本发明涉及一种多相直流对直流电源转换器,特别是涉及一种用于改善轻负载或无负载时,由脉频调变(pfm)模式进入脉宽调变(pwm)模式时产生的压降的多相直流对直流电源转换器。
背景技术:
现有的电子系统利用多个直流-直流转换器,将主母线电压从电源供电系统转换成驱动这些集成电路所需的一或多个电压。开关稳压器,也称为直流-直流转换器,用于将输入电压源转换成在电子系统中集成电路适合的电压级别上所需的输出电压。
大多数情况下,使用脉宽调变(pwm)开关稳压器为数字核心电路供电。另一方面,在操作的待机模式下,i/o接口电路保持接通。因此,i/o接口电路要求电源可以为正常负载和轻负载传递高效率。为了满足省电的要求,待机模式下,i/o接口电路的电源必须在轻负载环境下具有高效率。大多数情况下,脉频调变(pfm)开关稳压器适用于高效率轻负载操作。
其中,在轻负载环境下,当电路要从pfm模式进入pwm模式,一般会将过零点侦测电路关闭,并使下桥电路导通进入pwm模式。然而,这会造成输出电压产生压降,并且压降幅度会视回路反应速度而决定。
故,如何通过电路设计的改良,来改善轻负载或无负载时产生的压降,来克服上述的缺陷,已成为所述项事业所欲解决的重要课题之一。
技术实现要素:
本发明所要解决的技术问题在于,针对现有技术的不足提供一种用于改善轻负载或无负载时产生的压降的多相直流对直流电源转换器。
为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种多相直流对直流电源转换器,所述多相直流对直流电源转换器包括:一误差放大器,接收一参考电压及来自一输出电压节点的一回馈电压,并将所述回馈电压与所述参考电压的一差值信号放大,以输出一误差信号;一比较器,接收并比较所述误差信号及一锯齿波信号,以产生一比较输出信号;一相位选择电路,经配置以将所述比较输出信号拆分为多个相位信号;多个相电路,各与所述多相直流对直流电源转换器的一相位相关联,各包括:一导通时钟产生电路,响应于多个所述相位信号的其中之一以产生一导通时钟信号;一第一开关晶体管,响应于开关信号且连接于一输入电压节点及一相位节点之间;一第二开关晶体管,响应于开关信号且连接于所述相位节点及一接地节点之间;一输出电感,连接于所述输出电压节点及所述相位节点之间;一过零点侦测电路,用于响应于一pfm开启信号,以侦测所述相位节点是否通过电压零点,以产生一过零点侦测信号;及一控制逻辑,响应于所述导通时钟信号及所述过零点侦测信号,以产生多个所述开关信号;一pfm/pwm逻辑控制电路,响应于一pfm控制信号及与多个所述开关信号相关联的一控制信号,以分别输出至少一第一pfm控制信号及至少一第二pfm控制信号至多个所述相电路中的至少一第一相电路及至少一第二相电路,其中在一轻负载或一无负载状态下,所述pfm/pwm逻辑控制电路进入一第一阶段、一第二阶段及一第三阶段,在所述第一阶段中,所述至少一第一相电路在pfm模式下运作,且所述至少一第二相电路交错在pfm模式及pwm模式下运作,其中在所述第二阶段中,所述至少一第一相电路在pfm模式下运作,且所述至少一第二相电路在pwm模式下运作,其中在所述第三阶段中,所述至少一第一相电路在pwm模式下运作,且所述至少一第二相电路在pwm模式下运作。
优选地,其中所述第一阶段开始后经过一第一预定时间后,进入所述第二阶段,且所述第一预定时间由所述至少一第一相电路及所述至少一第二相电路的电感电流决定。
优选地,其中所述第一阶段开始后经过一第二预定时间后,进入所述第三阶段,且所述第二预定时间由所述输出节点的电压决定。
优选地,其中所述pfm/pwm逻辑控制电路包括:一延迟电路,响应于所述pfm控制信号,所述延迟电路将所述pfm控制信号进行延迟所述第一预定时间以产生所述至少一第一pfm控制信号;以及一计数器电路,响应于所述pfm控制信号及与多个所述开关信号相关联的所述控制信号,所述计数器电路产生所述至少一第二pfm控制信号。
优选地,其中所述计数器电路包括多个d型正反器、一sr闩锁及一与门。
优选地,其中多个所述d型正反器的数量用于决定所述第二预定时间。
优选地,其中与多个所述开关信号相关联的所述控制信号包括所述比较输出信号、所述误差信号、所述第一相位信号及所述第二相位信号的至少其中之一。
优选地,其中在所述第一阶段中,所述至少一第二相电路先进入pwm模式,再进入pfm模式。
本发明采用的另一技术方案在于,提供一种多相直流对直流电源转换器的驱动方法,其特征在于,所述多相直流对直流电源转换器的驱动方法包括:配置一误差放大器接收一参考电压及来自一输出电压节点的一回馈电压,并将所述回馈电压与所述参考电压的一差值信号放大,以输出一误差信号;配置一比较器接收并比较所述误差信号及一锯齿波信号,以产生一比较输出信号;配置一相位选择电路,经配置以将所述比较输出信号拆分为多个相位信号;配置多个相电路,各与所述多相直流对直流电源转换器的一相位相关联,其中多个所述相电路各包括:一导通时钟产生电路,响应于多个所述相位信号的其中之一以产生一导通时钟信号;一第一开关晶体管,响应于开关信号且连接于一输入电压节点及一相位节点之间;一第二开关晶体管,响应于开关信号且连接于所述相位节点及一接地节点之间;一输出电感,连接于所述输出电压节点及所述相位节点之间;一过零点侦测电路,用于响应于一pfm开启信号,以侦测所述相位节点是否通过电压零点,以产生一过零点侦测信号;及一控制逻辑,响应于所述导通时钟信号及所述过零点侦测信号,以产生多个所述开关信号;配置一pfm/pwm逻辑控制电路,响应于一pfm控制信号及与多个所述开关信号相关联的一控制信号,以分别输出至少一第一pfm控制信号及至少一第二pfm控制信号至多个所述相电路中的至少一第一相电路及至少一第二相电路;以及在一轻负载或一无负载状态下,配置所述pfm/pwm逻辑控制电路以进入一第一阶段、一第二阶段及一第三阶段,其中,在所述第一阶段中,所述至少一第一相电路在pfm模式下运作,且所述至少一第二相电路交错在pfm模式及pwm模式下运作,其中在所述第二阶段中,所述至少一第一相电路在pfm模式下运作,且所述至少一第二相电路在pwm模式下运作,其中在所述第三阶段中,所述至少一第一相电路在pwm模式下运作,且所述至少一第二相电路在pwm模式下运作。
本发明的其中一有益效果在于,本发明所提供的多相直流对直流电源转换器及其驱动方法,其能通过三阶段调控相电路切换pwm模式/pfm模式的时间点,来大幅改善轻负载或无负载时产生的压降。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。
附图说明
图1为本发明实施例的多相直流对直流电源转换器的电路图。
图2为本发明实施例的pfm/pwm逻辑控制电路运作在第一阶段的信号时序图。
图3为本发明实施例的pfm/pwm逻辑控制电路运作在第一阶段至第三阶段的信号时序图。
图4为本发明实施例的pfm/pwm逻辑控制电路的电路图。
图5为本发明实施例的计数器电路的电路图。
图6为本发明实施例的多相直流对直流电源转换器的驱动方法的流程图。
具体实施方式
以下是通过特定的具体实例。以下是通过特定的具体实施例来说明本发明所公开有关“多相直流对直流电源转换器及其驱动方法”的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。
应当可以理解的是,虽然本文中可能会使用到“第一”、“第二”、“第三”等术语来描述各种组件或者信号,但这些组件或者信号不应受这些术语的限制。这些术语主要是用以区分一组件与另一组件,或者一信号与另一信号。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。
参阅图1所示,其为本发明实施例的多相直流对直流电源转换器的电路图。本发明一实施例提供一种多相直流对直流电源转换器1,其包括误差放大器ea、比较器cmp、相位选择电路ps、多个相电路及pfm/pwm逻辑控制电路pfmlc。
误差放大器ea,接收参考电压vref及来自输出电压节点no的回馈电压,即输出电压vout,并将输出电压vout与参考电压vref之差值信号放大,以输出误差信号ea0。
比较器cmp,接收并将误差信号ea0与锯齿波信号slope进行比较,以产生比较输出信号cpout。举例而言,当误差信号ea0的电位大于锯齿波信号slope时,输出高电位,例如1,当误差信号ea0的电位小于锯齿波信号slope时,输出低电位,例如0,如此将可产生一时钟信号,可作为pwm控制信号。
相位选择电路ps,经配置以将比较输出信号cpout拆分为多个相位信号,例如第一相位信号cp1及第二相位信号cp2。在多相电源转换器中,由于各相互相交错,可减少输入及输出纹波电流,还能够减少印刷电路板或特定组件上的热点。实际上,多相电源转换器可让开关晶体管及电感的电流功耗降低了一半,且相交错还可以降低传导损耗。
多个相电路,例如第一相电路10及第二相电路11,各与多相直流对直流电源转换器1的一个相位相关联。以本实施例,多相直流对直流电源转换器1为二相直流电源转换器,因此具有两个相电路。其中,第一相电路100包括导通时钟产生电路otg1、第一开关晶体管t11、第二开关晶体管t12、输出电感l1、过零点侦测电路zcd1及控制逻辑lc1。
导通时钟产生电路otg1响应于第一相位信号cp1,对应产生导通时钟信号ton1。第一开关晶体管t11连接于输入电压节点ni及相位节点lx1之间,响应于来自控制逻辑lc1的开关信号来决定其导通状态。第二开关晶体管t12连接于相位节点lx1及接地节点pgnd之间,同样响应于来自控制逻辑lc1的开关信号来决定其导通状态。输出电感l1连接于输出电压节点no及相位节点lx1之间。
过零点侦测电路zcd1,用于响应于pfm开启信号pfmen,以侦测相位节点lx1的电流是否通过电流零点,以产生过零点侦测信号zc1。详细而言,过零电侦测电路zcd1监测相位节点lx1的电压,并将其与接地节点pgnd的电压相比较,以确认是否通过电流零点,所产生的过零点侦测信号zc1将可用于使相电路进入pfm模式。
控制逻辑lc1,响应于导通时钟信号ton1及过零点侦测信号zc1,以产生多个所述开关信号决定第一开关晶体管t11及第二开关晶体管t12的导通状态。换言之,第一开关晶体管t11及第二开关晶体管t12串联在输入电压vin和地电压之间。第一开关晶体管t11及第二开关晶体管t12可选择接通和断开,以便在相位节点lx1处产生开关输出电压。开关输出电压直接耦合到lc滤波电路上,lc滤波电路含有一个输出电感l1及输出电容cout,在输出电压节点no处产生输出电压vout,具有基本恒定的幅值。然后,可以利用输出电压vout驱动负载。
另一方面,第二相电路11包括导通时钟产生电路otg2、第一开关晶体管t21、第二开关晶体管t22、输出电感l2、过零点侦测电路zcd2及控制逻辑lc2。其配置基本上与第一相电路10的各组件类似,故省略重复描述。其中,导通时钟产生电路otg2响应于第二相位信号cp2,对应产生导通时钟信号ton2。第一开关晶体管t21连接于输入电压节点ni2及相位节点lx2之间,第二开关晶体管t22连接于相位节点lx2及接地节点pgnd之间,第一开关晶体管t21及第二开关晶体管t22接收来自控制逻辑电路lc2的多个开关信号来决定导通状态。
类似的,输出电感l2连接于输出电压节点no及相位节点lx2之间,而过零点侦测电路zcd2,用于响应于pfm开启信号pfmen,以侦测相位节点lx2的电流是否通过电流零点,以产生过零点侦测信号zc2。详细而言,过零电侦测电路zcd2监测相位节点lx2的电压,并将其与接地节点pgnd的电压相比较,以确认是否通过电流零点,所产生的过零点侦测信号zc2将可用于使相电路进入pfm模式。
多相直流对直流电源转换器1还包括pfm/pwm逻辑控制电路pfmlc,其响应于pfm控制信号pfmen及与多个所述开关信号相关联的控制信号,例如,比较输出信号cpout,以分别输出第一pfm控制信号pfmen1及第二pfm控制信号pfmen2至第一相电路10及第二相电路11。举例来说,可将多个相电路划分为多个第一相电路10及多个第二相电路11,并分别通过多个第一pfm控制信号pfmen1及多个第二pfm控制信号pfmen2来控制其操作在pfm模式或pwm模式。更进一步,任何带有比较输出信号cpout信息的信号,均可作为触发信号,例如第一pfm控制信号pfmen1及第二pfm控制信号pfmen2,而并非限于上述实施方式。
其中,在轻载或无载状态下,例如输出电压节点no并未连接于负载,或连接于小负载的情况下,pfm/pwm逻辑控制电路pfmlc具有三阶段控制。详细而言,请参考图2及图3,其分别为根据本发明实施例的pfm/pwm逻辑控制电路运作在第一阶段的信号时序图及pfm/pwm逻辑控制电路运作在第一阶段至第三阶段的信号时序图。如图所示,pfm/pwm逻辑控制电路将进入第一阶段t1、第二阶段t2及第三阶段t3。
在第一阶段t1中,第一相电路10在pfm模式下运作,且第二相电路11交错在pfm模式及pwm模式下运作。在第二阶段t2中,第一相电路10在pfm模式下运作,且第二相电路11在pwm模式下运作。在第三阶段t3中,第一相电路10在pwm模式下运作,且第二相电路11在pwm模式下运作。
当输出电压节点no并未连接于负载时,首先进入第一阶段t1,pfm开启信号pfmen以低电位输入pfm/pwm逻辑控制电路pfmlc,pfm/pwm逻辑控制电路pfmlc产生高电位的第一pfm控制信号pfmen1,并利用比较输出信号cpout产生高低电位交错的第二pfm控制信号pfmen2,换言之,当比较输出信号cpout出现第一支高电位信号时,第一相电路10此时进入pfm模式,而低电位的第二pfm控制信号pfmen2使第二相电路11先进入pwm模式,第二相电路11开始漏电,直到比较输出信号cpout出现第二支高电位信号时,响应比较输出信号cpout,产生高电位的第二pfm控制信号pfmen2强制启动过零点侦测电路zcd2进行过零点侦测,使第二相电路11进入pfm模式,使电感电流il2归零。
因此,交错进出pwm模式及pfm模式的第二相电路11使电感电流il2维持在较小的负电感电流。此时,第一相电路10进入pfm模式,使得输出电压vout产生压降,然而,由于第二相电路11进出pwm模式及pfm模式,将电感电流il2维持在较小的负电感电流可有效抑制输出电压vout的降幅。如图3所示,通过采用本发明的多相直流对直流电源转换器,其输出电压vout相较于现有多相直流对直流电源转换器的输出电压vout’,于相同电路条件下,无载时的从pfm模式进入pwm模式,其降幅约差了|1.1312-1.7022|=0.571v,明确可有效抑制输出电压vout的降幅。
在第一阶段t1开始后经过第一预定时间后,电感电流il1及il2将会稳定,进入第二阶段t2,pfm/pwm逻辑控制电路pfmlc产生低电位的第二pfm控制信号pfmen2,使第二相电路11进入pwm模式,而第一相电路10维持在pfm模式,此时输出电压vout会由先前的压降逐渐回稳,在第一阶段t1开始后经过第二预定时间后,进入第三阶段t3。
在第三阶段t3中,pfm/pwm逻辑控制电路pfmlc产生低电位的第一pfm控制信号pfmen1,使第一相电路10进入pwm模式,此时电感电流il1及il2会再次汇整,使输出电压vout再次产生压降,但此降幅将低于前次压降产生的降幅。在此阶段下,第一相电路10及第二相电路11均进入pwm模式,此时输出电压vout亦会由先前的压降逐渐回稳。
请参考图4,其为本发明实施例的pfm/pwm逻辑控制电路的电路图。如图所示,为了达成上述控制机制,pfm/pwm逻辑控制电路pfmlc包括延迟电路dl及计数器电路ct。延迟电路dl响应于pfm控制信号pfmen,将pfm控制信号pfmen以前述的第二预定时间进行延迟,以产生第一pfm控制信号pfmen1,如前所述,第一pfm控制信号pfmen1于第一阶段t1及第二阶段t2均为高电位,直到第一阶段t1开始后经过第二预定时间则进入第三阶段t3,第一pfm控制信号pfmen1转为低电位。此第二预定时间需要通过对电路运作进行仿真,判断输出电压vout回复稳定的时间点,藉此设计此第二预定时间。
另一方面,pfm/pwm逻辑控制电路pfmlc还包括计数器电路ct,其响应于pfm控制信号pfmen及与开关信号相关联的控制信号,来产生第二pfm控制信号pfmen2。其中,与多个所述开关信号相关联的控制信号可包括比较输出信号cpout、所述误差信号ea0、第一相位信号cp1及第二相位信号cp2的至少其中之一。以本实施例而言,采用比较输出信号cpout做为控制信号。此处,如前所述,在第一阶段t1中,第二pfm控制信号pfmen2需要产生高低电位交错信号,使第二相电路11交错在pwm模式及pfm模式切换,而进入第二阶段t2后,则转换为低电位使第二相电路11维持在pwm模式。
其中,此第二预定时间需要通过对电路运作进行仿真,判断第一相电路10及第二相电路11的电感电流il1及il2回复稳定的时间点,藉此设计此第一预定时间,并且,第二预定时间须大于第一预定时间。因此,以下提供用于产生第二pfm控制信号pfmen2的一示例。
请参考图5所示,其为本发明实施例的计数器电路的电路图。如图所示,计数器电路ct可包括多个d型正反器dff1、dff2、…、dffn、sr闩锁sr及与门andg。其中,d型正反器dff1、dff2、…、dffn的数量可用于决定第二预定时间,其中,d型正反器dff1的时钟端clk接收比较输出信号cpout,重置端r接收pfm控制信号pfmen,第一输出端q产生输出信号q1,输入端d与第二输出端qb耦接,并向d型正反器dff2的时钟端clk输出反相信号q1b。类似的,多个d型正反器dff2、…、dffn亦于第一输出端q产生输出信号q2、q3、…、qn,且于第二输出端qb产生反相信号q2b、q3b、…、qnb。
此处,依据所选择的第一预定时间,可选择输出信号q1、q2、…、qn的其中之一输入sr闩锁sr的设定端s,并将pfm控制信号pfmen输入sr闩锁sr的重置端r,并分别于其第一输出端q及第二输出端qb输出第一闩锁信号qn_latch及第二闩锁信号qbn_latch。由于pfm控制信号pfmen均为低电位,当所选择的输出信号,例如输出信号qn为高电位时,第二闩锁信号qbn_latch将为低电位,当输出信号qn为低电位时,回授会让第二闩锁信号qbn_latch维持在低电位。
另外,计数器电路ct还包括与门andg,其分别接收第二闩锁信号qbn_latch及反相信号q1b,并对应产生第二pfm控制信号pfmen2。
请参阅图6所示,本发明另一实施例提供一种多相直流对直流电源转换器的驱动方法。在本实施例中,驱动方法适用于图1至图5所示的实施例,但不限于此。多相直流对直流电源转换器的驱动方法至少包括下列几个步骤:
步骤s100:配置误差放大器接收参考电压及来自输出电压节点的回馈电压,并将回馈电压与参考电压之差值信号放大,以输出误差信号。
步骤s101:配置比较器接收并比较误差信号及锯齿波信号,以产生比较输出信号;
步骤s102:配置相位选择电路,以将比较输出信号拆分为多个相位信号;
步骤s103:配置多个相电路,各与所述多相直流对直流电源转换器的一相位相关联,其中,多个所述相电路各包括导通时钟产生电路、第一开关晶体管、第二开关晶体管、输出电感、过零点侦测电路及控制逻辑。上述组件均已在上文的实施例中描述,故省略重复叙述。
步骤s104:配置一pfm/pwm逻辑控制电路,响应于一pfm控制信号及与多个所述开关信号相关联的一控制信号,以分别输出至少一第一pfm控制信号及至少一第二pfm控制信号至多个所述相电路中的至少一第一相电路及至少一第二相电路;以及
步骤s105:在轻负载或无负载状态下,配置所述pfm/pwm逻辑控制电路以进入第一阶段、第二阶段及第三阶段。
其中,在第一阶段中,第一相电路在pfm模式下运作,且第二相电路交错在pfm模式及pwm模式下运作,在第二阶段中,第一相电路在pfm模式下运作,且第二相电路在pwm模式下运作,在第三阶段中,第一相电路在pwm模式下运作,且第二相电路在pwm模式下运作。
本发明的其中一有益效果在于,本发明所提供的多相直流对直流电源转换器及其驱动方法,其能通过三阶段调控相电路切换pwm模式/pfm模式的时间点,来大幅改善轻负载或无负载时产生的压降。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求书的保护范围,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求书的保护范围内。