,分别如图4、5、6、7所示。图4、5、6、7中,Ui1、Ui2、…、Uin为n路输入直流电压源(n为大于1的自然数),ZL为单相输出交流负载(包括单相交流无源负载和单相交流电网负载),uo、io分别为单相输出交流电压和交流电流。n输入单输出高频逆变电路是由多个内置并联分时选择四象限功率开关的双向功率流单输入单输出高频逆变电路构成;n输入单输出高频逆变电路是由多个能承受双向电压应力、双向电流应力的四象限功率开关以及一个或多个能承受单向电压应力、双向电流应力的两象限功率开关实现,或仅仅由多个能承受双向电压应力、双向电流应力的四象限功率开关实现,可选用MOSFET、IGBT、GTR等功率器件;输出高频隔离变压周波变换滤波电路由高频变压器、周波变换器、输出滤波器依序级联构成,其中周波变换器是由多个能承受双向电压应力、双向电流应力的四象限功率开关实现,限于篇幅图中仅画出了适用于无源交流负载的LC输出滤波器的电路图,而未画出适用于交流电网负载的L或LCL输出滤波器的电路图;n路输入滤波器为LC滤波器(含添加虚框的滤波电感Li1、Li2、…、Lin)或电容滤波器(不含添加虚框的滤波电感Li1、Li2、…、Lin),采用LC滤波器时n路输入直流电流会更平滑。n输入单输出高频逆变电路将n路输入直流电压源Ui1、Ui2、…、Uin调制成幅值取决于输入直流电压的双极性两态多电平高频电压方波或双极性三态多电平SPWM电压波uAB或uA′B′,经高频变压器T隔离变压和周波变换器解调成双极性两态或单极性三态多电平SPWM电压波uCD,经输出滤波器Lf-Cf后在单相交流无源负载或单相交流电网上获得高质量的正弦交流电压uo或正弦交流电流io,n输入单输出高频逆变电路的n个输入脉冲电流经输入滤波器Li1-Ci1、Li2-Ci2、…、Lin-Cin或Ci1、Ci2、…、Cin后在n路输入直流电源Ui1、Ui2、…、Uin中获得平滑的输入直流电流Ii1、Ii2、…、Iin。需要补充说明的是,双极性两态多电平高频电压方波和双极性三态多电平SPWM电压波uAB或uA′B′的幅值为±2(Ui1、Ui2、…、Uin)(推挽式电路)、±(Ui1、Ui2、…、Uin)(推挽正激式、全桥式电路)、±1/2(Ui1、Ui2、…、Uin)(半桥式电路),uCD的幅值为±(Ui1N2/N1、Ui2N2/N1、…、UinN2/N1)(推挽式、推挽正激式、全桥式电路)、±1/2(Ui1N2/N1、Ui2N2/N1、…、UinN2/N1)(半桥式电路)。

内置并联分时选择开关电压型单级多输入高频环节逆变器属于降压型逆变器,n个输入源对负载并联分时供电。这种逆变器的原理相当于多个电压型单输入逆变器在输出端电压的叠加,即输出电压uo与输入直流电压(Ui1、Ui2、…、Uin)、高频变压器匝比N2/N1、占空比(d1、d2、…、dj、…、dn)之间的关系较复杂;当n个输入源的幅值相等时,即Ui1=Ui2=…=Uin=Ui,有uo=(dj+dj+1+…+dn)UiN2/N1=(180°-θ)/180°UiN2/N1(单极性移相控制)或uo=[2(dj+dj+1+…+dn)-1]UiN2/N1=[2(180°-θ)/180°-1]UiN2/N1(双极性移相控制),其中1≤j≤n,θ为移相角。对于适当的移相角θ和高频变压器匝比N2/N1,uo可大于、等于或小于输入直流电压之和Ui1+Ui2+…+Uin,该逆变器中的高频变压器不但起到了提高逆变器运行的安全可靠性和电磁兼容性,更重要的是起到了匹配输出电压与输入电压的作用,即实现了逆变器的输出电压高于、等于或低于输入直流电压之和Ui1+Ui2+…+Uin的技术效果,其应用范围得到了大大拓宽。由于存在0≤θ≤180°,可以推出uo<(Ui1+Ui2+…+Uin)N2/N1,即输出电压uo总是低于输入直流电压(Ui1、Ui2、…、Uin)与高频变压器匝比N2/N1乘积之和(Ui1+Ui2+…+Uin)N2/N1;由于所述逆变器属于单级电路结构,其变压器工作频率为高频,多路并联分时选择四象限功率开关位于高频逆变电路之内,故将这类逆变器称为内置并联分时选择开关电压型(降压型)单级多输入高频环节逆变器。该逆变器的n个输入源在一个高频开关周期内只能分时对输出交流负载供电,占空比可以相同(d1=d2=…=dn),也可以不同(d1≠d2≠…≠dn)。

本发明所述的内置并联分时选择开关电压型单级多输入高频环节逆变器,由于共用一个多输入单输出高频逆变电路和一个输出高频隔离变压周波变换滤波电路,与直流变换器和逆变器两级级联构成的传统多输入逆变器的电路结构存在着本质上的区别。因此,本发明所述逆变器具有新颖性和创造性,并且具有输出与输入高频隔离、多输入电源分时供电、电路拓扑简洁、单级功率变换、升压比大、输入电压配制灵活、变换效率高(意味着能量损耗小)、输出电压纹波小、输出中小容量、成本低、应用前景广泛等优点,是一种理想的节能降耗型单级多输入逆变器,在大力倡导建设节能型、节约型社会的今天,更具有重要价值。

内置并联分时选择开关电压型单级多输入高频环节逆变器电路拓扑族实施例(双向功率流),如图8、9、10、11、12、13、14、15所示。图8、9所示推挽式电路是分别由2(n+1)、2(n+2)个能承受双向电压应力、双向电流应力的四象限高频功率开关来实现,图10、11所示推挽正激式电路和图12、13所示半桥式电路均分别由2(n+1)、2(n+2)个能承受双向电压应力、双向电流应力的四象限高频功率开关以及1个能承受单向电压应力、双向电流应力的两象限高频功率开关来实现,图14、15所示全桥式电路分别由2(n+1)、2(n+2)个能承受双向电压应力、双向电流应力的四象限高频功率开关和2个能承受单向电压应力、双向电流应力的两象限高频功率开关来实现。需要说明的是,图8、9、10、11、12、13、14、15所示电路给出了输入滤波器为LC滤波器情形(图12、13所示半桥式电路的输入滤波电容为两个桥臂电容C1、C2),限于篇幅未给出输入滤波器为电容滤波器情形时的电路;图10、11、12、13、14、15所示电路不必全部采用四象限高频功率开关,省去了1个或2个两象限高频功率开关;图10、11所示推挽正激式电路和图12、13所示半桥式电路仅适用于n个输入电源电压基本相等的情形;图8-15所示电路仅画出了适用于无源交流负载的LC输出滤波器的电路图,而未画出适用于交流电网负载的L或LCL输出滤波器的电路图。内置并联分时选择开关电压型单级多输入高频环节逆变器八种拓扑实施例的功率开关电压应力,如表1所示。表1中,Uimax=max(Ui1,Ui2,…,Uin),N=1,2,…,n。推挽式、推挽正激式电路适用于中功率低压输入逆变场合,半桥式电路适用于小功率高压输入逆变场合,全桥式电路适用于中功率高压输入逆变场合。该电路拓扑族适用于将多个共地、不稳定的输入直流电压变换成一个所需电压大小、稳定优质的输出交流电,可用来实现具有优良性能和广泛应用前景的新型单级多种新能源分布式供电系统,如光伏电池40-60VDC/220V50HzAC or 115V400HzAC、10kw质子交换膜燃料电池85-120V/220V50HzAC or 115V400HzAC、中小型户用风力发电24-36-48VDC/220V50HzAC or 115V400HzAC、大型风力发电510VDC/220V50HzAC or 115V400HzAC等多输入源对交流负载或交流电网供电。

表1内置并联分时选择开关电压型单级多输入高频环节逆变器八种拓扑实施例功率开关电压应力

能量管理控制策略对于多种新能源联合供电系统来说是至关重要的。由于存在多个输入源及相应的功率开关单元,因此需要对多个占空比进行控制,也就是存在多个控制自由度,这就为多种新能源的能量管理提供了可能性。内置并联分时选择开关电压型单级多输入高频环节逆变器的能量管理控制策略,需同时具备输入源的能量管理、光伏电池和风力发电机等新能源发电设备的MPPT、输出电压(电流)控制三大功能,有时还需考虑蓄电池的充放电控制和系统在不同供电模式下的平滑无缝切换。内置并联分时选择开关电压型单级多输入高频环节逆变器采用两种不同的能量管理模式:(1)能量管理模式I--主从功率分配方式,已知负载所需功率尽可能由主供电设备第1、2、…、n-1路输入源提供,给定第1、2、…、n-1路输入源的输入电流,相当于给定第1、2、…、n-1路输入源的输入功率,负载所需的不足功率由从供电设备第n路输入源提供,可以不需添加蓄电池储能设备;(2)能量管理模式Ⅱ—最大功率输出方式,第1、2、…、n路输入源均以最大功率输出到负载,省去了蓄电池储能设备,实现了并网发电系统对能源充分利用的要求,若在输出端并接一个蓄电池充放电器还可实现独立供电系统输出电压(电流)的稳定。当n路新能源的输入电压均给定时,通过控制第1、2、…、n路输入源的输入电流,就相当于控制了第1、2、…、n路输入源的输入功率。

内置并联分时选择开关电压型单级多输入高频环节逆变器,采用输出电压、输入电流瞬时值反馈双极性移相、单极性移相主从功率分配能量管理控制策略,以构成独立供电系统;或采用输入电流瞬时值反馈双极性移相、单极性移相最大功率输出能量管理控制策略,以构成并网发电系统。第1、2、…、n-1路输入源输出功率固定和第n路输入源补充负载所需的不足功率的输出电压、输入电流瞬时值反馈双极性SPWM、单极性SPWM主从功率分配能量管理控制框图和控制原理波形,分别如图16、17、18、19所示。图16、17所示的双极性移相控制方案的基本思想是,n输入单输出高频逆变电路产生双极性两态多电平高频方波,第1、2、…、n-1路功率开关的分时导通时间是按照误差电流大小对Ts/2时间进行分配(实现第1、2、…、n-1路输入源的最大功率输出),分配剩余的时间为第n路功率开关的导通时间(实现第n路输入源功率的补足),任何时刻总会且只有一路输入源接入确保了能量的正向传递或反向回馈,能量适时地反向回馈到当时接入的那一路输入源,通过周波变换器与n输入单输出高频逆变电路之间的移相来实现逆变器输出电压的稳定,借助周波变换器的换流重叠实现高频变压器漏感能量的自然换流和周波变换器的零电流开关,该控制策略适用于图8-15所示电路。逆变器第1、2、…、n-1路的输入电流反馈信号Ii1f、Ii2f、…、Ii(n-1)f分别与第1、2、…、n-1路输入源经最大功率点计算后得到的基准电流信号Ii1r、Ii2r、…、Ii(n-1)r经比例积分调节器比较放大,电流误差放大信号I1e、I2e、…、I(n-1)e与移位后的单极性锯齿形载波-uc+Ucm/2比较,经适当的组合逻辑电路后得到n输入单输出高频逆变电路功率开关的分时控制信号ugs11、ugs21、…、ugsn1、ugs12、ugs22、…、ugsn2、ugs′11、ugs′21、…、ugs′n1、ugs′12、ugs′22、…、ugs′n2;双极性锯齿形载波uc经上升沿二分频后得到n输入单输出高频逆变电路功率开关的控制信号ugs4及其反相信号ugs3;逆变器的输出电压反馈信号uof与基准正弦电压ur经比例积分调节器比较放大,电压误差放大信号ue分别与双极性锯齿形载波uc和-uc比较,考虑输出电感电流极性选择信号并经适当的组合逻辑电路后得到周波变换器功率开关的控制信号ugs5(ugs′5)、ugs6(ugs′6)、ugs7(ugs′7)、ugs8(ugs′8)。

图18、19所示的单极性移相控制方案的基本思想是,通过n输入单输出高频逆变电路右桥臂与左桥臂之间的移相生成双极性三态多电平SPWM波,周波变换器将双极性三态多电平SPWM波解调成单极性三态多电平SPWM波,周波变换器在高频逆变电路输出的双极性三态多电平SPWM波为零期间进行开关转换从而实现零电压开关,任何时刻总存在仅有一路的输入源接入(“1”态或“-1”态、确保了能量的正向传递或反向回馈)或0态(续流态),能量适时地反向回馈到当时接入的那一路输入源,该控制策略仅适用于图14、15所示电路。第1、2、…、n-1路功率开关的分时导通时间是按照误差电流大小对左桥臂或右桥臂按SPWM分布的总的导通时间进行分配(实现第1、2、…、n-1路输入源的最大功率输出),分配剩余的时间为第n路功率开关的导通时间(实现第n路输入源功率的补足)。逆变器第1、2、…、n-1路的输入电流反馈信号Ii1f、Ii2f、…、Ii(n-1)f分别与第1、2、…、n-1路输入源经最大功率点计算后得到的基准电流信号Ii1r、Ii2r、…、Ii(n-1)r经比例积分调节器比较放大,电流误差放大信号I1e、I2e、…、I(n-1)e分别通过分时脉冲产生电路1、2以及适当的逻辑电路后得到n输入单输出高频逆变电路功率开关的分时控制信号ugs11、ugs21、…、ugsn1、ugs12、ugs22、…、ugsn2;逆变器的输出电压反馈信号uof与基准正弦电压ur经比例积分调节器比较放大,电压误差放大信号ue及其反相信号-ue分别与双极性锯齿形载波uc比较,经下降沿二分频和适当的组合逻辑电路后得到n输入单输出高频逆变电路下桥臂功率开关的控制信号ugs3、ugs4;图中ucom表示n输入单输出高频逆变电路上桥臂的共同导通信号,当上桥臂的共同导通信号ucom为高电平时,使上桥臂第1路功率开关S11、S12共同导通(也可设计成其它路功率开关共同导通)和第2、…、n路功率开关S21、…、Sn1、S22、…、Sn2截止,以确保存在续流回路;双极性锯齿形载波uc经下升沿二分频后得到周波变换器功率开关的控制信号ugs5(ugs′5)、ugs6(ugs′6)、ugs7(ugs′7)、ugs8(ugs′8)。在分时脉冲产生电路1、2中,Ie∑、Ie∑m、I*e∑分别为电流误差放大信号I1e、I2e、…、I(n-1)e的和、电流误差放大信号I1e、I2e、…、I(n-1)e的和的最大值及其二者的比值,V1、k(0~1)分别为ugs1的积分值和比例系数。

第1、2、…、n-1路电流调节器与第n路电压调节器分别独立工作,第1、2、…、n-1路电流调节器用于实现第1、2、…、n-1路输入源的最大功率输出,第n路电压调节器用于实现逆变器输出电压的稳定,n路输入源联合向负载供电。当输入电压或负载变化时,通过调节基准电压ur和基准电流Ii1r、Ii2r、…、Ii(n-1)r,或调节反馈电压uof和反馈电流Ii1f、Ii2f、…、Ii(n-1)f来改变误差电压信号ue和误差电流信号I1e、I2e、…、I(n-1)e,从而改变占空比d1、d2、…、dn,故可实现所述逆变器输出电压、输入电流(输出功率)的调节与稳定。

当将图16-19中的第n路输入源设计为输入电流反馈来控制输入电流,则构成了输入电流瞬时值反馈双极性移相、单极性移相最大功率输出能量管理控制策略。

双极性移相最大功率输出能量管理控制策略可简述为:逆变器第1、2、…、n路的输入电流反馈信号Ii1f、Ii2f、…、Iinf分别与第1、2、…、n路输入源经最大功率点计算后得到的基准电流信号Ii1r、Ii2r、…、Iinr经比例积分调节器比较放大,电流误差放大信号I1e、I2e、…、I(n-1)e与移位后的单极性锯齿形载波-uc+Ucm/2比较,并经适当的组合逻辑电路后得到n输入单输出高频逆变电路功率开关的分时控制信号ugs11、ugs21、…、ugsn1、ugs12、ugs22、…、ugsn2、ugs′11、ugs′21、…、ugs′n1、ugs′12、ugs′22、…、ugs′n2;双极性锯齿形载波uc经上升沿二分频后得到n输入单输出高频逆变电路功率开关的控制信号ugs4及其反相信号ugs3;电流误差放大信号Ine与正弦同步信号的乘积信号ie分别双极性锯齿形载波uc和-uc比较,考虑输出电感电流极性选择信号并经适当的组合逻辑电路后得到周波变换器功率开关的控制信号ugs5(ugs′5)、ugs6(ugs′6)、ugs7(ugs′7)、ugs8(ugs′8)。单极性移相最大功率输出能量管理控制策略可简述为:逆变器第1、2、…、n路的输入电流反馈信号Ii1f、Ii2f、…、Iinf分别与第1、2、…、n路输入源经最大功率点计算后得到的基准电流信号Ii1r、Ii2r、…、Iinr经比例积分调节器比较放大,电流误差放大信号I1e、I2e、…、I(n-1)e分别通过分时脉冲产生电路1、2以及适当的逻辑电路后得到n输入单输出高频逆变电路功率开关的分时控制信号ugs11、ugs21、…、ugsn1、ugs12、ugs22、…、ugsn2;电流误差放大信号Ine与正弦同步信号的乘积信号ie及其反相信号-ie分别与双极性锯齿形载波uc比较,经下降沿二分频和适当的组合逻辑电路后得到n输入单输出高频逆变电路下桥臂功率开关的控制信号ugs3、ugs4;图中ucom表示n输入单输出高频逆变电路上桥臂的共同导通信号,当上桥臂的共同导通信号ucom为高电平时,使上桥臂第1路功率开关S11、S12共同导通(也可设计成其它路功率开关共同导通)和第2、…、n路功率开关S21、…、Sn1、S22、…、Sn2截止,以确保存在续流回路;双极性锯齿形载波uc经下升沿二分频后得到周波变换器功率开关的控制信号ugs5(ugs′5)、ugs6(ugs′6)、ugs7(ugs′7)、ugs8(ugs′8)。在分时脉冲产生电路1、2中,Ie∑、Ie∑m、I*e∑分别为电流误差放大信号I1e、I2e、…、I(n-1)e的和、电流误差放大信号I1e、I2e、…、I(n-1)e的和的最大值及其二者的比值,V1、k(0~1)分别为ugs1的积分值和比例系数。第1、2、…、n路电流调节器分别独立工作,均用于实现各自输入源的最大功率输出,n路输入源联合向负载供电。

图17所示双极性移相控制原理波形标出了高频开关周期TS和某一高频开关周期TS内第1、2、…、n路输入源的导通时间Ton1、Ton2、…、Tonn以及总的导通时间Ton=Ton1+Ton2+…+Tonn,图17、19所示双极性和单极性移相控制的共同导通时间Tcom和移相角θ在一个输出电压周期内是按正弦规律变化的。此外,对于图12、13所示半桥式电路,应将半个输入直流电压值(Ui1/2、Ui2/2、…、Uin/2)代入到电压传输比式子中进行计算。

需要补充说明的是,对于仅存在正向功率流不存在反向功率流的场合,如网侧功率因数为1.0的并网逆变场合,有必要将图5所示的双向功率流内置并联分时选择开关电压型单级多输入高频环节逆变器电路结构简化成图20所示单向功率流电路结构。现对图20所示的单向功率流电路结构,即权利要求3技术方案作进一步说明。根据权利要求1所述的内置并联分时选择开关电压型单级多输入高频环节逆变器,其特征在于:所述的多输入单输出高频逆变电路替换成由多个内置并联分时选择的能承受双向电压应力、单向电流应力两象限功率开关的单向功率流单输入单输出高频逆变电路构成,在任意时刻相当于一个单向功率流单输入单输出高频逆变电路。所述的多输入单输出高频逆变电路是由多个能承受双向电压应力、单向电流应力的两象限功率开关以及一个或多个能承受单向电压应力、双向电流应力的两象限功率开关实现,或仅仅由多个能承受双向电压应力、单向电流应力的两象限功率开关实现,其中能承受双向电压应力、单向电流应力的两象限功率开关是由能承受单向电压应力、双向电流应力的两象限功率开关与一个二极管串联构成。只要将图8、9、10、11、12、13、14、15所示双向功率流内置并联分时选择开关电压型单级多输入高频环节逆变器电路拓扑族实施例的多输入单输出高频逆变电路中的四象限功率开关替换成能承受双向电压应力、单向电流应力的两象限功率开关,即能生成相应的单向功率流电路拓扑族实施例。

为了构成能充分利用多输入源能量的独立供电系统,多个输入源应工作在最大功率输出方式且需要配置储能设备,以实现输出电压的稳定,即在逆变器的输出端并接一个单级隔离双向充放电变换器,如图21所示。所述单级隔离双向充放电变换器由输入滤波器(Li、Ci或Ci)、高频逆变器、高频变压器、周波变换器、输出滤波器(Lf′、Cf′)依序级联构成,所述的周波变换器由能承受双向电压应力和双向电流应力的四象限高频功率开关构成。所述的单级隔离双向充放电变换器在能量正向传递(储能设备放电)、反向传递(储能设备充电)时,分别等效于一个单级高频环节DC-AC变换器和一个单级高频环节AC-DC变换器。

该独立供电系统采用具有单级隔离双向充放电变换器输出电压独立控制环路的最大功率输出能量管理控制策略,如图22所示。当负载功率Po=UoIo大于多个输入源的最大功率之和P1max+P2max+…+Pnmax时,蓄电池、超级电容等储能设备通过单级隔离双向充放电变换器向负载提供所需的不足功率—供电模式Ⅱ,储能设备单独向负载供电--供电模式Ⅲ,属于供电模式Ⅱ的极端情形;当负载功率Po=UoIo小于多个输入源的最大功率之和P1max+P2max+…+Pnmax时,多个输入源输出的剩余能量通过单级隔离双向充放电变换器对储能设备充电--供电模式Ⅰ。以带阻性负载为例,论述单级隔离双向充放电变换器的功率流向控制,如图23所示。对于输出滤波电容Cf、Cf′和负载ZL来说,内置并联分时选择开关电压型单级多输入高频环节逆变器和单级隔离双向充放电变换器的输出端并接相当于两个电流源的并联叠加。由图22所示能量管理控制策略可知,内置并联分时选择开关电压型单级多输入高频环节逆变器的输出滤波电感电流iLf与输出电压uo同频同相,输出有功功率;充放电变换器是通过输出电压uo与基准电压uoref的误差放大信号uoe与高频载波交截生成SPWM信号进行控制,其输出滤波电感电流iLf′与uo之间存在相位差θ,不同的相位差θ意味着输出不同大小和方向的有功功率。当Po=P1max+P2max+…+Pnmax时,θ=90°,充放电变换器输出的有功功率为零,处于空载状态;当Po>P1max+P2max+…+Pnmax时,uo减小,θ<90°,充放电变换器输出有功功率,储能设备对负载放电,即储能设备提供负载所需的不足功率;当Po<P1max+P2max+…+Pnmax时,uo增大,θ>90°,充放电变换器输出负有功功率,负载向储能设备回馈能量,即多个输入源输出的剩余功率对储能设备充电,当θ=180°时负载向储能设备回馈的能量最大。因此,该能量管理控制策略能根据Po与P1max+P2max+…+Pnmax的相对大小实时控制单级隔离双向充放电变换器的功率流大小和方向,实现了系统在三种不同供电模式下的平滑无缝切换。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1