本公开涉及功率转换器,更确切地说,涉及提高效率同时维持或缩减功率转换器中的总谐波失真。
功率转换器包含例如太阳能逆变器、用于电动车辆(ev)的充电系统、用于风力涡轮机中的转换器、用于电子装置的电源等的物品。通常,其用于将直流(dc)电力转换为交流(ac)电力,或将ac电力转换为dc。在许多类型的功率转换器中,例如使用脉宽调制的功率转换器,需要相对快速(通常2到20khz)调制频率以便将总谐波失真(thd)保持在规定的界限内。这些快速的切换速度导致晶体管中的显著切换损耗,进而会影响总体转换效率。这些损耗引起晶体管中的热量产生,这通常会导致缩减电子装置的使用期限的热循环。
一种现有技术方法通过控制脉宽调制(pwm)序列的触发角度改进来自单个转换器的总谐波失真,如美国专利公开案第2013/0033907号中所论述。在太阳能状况中还可使来自多个逆变器的触发角度交错,以使用最小有源/无源滤波器生成低谐波电流,如美国专利公开案第2009/0283129号中所论述。另一方法使用电网运营商的有功电流注入来缩减谐波,如美国专利第5,345,375号中所公开。
然而,期望具有较高转换效率及较长电子装置使用期限的其它方法。
根据此处所说明的方面,存在一种控制电源系统中的多个功率转换器的方法,其包含:使用主控制器控制接收输入的所述多个功率转换器的切换时间,使得所述多个功率转换器中的至少一个与所述多个功率转换器中的至少一个其它功率转换器在不同时间进行切换以在耦合点处提供输出的求和;和调整从所述主控制器到每一功率转换器的控制信号以将所述输出的所述求和控制为所要输出。
根据此处所说明的方面,存在一种控制电源系统中的多个功率转换器的方法,其包含:确定基频;将操作频率指配给所述功率转换器,其中对于所述功率转换器中的每一个,所述操作频率是所述基频的倍数;以所指配的频率操作所述多个功率转换器;和对所述功率转换器的个别输出进行求和以产生输出。
根据此处所说明的方面,存在一种调谐一组功率转换器的方法,其包含将切换时间指配给所述功率转换器中的每一个,使得所述功率转换器中的至少一个与至少一个其它功率转换器在不同时间进行切换,其中更新所述切换时间不需要额外通信。
图1展示具有公共耦合点的功率转换器的阵列的一实施例。
图2展示确定切换时间-两个不同功率转换器之间的调制波的不同相位偏移-的图形表示。
图3展示两个不同相位偏移功率转换器的切换状态。
图4展示两个不同相位偏移功率转换器中的每一个的电流输出。
图5展示公共耦合点处的电流输出。
图6展示用于控制多个功率转换器以提高效率同时将thd保持在界限内的方法。
图7展示双逆变器系统的一个相位的图形表示,在所述双逆变器系统中,两个逆变器可以不同相位偏移操作。
图8展示一实施例,其中功率转换器是整流器。
如此处所使用,术语“功率转换器”意指在不同类型的功率之间转换交流电(ac)或直流电(dc)的任何装置。其可包含将来自例如太阳能面板或其它替代能量来源的dc电源转换为ac的逆变器。其还可包含将ac转换为dc的整流器,例如电动车辆或需要直流电或ac到dc转换的其它电池充电器,例如变速电动机驱动机。
图1展示一组功率转换器的实例。例如转换器10的功率转换器以转换器阵列布置。公共耦合点,通常是到ac电网的连接,出现在位置12处。在公共耦合点处,通常必需将thd缩减到低于某一界限,例如4%。还可期望功率转换器注入/获取某些谐波以便缩减电网中的总总谐波失真。在此状况下,预期的注入功率不再具有低thd。例如10的每一功率转换器从公共耦合点获取(或注入)功率且将功率注入(或获取)到例如11的位置中。处于位置11和12处的功率可以是ac或dc。为易于理解,以下论述可集中于逆变器上,且应理解,不打算限制所述特定实施方案,且不应暗示限制所述特定实施方案。关键的统一质量是通过调谐个别功率转换器的脉冲定时来控制在公共耦合点处注入的谐波。
在第一实施例中,所述系统具有主控制器。所述主控制器可并入到例如转换器14的转换器中的一个中,或其可以是单独的控制组件。在控制组件的实施例中,转换器14可呈微控制器、微处理器、数字信号处理器等形式。
在操作中,主控制器控制每一转换器中的调制波的相位偏移。虽然目前在脉宽调制的概念下描述相位偏移控制,但应认识到,一般来说,相位偏移控制是指控制多个功率转换器的切换定时的任何技术。在相位偏移控制中,一些逆变器具有用于调制波的不同相位偏移,如图2中所展示。在图7的实例中,功率转换器由逆变器组成,其中每一逆变器连接到dc电源,例如太阳能板等。所要输出是ac波形,其展示为控制波形20。此单元可存在多次重复以便提供三相功率。主控制器通过找到控制波形与调制波形22和24的相交点来设定用于每一逆变器的切换时间。此方法仅仅是用于生成精确切换时间的许多现有技术方法中的一个,且预期可使用确定关于个别逆变器的脉冲切换时间的任何方法。图3展示图7中的晶体管t176和t378的状态。应注意,晶体管t278和t481分别与t176和t379相反地切换。
图2展示用于三相逆变器系统的一个相位的波形。在其它架构当中,发明者可由基于绝缘栅双极晶体管(igbt)的三电平逆变器组成。由于使用相位偏移控制,逆变器调制频率可从大约20khz的典型值降低。这会在晶体管中导致较低数目的换向且因此导致较低切换损耗。此提高的效率及较低加热速率归因于来自温度循环和平均温度的缩减的热应力会产生较长晶体管使用期限。另外,由于在晶体管的选择中通常会权衡切换损耗与传导损耗,因此实施例使得逆变器也能够使用具有较低传导损耗的晶体管。
个别逆变器通过ac电压的本地测量确定同步时钟信号。尽管个别逆变器处的电压信号可由于相位偏移技术而使高频内容失真,但可在软件中发现基频的零时间。这可通过对所测量的电压应用低通滤波器或滚动平均滤波器来实现。此零时间接着供个别逆变器使用以提供用于添加相位偏移的参考。此技术具有如下优点:即使逆变器时钟不完美,但从每一逆变器输出的相位也不会存在长期漂移。
主控制器可与逆变器通过局域网或无线网络通信。主控制器可监视来自逆变器的电网电压和生成的ac电压。主控制器优化每一逆变器的相位偏移。主控制器需要稳定地执行控制方案的重新调整以考虑模块输出功率的时变改变,例如其中一个逆变器产生较低输出电流的局部阴影。
除了控制方案之外,主控制器还管理与个别逆变器的通信。主控制器可失去与逆变器中的一个或多个的通信,例如失去保活信号。在一个实施例中,如果失去保活信号,那么所有逆变器可恢复到标准操作模式,例如使用高频pwm产生正弦波。这是为了防止逆变器在公共耦合点处产生具有较大总谐波失真(thd)的输出。在一个实施例中,如果thd超过设定值,那么主控制器可使ac断开。
在另一实施例中,主控制器可将查询发送到每一逆变器以检查通信。如果特定逆变器无法与主控制器通信,那么所述逆变器可切换到正常pwm切换。主控制器可将算法调整为剩余的逆变器输出重新优化的协同波形。
使用主控制器提供调整各种逆变器的相位从而以缩减的thd及增加的操作效率产生累计输出的能力。图2展示常规的pwm控制,其中根据控制信号20与调制波22的相交计算逆变器切换时间。还存在确定精确切换时间以解决逆变器电路中的非理想因素的其它方法。
图2展示控制信号20,和三角形调制波22及24,所述三角形调制波彼此相位偏移180度。当控制信号20大于调制波22时,图7中的晶体管t176是“开启的”且t278是“关断的”。类似地,当控制信号21大于调制信号24时,晶体管t379是“开启的”且t481是“关断的”。图3中展示应用于逆变器的pwm控制信号,所述逆变器在一个实施例中可以是igbt半桥。这使得从两个逆变器输出的波纹彼此相位偏移。在多于两个逆变器的情况下,除了0和180度之外的多个不同相位偏移可应用于每一逆变器或到不同相位。
图4中展示从每一逆变器输出的电流,其中调制30的输出展示为输出40,调制32的输出在输出44处展示。图4中的电流输出个别地具有较大总谐波失真。然而,在公共耦合点处,总thd缩减。图5展示公共耦合点48处的电流。对于具有两个不同相位偏移的两个逆变器,主要波纹频率增加了两倍。对于具有较多不同相位偏移的较多逆变器,波纹频率会进一步增加。
通过使用主控制器,可设置各种功率转换器之间的协调的相位偏移,以确保高效转换及低总谐波失真。或者,可将功率转换器设置成具有预定调制频率,例如基频的倍数。在任一状况下,控制功率转换器的切换从而以较低thd提供较有效切换。图6展示控制功率转换器的方法的一实施例。
在使用主控制器的实施例中,主控制器在50处控制功率转换器的切换时间。切换时间起初使用相位偏移来设定,但主控制器可视需要调整操作以在52处获得所要输出。这可涉及监测thd和视需要调整操作以确保所述thd保持低于所希望水平。所述调整可在54处增加调制频率,直到thd在界限内为止。
如上文所论述的可进行的另一调整是在主控制器与转换器中的任一个失去通信的时候。如果一个转换器不响应于主控制器或如果主控制器没有确认来自功率转换器的信号,那么可能会失去通信。如果失去通信,那么主控制器可在56处调整剩余的转换器的操作以确保效率保持较高且thd保持较低。如图6中所展示,这可涉及在58处调整转换器的操作频率,或其可使得主控制器断开与其失去通信的转换器且使得其在59处回到“正常”或标准pwm操作。
在不存在主控制器的实施例中,所述方法仅涉及控制功率转换器的切换时间。在此实施例中,功率转换器可预设是基频的某一倍数的调制频率和相位。举例来说,如果基频是60hz,那么一个逆变器的调制频率可以是300hz且相位偏移是0,且另一逆变器是300hz且相位偏移是180度。
还可能在不同功率转换器上使用不同调制频率。这允许使用常规的pwm技术,但因为功率转换器以不同频率进行调制,所以其调制频率与控制信号之间的相交将变化,从而允许控制thd同时维持效率。
为了在不具有额外通信的情况下使功率转换器之间的定时同步,每一转换器可使用相位确定技术来确定本地的零交叉点。这可通过记录本地逆变器电压并在60hz下找到傅立叶变换的相位而在软件中实现。这允许逆变器仅使用本地的有可能失真的波形的量度来使时钟同步。
多个功率转换器可以固定相位偏移和调制频率来预编程,或以在功率转换器上电后与某一定义的分布以不同方式选择的相位偏移和调制频率来预编程。在相位偏移是在启动后从某一随机分布选择的状况下,不存在选择新的相位偏移所需的额外通信开销。在一个实施例中,当功率转换器使其功率循环时,每一功率转换器从预设分布中选择相位偏移。以此方式,操作员可重设所有相位偏移而无需使每一功率转换器具有单独的通信信道。在另一实施例中,每一功率循环通过预定义设定来切换功率转换器。以此方式,由功率转换器产生的thd可运用任何附加通信要求来修改。
主控制器和实时调整的实施例以及预设的基频倍数的实施例可应用于功率转换器的系统,其中功率转换器由从dc到ac的逆变器组成,或功率转换器由从ac到dc的整流器或将ac转换为ac的变速驱动机组成。图7展示逆变器的实例。
图7展示并联连接的两个半桥逆变器70和74。输出功率在耦合点vc处求和。电源,例如太阳能板、dc/dc转换器、电容器等,包含在标记为dc64的块中。晶体管76和78可相反地切换以避免使dc电源短路。在此实施例中,存在低通滤波器,在此状况下为lcl低通滤波器80和82。输出功率在vc处求和且由负载电阻器rl汲取。
在主控制器的状况下,主控制器将这些逆变器中的每一个的调制设定为彼此相位偏移且接着视需要进行调整以确保thd保持在界限内。在不存在主控制器的情况下,逆变器中的每一个的调制频率将设定为基频的倍数。
图8展示是整流器的功率转换器的实例,且在此特定实施例中整流器是单位功率整流器。在图8的实施例中,整流器负载可通过开关处的切换电压vsw受控制,其中切换电压受控制信号与调制频率信号的组合控制。这可由主控制器设定和监视,或根据基频的倍数来预设。在任一状况下,整流器是来自ac电源的一组多个整流器中的一个整流器,其服务于多个dc负载。
以此方式,在功率转换器系统中,总效率可增加且thd可减小或受控制。