隔离系统和基底加工设备的制作方法

文档序号:19217068发布日期:2019-11-26 01:47阅读:179来源:国知局
隔离系统和基底加工设备的制作方法

描述了涉及隔离系统和使用其的基底加工设备的示例。



背景技术:

当前,基于光电耦件的信号隔离已经广泛地用于诸如工业设备或医疗设备的需要电隔离的系统。然而,由于诸如低数据速率、占空率恶化等问题,在系统中使用光电耦件来处理近期的高速操作已经变得困难。因此,前述的方法已经被使用能够解决这些问题的数字隔离器的隔离方法取代。

例如,ads板被用于以50毫秒的周期控制与电抗器有关的aio、dio。在ads板中,光电耦件被用作do的隔离元件。当光电耦件被用作为了进一步的高速驱动的目的而开发的快速ads的隔离元件时,不能获得50%的占空率。因此,能够采用数字隔离器,其甚至在高速驱动下也能够实现50%的占空率。数字隔离器的输出侧可能在供电不稳定状态等,在通电时刻、断电时刻等落入不定态。这样的不定态可能损害可靠性或安全性。



技术实现要素:

本文描述的一些示例可以解决上述问题。本文描述的一些示例可以提供隔离系统和能够增强可靠性的基底加工设备。

在一些示例中,隔离系统包括:数字隔离器,其用于在其输入侧接收第一电源的供给,并且在其输出侧接收第二电源的供给;以及输出调节单元,其用于接收第二电源的供给,当第二电源的电压大于预定电压时直接输出数字隔离器的输出,并且当第二电源的电压小于或等于预定电压时停止与数字隔离器的输出无关的数据输出。

附图说明

图1为示出隔离系统的示例的简图;

图2为示出数字隔离器的真值表的示例的简图;

图3为示出输出单元的真值表的示例的简图;

图4为示出隔离系统的配置的示例的简图;

图5为示出操作的示例的时间图;

图6a为示出操作的示例的时间图;

图6b为示出操作的示例的时间图;

图7a为示出操作的示例的时间图;

图7b为示出操作的示例的时间图;

图8为示出操作的示例的时间图;

图9为示出控制器的示例的简图;

图10为示出恒定电流电路的配置的示例的简图;

图11为示出通电时刻的电压波形的简图;以及

图12为示出基底加工设备的示例的简图。

具体实施方式

将参照附图描述根据实施例的隔离系统和基底加工设备。相同或对应的组成元件由相同的附图标记表示,并且可以省略其重复的描述。

图1为示出隔离系统的示例的简图。隔离系统10包括具有数字隔离器的隔离单元11、输出单元14以及控制器12。将在下文中描述这些单元的各自的配置。

(1)隔离单元11

在隔离单元11中,例如,数字隔离器被用作输入与输出之间的隔离元件。隔离单元11的相对于隔离单元11的中心处的虚线的左右侧彼此电隔离,但在左右侧之间能够执行数据通信。在使用光电耦件的传统系统中,数据速率可以被限制为大约10mbps,并且由于高速操作占空率可以恶化至大约20%。另一方面,数字隔离器能够实现例如100mbps或更多的高数据速率,以及例如大约50%的出色的占空率。例如,数字隔离器能够由一个或多个ic配置。

该数字隔离器在其输入侧接收第一电源vdd1的供给,并且还在其输出侧接收第二电源vdd2的供给。数字隔离器的输入侧的接地终端gnd1和数字隔离器的输出侧的接地终端gnd2彼此不同。图2为示出数字隔离器的真值表的示例的简图。当正常地执行由第一电源vdd1和第二电源vdd2的供电时,l级别为作为用于l级别的输入vin的输出vo_tmp的输出,并且h级别为作为用于h级别的输入vin的输出vo_tmp的输出。

数字隔离器例如具有众所周知的故障保护输出作用,使得甚至当第一电源vdd1被切断时也解决输出vo_tmp。当没有由第一电源vdd1执行供电,但由第二电源vdd2正常执行供电时,在该示例中,输出vo_tmp被固定至l级别,但可以固定至h级别。另一方面,当第二电源vdd2被切断时,输出vo_tmp落入不定态。当使用输出vo_tmp同时离开不定态时,下一状态连接系统可能无意地故障,使得可靠性和安全性被损害。

(2)输出单元14

如图1所示,输出单元14具有输入终端14a、控制终端14b以及输出终端14c。输入终端14a连接至数字隔离器的输出。因此,输出单元14的输入信号为来自隔离单元11的输出信号。控制终端14b连接至控制器12。控制终端14b从控制器12接收用于判定是否允许从输入终端14a向输出终端14c的信号通过的信号。即,控制终端14b用作输出单元14的授权终端enb。

图3为示出输出单元14的真值表的示例的简图。当控制终端14b的信号级别为l时,输出vo_tmp被直接输出为输出vout。另一方面,当控制终端14b的信号级别为h时,不允许从输出vo_tmp向输出vout的信号通道,并且输出vout被设定为电隔离或高阻抗的状态。因此,可以说该输出单元14为具有能够实现或不能实现信号通道的授权终端的输出单元。

(3)控制器12

控制器12可以采用用于在输出单元14的控制终端14b中反映第二电源vdd2的电压状态的各种配置。根据第二电源vdd2的电压是否正常或异常而改变控制终端14b的信号级别,凭此能够判定是否能够实现或不能实现输出单元14中的信号通道。

作为隔离系统的输出的输出单元14的输出vout总是由输出单元14和上述的控制器12解决,甚至当隔离单元11的输出vo_tmp处于不定态时,这防止了故障并且加强了可靠性和安全性。

在图1的隔离系统10中,控制器12和输出单元14组成了输出调节单元16。输出调节单元16接收第二电源vdd2的供给。当第二电源vdd2的电压大于预定电压时,输出调节单元直接输出数字隔离器的输出,但当第二电源vdd2的电压小于或等于预定电压时,停止与数字隔离器的输出无关的数据输出。通过不同于包括图1的控制器12和输出单元14的配置的各种电路配置能够实现上述的操作。例如,可以采用用于执行存储在存储器中的程序的专用的硬件或cpu(也被称作中央处理单元、中央处理器、处理装置、计算装置、微处理器、微机、处理器、dsp等)。

图4为示出隔离系统10的配置的示例的简图。在该示例中,输出单元14为三态缓冲器。三态缓冲器电路为能够将高/低级别状态或高阻抗(hi-z)状态二者作为输出状态的电路。控制器12包括串联至第二电源vdd2和接地终端gnd2的第一电阻r1和第二电阻r2。而且,设置有切换元件q1,其具有连接至第一电阻r1与第二电阻r2之间的中点的栅极。第二电源vdd2与第一电阻r1之间的中点和切换元件q1的漏极通过第三电阻r3彼此连接。切换元件q1的源极与接地终端gnd2连接。

根据第二电源vdd2的状态,图4所示的控制器12切换控制终端14b与第二电源vdd2或接地终端gnd2的连接。即,控制终端14b被设定为h级别状态或l级别状态。图4所示的控制器12配置为,使得当第二电源vdd2的电压变得大于预定电压时打开切换元件q1以将接地终端gnd2连接至控制终端14b,而当第二电源vdd2的电压变得小于或等于预定数值时关闭切换元件q1以将控制元件14b经由电阻连接至第二电源vdd2。更具体地,当第二电源vdd2确实被供电时,切换元件q1在电压vtr被第一和第二电阻r1和r2分割的情况下被打开,并且输出连接至接地终端gnd2。另一方面,当第二电源vdd2处于未供电状态、电源接通的瞬态或断开的瞬态并且因此电压没有被正常供给时,控制器12的输出经由第三电阻r3连接至第二电源vdd2。

接下来,将描述图4所示的隔离系统10的操作。

(a)正常操作

图5为示出正常操作的示例的时间图。当第一电源vdd1和第二电源vdd2二者被正常供电时,以高数据速率和出色的占空率从输入vin向输出vout传递信号。此时,打开切换元件q1,并且控制终端14b连接至接地终端gnd2。

(b)当第一电源vdd1不确定时

图6a为示出第一电源vdd1在通电时不确定时的操作的示例的时间图。第一电源vdd1在从图6a中的左端直到时刻t1的时期期间未通电。输出vout被数字隔离器的故障保护输出作用固定。在该示例中,输出vout被固定至l级别。

从图6a中的时刻t1至t2的时期为过渡时期,在所述过渡时期期间第一电源vdd1从l级别过渡至h级别。在该时期的初始时刻,输出vout被与未通电时期相同的故障保护输出作用固定至l级别。当时刻t_vdd到来时,第一电源vdd1的电压到达数字隔离器的操作电压,并且操作被切换至正常操作。此时,输入vin的状态被从输出vout输出。

从图6a中的时刻t2至右端的时期为如下的时期:在所述时期期间第一电源vdd1正常供电。在该期间,输入vin的信号从输出vout输出。已经参照图6a描述了第一电源vdd1的通电时的操作。图6b为示出第一电源vdd1切断时刻的操作的时间图。切断时刻的操作对应于通过反向进行通电时刻的操作而获得的操作。即,当时间已经经过时刻t1并且到达时刻t_vdd时,第一电源vdd1的电压降低至数字隔离器的操作电压,并且在该时刻,输出vout被故障保护输出作用固定至l级别。

(c)当第二电源vdd2不确定时

图7a为示出第二电源vd2在通电时刻不确定时的操作的示例的时间图。在从图7a中的左端至时刻t1的时期期间,第二电源vdd2未通电。在该时期,数字隔离器的输出vo_tmp已经落入图2的真值表所示的不定态。在该情况下,在图4的控制器中,从第二电源vdd2划分的vtr也未通电,使得关闭切换元件q1。结果,控制终端14b经由第三电阻r3连接至第二电源vdd2,并且同样未通电。因此,控制终端14b被设定为h级别,并且输出vout被设定为电隔离或者高阻抗状态。在隔离或高阻抗状态下,输出vout不高也不低,并且如果在输出终端内部与输出电路分离则设定为基本相同的状态。

从图7a中的时刻t1至时刻t2的时期为过渡时期,在所述过渡时期期间第二电源vdd2从l级别过渡至h级别。在该时期的初始时刻,即,从时刻t1直到第二电源vdd2的电压已经达到数字隔离器的操作电压所处的时刻t_vdd,第二电源vdd2的电压增加,但像在未通电状态的情况那样,输出vo_tmp的不定态继续。在控制器12中,vtr根据第二电源vdd2的增加而增加,但是小于切换元件q1的阈值,使得切换元件q1维持关闭状态。因此,输出vout维持电隔离或高阻抗状态。

当时刻已经到达时刻t_vdd并且第二电源vdd2的电压变得大于数字隔离器的操作电压时,输入vin的状态为来自输出vo_tmp的输出。当输入vin处于h级别时,输出vo_tmp像第二电源vdd2的电压的情况那样增加。然而,通过将切换元件q1切换状态所处的阈值设定为大于数字隔离器的操作电压,切换元件q1在时刻已经到达时刻t_vdd之后保持关闭状态一段时间。因此,输出vout在时刻已经达到时刻t_vdd之后维持电隔离或高阻抗一定的时期。

之后,当时刻t_tr已经到来时,vtr变得大于切换元件q1的阈值,并且切换元件q1打开。结果,控制终端14b连接至接地终端gnd2,并且输出vo_tmp的状态为向输出vout的输出。即,输入vin被输出至输出vout。之后,当时刻t2已经到来时,第二电源vdd2的电压已经到达h级别。在时刻t2之后的时期期间,信号被从输入vin传递至输出vout。

如上所述,vout的隔离或高阻抗状态在时刻已经到达时刻t_vdd之后没有立即解除,并且输出vo_tmp的不定态已经被解除,但切换元件q1在从时刻t_vdd已经经过一定时期之后打开,并且时刻t_tr已经到来。通过如上所述地进行,甚至当输出vo_tmp的不定态由于操作的波动而延长一点时,也能够防止vout的隔离或高阻抗状态在输出vo_tmp的不定态下被解除。

已经参照图7a描述了第二电源vdd2打开的时刻的操作。图7b为示出第二电源vdd2关闭时的操作的时间表。关闭时的操作对应于通过反向进行通电时刻的操作而获得的操作。即,当时刻已经经过时刻t1和到达的时刻t_tr时,输出vout被设定为电隔离或高阻抗状态。之后,当时刻已经到达时刻t_vdd并且第二电源vdd2的电压已经减小至数字隔离器的操作电压时,输出vo_tmp落入不定态。

根据在前面的(a)至(c)中描述的操作,隔离系统10的输出vout已经不再被设定为不定态,并且其状态总是被解决,并且尤其是,隔离系统10落入隔离状态而没有输出,除非第二电源vdd2基本上被确实供电。因此,能够防止故障,并且能够增强可靠性和安全性。而且,不但在通电时刻和断电时刻,而且当诸如瞬时压降等的其他异常在第二电源vdd2中发生时,期望它们能够处理。

图8为示出在第二电源vdd2中发生瞬时的压降时的操作的示例的简图。vo_tmp从时刻t_vdd直到下一个时刻t_vdd落入不定态,但是可以通过在时期开始之前和在时期结束之后将输出vout设定为隔离或高阻抗状态而增强隔离系统的可靠性。

图9为示出控制器12的电路的另一个示例的简图。图9的控制器12防止颤振以使操作稳定。该控制器12具有连接至第二电源vdd2的恒流电路20。恒流电路20的输出作为vref输入至比较器22的正向输入。vtr被施加至比较器22的正向输入。比较器22的输出连接至切换元件q1的栅极。图10为示出图9的恒流电路20的配置的示例的简图。如图10所示,可以通过使用运算放大器来配置恒流电路20。

vtr和vref可以由以下的表达式给出。

vtr=vdd2×r2/(r1+r2)

vref=iref×r4

在第二电源vdd2的通电时刻,当满足vtr>vref+vhys时,比较器22的输出voc被设定为h级别,并且打开切换元件q1。结果,输出单元14从输出vout输出输出vo_temp。

另一方面,在第二电源vdd2的切断时刻,当满足vtr<vref-vhys时,比较器22的输出voc被设定为l级别,并且关闭切换元件q1。结果,输出vout被设定为隔离或高阻抗状态。

图11为示出通电时刻的电压波形的简图。当第二电源vdd2的电压增加时,vref的增加停止,并且汇聚于某个数值。然而,vtr继续增加。当vtr达到由vref+vhys代表的阈值vth1时,比较器22打开切换元件q1。另一方面,当第二电源vdd2的电压减小时,vref的减小停止,并且汇聚于某个数值。然而,vtr继续减小。当vtr达到由vref-vhys代表的阈值vth2时,比较器22关闭切换元件q1。

因此,当第二电源vdd2的电压变得大于预定的第一阈值时图9和图10的控制器12将控制终端14b接地,并且当第二电源vdd2的电压变得小于比第一阈值小的第二阈值时经由电阻将控制终端14b连接至第二电源vdd2。通过在通电时刻和切断时刻分别使用不同的阈值来控制切换元件q1,这防止了颤振以例如当第二电源vdd2波动等时使操作稳定。

图12为示出基底加工设备的示例的简图。基底加工设备包括模块控制器40、io板41以及装置46。模块控制器40例如为转移模块控制器(tmc)或者加工模块控制器(pmc)。io板41从模块控制器40接收指令并且控制装置46。通过经由隔离系统10将cpu42和do(数字输出,digitaloutput)电路44连接而配置io板41。隔离系统10为具有上述任何配置的隔离系统。在cpu42和数字隔离器的初级侧使用第一电源vdd1和接地终端gnd1,而在do电路44和数字隔离器的二级侧使用第二电源vdd2和接地终端gnd2。

装置46对应于基于来自io板41的指令而操作的各种装置。例如,装置46为用于向基底供给气体的供气装置。在该情况下,基于来自io板41的指令来控制供气装置的开/闭。

装置46例如可以是用于使基底经受等离子加工的射频发生器。在该情况下,基于来自io板41的指令来控制射频发生器的开/闭。用于基底加工等的其他装置可以被用作装置46。通过上述的隔离系统10能够实现不具有不定态的高度可靠的控制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1