应用于固态变压器架构的电源装置及三相电源系统的制作方法

文档序号:23890553发布日期:2021-02-09 09:40阅读:94来源:国知局
应用于固态变压器架构的电源装置及三相电源系统的制作方法

[0001]
本发明是有关一种电源装置及三相电源系统,特别涉及一种应用于固态变压器架构的电源装置及三相电源系统。


背景技术:

[0002]
随着电力电子元件的推陈出新以及分散式电源、智能电网的蓬勃发展,固态变压器(solid state transformer,sst)已成为越来越热门的研究课题。固态变压器具有多功能且高性能的特性,包括整合微电网、校正功率因数、补偿无效功率、隔离故障电流以及调整输出电压等。
[0003]
在直流充电站的设计中,如何维持与交流电网电气隔离,意即直流侧必须保持与其它线路一切隔离(包括接地),直接在直流充电站设计电气隔离,的确存在其电路设计上的难度与成本考量,也因此,甚少有直接在直流充电站端设计电气隔离的研究与开发。再者,对于不同电压需求的设计,以符合不同规格电动车充电需求,也是设计直流充电站所高度重视的课题。
[0004]
为此,如何设计出一种应用于固态变压器架构的电源装置及三相电源系统,来解决前述的技术问题,乃为本公开发明人所研究的重要课题。


技术实现要素:

[0005]
本发明的目的在于提供一种应用于固态变压器架构的电源装置,解决现有技术的问题。
[0006]
为实现前揭目的,本发明所提出的应用于固态变压器架构的电源装置,其包含交流对直流转换单元、第一直流总线以及复数双向直流转换单元。交流对直流转换单元具有第一侧与第二侧,其中交流对直流转换单元的第一侧耦接交流电源。第一直流总线耦接交流对直流转换单元的第二侧,且具有总线电压。各双向直流转换单元具有第一侧与第二侧,且为单级转换架构或者两级转换架构,其中双向直流转换单元的第一侧耦接第一直流总线,双向直流转换单元的第二侧配置形成至少一第二直流总线,至少一第二直流总线的数量为总线数量。双向直流转换单元接收总线电压,且转换总线电压为与总线数量相同的至少一直流电压,或者双向直流转换单元接收与总线数量相同的至少一外部直流电压,且转换至少一外部直流电压为总线电压。
[0007]
通过所提出的应用于固态变压器架构的电源装置,可提供不同的电压需求且满足隔离需求。
[0008]
本发明的目的在于提供一种应用于固态变压器架构的三相电源系统,解决现有技术的问题。
[0009]
为实现前揭目的,本发明所提出的应用于固态变压器架构的三相电源系统,其中任一相交流电源串联耦接复数个前述中电源装置的交流对直流转换单元,且双向直流转换单元的第二侧并联耦接。
[0010]
通过所提出的应用于固态变压器架构的三相电源系统,可提供不同的电压需求且满足隔离需求,并且达到均压且供电平衡的技术效果。
[0011]
为了能更进一步了解本发明为实现预定目的所采取的技术、手段及技术效果,请参阅以下有关本发明的详细说明与附图,相信本发明的目的、特征与特点,当可由此得一深入且具体的了解,然而附图仅提供参考与说明用,并非用来对本发明加以限制者。
附图说明
[0012]
图1a:为本发明应用于固态变压器架构的电源装置的第一实施例的电路方框图。
[0013]
图1b:为本发明应用于固态变压器架构的电源装置的第二实施例的电路方框图。
[0014]
图1c:为本发明应用于固态变压器架构的电源装置的第三实施例的电路方框图。
[0015]
图2a:为本发明电源装置的双向直流转换单元的第一实施例的电路方框图。
[0016]
图2b:为本发明电源装置的双向直流转换单元的第二实施例的电路方框图。
[0017]
图3a:为本发明电源装置应用于外部装置的第一实施例的电路方框图。
[0018]
图3b:为本发明电源装置应用于外部装置的第二实施例的电路方框图。
[0019]
图3c:为本发明电源装置应用于外部装置的第三实施例的电路方框图。
[0020]
图4:为本发明应用于固态变压器架构的电源装置单一相连接的电路方框图。
[0021]
图5:为本发明应用于固态变压器架构的电源装置三相连接的电路方框图。
[0022]
附图标记说明:
[0023]
11 交流对直流转换单元
[0024]
12 第一直流总线
[0025]
13 双向直流转换单元
[0026]
14 第二直流总线
[0027]
131 第一级转换电路
[0028]
132 升压/降压电路
[0029]
21 储能系统
[0030]
22 光伏电池
[0031]
23 充电站
[0032]
211 储能系统转换器
[0033]
221 光伏电池转换器
[0034]
231 充电站转换器
[0035]
vac 交流电源
[0036]
vb 总线电压
具体实施方式
[0037]
兹有关本发明的技术内容及详细说明,配合附图说明如下。
[0038]
请参见图1a至图1c所示,其是分别为本发明应用于固态变压器架构的电源装置的第一实施例至第三实施例的电路方框图。所述电源装置包含交流对直流转换单元11、第一直流总线12以及复数双向直流转换单元13。
[0039]
交流对直流转换单元11具有第一侧与第二侧,其中交流对直流转换单元11的第一
侧耦接交流电源vac,其中所述交流电源vac可为一电力电网。交流对直流转换单元11转换交流电源vac为直流电源(以下称总线电压或母线电压)。第一直流总线12耦接交流对直流转换单元11的第二侧,且具有所述总线电压vb,意即总线电压vb为第一直流总线12上的直流电压。
[0040]
各双向直流转换单元13具有一第一侧与一第二侧,且各双向直流转换单元13可为单级转换架构或者两级转换架构,容后说明。如图1a至图1c所示,该等双向直流转换单元13的该等第一侧耦接第一直流总线12,即耦接交流对直流转换单元11的第二侧。
[0041]
该等双向直流转换单元13的该等第二侧配置形成至少一第二直流总线14,该至少一第二直流总线14的数量为一总线数量。图1a至图1c所示为具有三组隔离直流电源的电源装置,然不以此为限制本发明。为方便且清楚说明,以图1a至图1c为例说明。在图1a中,由于三个双向直流转换单元13的三个第二侧是彼此并联耦接,因此三个双向直流转换单元13的三个第二侧配置形成总线数量为1的第二直流总线14。
[0042]
在图1b中,由于第一个双向直流转换单元13与第两个双向直流转换单元13的两个第二侧是彼此并联耦接,并且第三个双向直流转换单元13的第二侧单独配置,因此三个双向直流转换单元13的三个第二侧配置形成总线数量为2的第二直流总线14。顺带一提,在图1b中,并不以第一个双向直流转换单元13与第两个双向直流转换单元13的两个第二侧是彼此并联耦接为限制,换言之,只要任两个双向直流转换单元13的两个第二侧是彼此并联耦接,而剩下的一个双向直流转换单元13的第二侧单独配置,所形成总线数量为2的第二直流总线14,皆应包含于本发明的范围中。
[0043]
在图1c中,由于三个双向直流转换单元13的三个第二侧单独配置,因此三个双向直流转换单元13的三个第二侧配置形成总线数量为3的第二直流总线14。
[0044]
顺带一提,若双向直流转换单元13的数量为四个,即总线数量为4时,则四个双向直流转换单元13的四个第二侧可配置形成第二直流总线14的数量可为1~4。其中,数量为1为四个双向直流转换单元13的四个第二侧是彼此并联耦接;数量为4为四个双向直流转换单元13的四个第二侧单独配置;数量为2为四个双向直流转换单元13的四个第二侧的两者彼此并联耦接,另两者彼此并联耦接,或者四个双向直流转换单元13的四个第二侧的三者彼此并联耦接,剩下的一者单独配置;数量为3为四个双向直流转换单元13的四个第二侧的两者彼此并联耦接,剩下的两者个别单独配置。因此,对于数量为n的双向直流转换单元13,其第二侧所配置形成第二直流总线14的数量可为1~n,其配置方式如前所述,在此不再赘述。
[0045]
请参见图2a与图2b所示,其是分别为本发明电源装置的双向直流转换单元的第一实施例与第二实施例的电路方框图。如前所述,各双向直流转换单元13可为单级转换架构或者两级转换架构,前者如图2a所示,后者如图2b所示。如图2a所示,双向直流转换单元13的单级转换架构是仅具有第一级转换电路131,该第一级转换电路131包含隔离变压器与初级侧谐振电路和次级侧谐振电路。初级侧谐振电路耦接于隔离变压器的初级侧,次级侧谐振电路耦接于隔离变压器的次级侧。在本实施例中,初级侧谐振电路与次级侧谐振电路可为对称的cllc谐振电路,因此第一级转换电路131为cllc谐振式直流电源转换电路。
[0046]
如图2b所示,双向直流转换单元13的两级转换架构是具有第一级转换电路131与第二级转换电路(即升压/降压电路132)。即相较于图2a所示,两级转换架构还包含作为第
二级转换电路的升压/降压电路132。所述升压/降压电路132用以提供升压或降压转换之用。可根据实际应用的需求,选择单级转换架构的双向直流转换单元13,或者选择两级转换架构的双向直流转换单元13。其中两级转换架构的双向直流转换单元13可提供较宽的转换电压范围,即其电压动态调节较佳。举例来说,若双向直流转换单元13的第一侧为输入侧,且其为1580伏特,则对单级转换架构的双向直流转换单元13来说,其第二侧可输出的电压范围介于800至1000伏特,而对两级转换架构的双向直流转换单元13来说,其第二侧可输出的电压范围介于200至1000伏特,因此,两级转换架构的双向直流转换单元13可提供较宽的转换电压范围,可获得较佳的电压动态调节。
[0047]
请参见图3a至图3c所示,其是分别为本发明电源装置应用于外部装置的第一实施例至第三实施例的电路方框图。以三个双向直流转换单元13为例,在图3a中,三个双向直流转换单元13的三个第二侧配置形成总线数量为1的第二直流总线14,并且各双向直流转换单元13为单级转换架构(即仅具有第一级转换电路131)。所述电源装置可与外部装置,例如储能系统(energy storage system,ess)21、光伏电池(photovoltaic cell)22以及充电站(charging station)23电性连接。附带一提,与电源装置电性连接的外部装置的种类及数量不以图3a所示为限制,亦即电源装置可电性连接多个储能系统21、光伏电池22以及充电站23。
[0048]
配合单级转换架构的双向直流转换单元13,因此对储能系统21而言,需搭配一储能系统转换器211,例如双向充电器(ess bi-directional charger),作为第二直流总线14供电至储能系统21的电源转换,或者储能系统21供电至第二直流总线14的电源转换。对光伏电池22而言,需搭配一光伏电池转换器221,例如具有最大功率点追踪功能的转换器(pv mppt),作为光伏电池22供电至第二直流总线14的电源转换。对充电站23而言,需搭配一充电站转换器231,例如隔离式充电器(isolated charger),作为第二直流总线14供电至充电站23的电源转换,或者充电站23供电至第二直流总线14的电源转换。因此,在单级转换架构的双向直流转换单元13下,对储能系统21而言,储能系统转换器211相当于另一级的电源转换器;对光伏电池22而言,光伏电池转换器221相当于另一级的电源转换器;对充电站23而言,充电站转换器231相当于另一级的电源转换器。然根据实际应用的需求,对总线数量为1的第二直流总线14的架构来说,并不以图3a所示单级转换架构的双向直流转换单元13为限制,亦即双向直流转换单元13亦可为两级转换架构所实现,主要取决于后级装置或者电压范围的需求。通过具有功率传输功能的双向直流转换单元13,可达到双向直流转换单元13供电经第二直流总线14再至外部装置的功率潮流方向,以及外部装置供电经第二直流总线14再至双向直流转换单元13的功率潮流方向的双向功率潮流操作,以提高对外部装置应用的共通性与弹性。
[0049]
在图3b中,三个双向直流转换单元13的三个第二侧配置形成总线数量为2的第二直流总线14,并且前两个双向直流转换单元13的第二侧配置形成一个第二直流总线14,各双向直流转换单元13为单级转换架构(即仅具有第一级转换电路131),第三个双向直流转换单元13的第二侧单独配置形成另一个第二直流总线14,双向直流转换单元13为两级转换架构(即具有第一级转换电路131与第二级转换电路)。其中前两个双向直流转换单元13与外部装置的应用操作可参见图3a及其说明,在此不再赘述。
[0050]
配合两级转换架构的双向直流转换单元13,因此对充电站23而言,则可不须搭配
充电站转换器231(如图3a所示),通过升压/降压电路132的第二级转换,可满足充电站23对于较宽电压供电的需求。附带一提,与电源装置电性连接的外部装置的种类及数量不以图3b所示为限制,亦即电源装置可电性连接多个储能系统21、光伏电池22以及充电站23,并且根据实际应用的需求,对总线数量为2的第二直流总线14的架构来说,并不以图3b所示单级转换架构的双向直流转换单元13为限制,亦即双向直流转换单元13亦可为两级转换架构所实现,主要取决于后级装置或者电压范围的需求。
[0051]
在图3c中,三个双向直流转换单元13的三个第二侧配置形成总线数量为3的第二直流总线14,并且各双向直流转换单元13为两级转换架构(即具有第一级转换电路131与第二级转换电路)。配合两级转换架构的双向直流转换单元13,因此对充电站23而言,则可不须搭配充电站转换器231;对光伏电池22而言,则可不须搭配光伏电池转换器221;对储能系统21而言,则可不须搭配储能系统转换器211,通过升压/降压电路132的第二级转换,可满足充电站23、光伏电池22以及储能系统21对于所需电压供电的需求。
[0052]
附带一提,为方便说明,图3a图3c仅为说明单一电源装置与储能系统21、光伏电池22以及充电站23的连接关系,然而实际应用会以三相多组并联耦接的方式实现,容后说明。以下,以举例的实施例说明电源装置与储能系统21、光伏电池22以及充电站23的电能管理、供需的应用。以所述交流电源vac为电力电网为例,并且所列举的实施方式仅为方便说明本发明之用,非以限制本发明。
[0053]
第一实施例:假若充电站23的需求电能为100kw,电网(交流电源vac)所能供电的上限为50kw,如此,充电站23不足的电能可以通过光伏电池22与储能系统21的通信与协同所供应。例如,若光伏电池22可提供50kw,储能系统21则无需提供电能。又若光伏电池22可提供20kw,储能系统21则提供30kw,(或者若光伏电池22可提供30kw,储能系统21则提供20kw),使得电网、光伏电池22以及储能系统21可对充电站23提供足够的需求电能。换言之,可通过功率调节系统(power conditioning system,pcs)的控制方式,实现电能管理、调度、改善电力品质的功能。
[0054]
第二实施例:一般而言,电网优先供电或者光伏电池22、储能系统21优先供电,常取决于供电时段与电价(发电成本)所决定。举例来说,在尖峰用电期间(例如上午10点至下午2点),由于电网的发电成本较高,因此,充电站23主要的电能来源尽可能地通过储能系统21和/或光伏电池22所提供,充电站23尚有不足的电能则再由电网提供,借此,通过削减尖峰用电、搭配时间电价,可达到节电、节费的技术效果。反之,在离峰用电期间,由于电网的发电成本较低,因此,充电站23主要的电能来源尽可能地通过电网所提供,同时电网(和/或光伏电池22)亦可对储能系统21进行充电,使其能够处于满充电的状态,能够提供备援、冗余电力的需求。
[0055]
本发明的电力供需非仅上述两种状况,由于电网有发电成本的考量、充电站23用电状况的变动、光伏电池22因天候因素有其不稳定供电的特性以及储能系统21储能情况的不同,因此彼此通过控制机制的通信与协同,可使得每个装置(单元)能够发挥最佳的供电效能,使得电能管理与调度更具弹性,而可适用各种不同的电力供需状况。
[0056]
请参见图4所示,其为本发明应用于固态变压器架构的电源装置单一相连接的电路方框图。图4所示三相电源系统其中一相的多个电源装置连接的示意,并且单组电源装置的配置为图1c所示的:三个双向直流转换单元13的三个第二侧单独配置所形成总线数量为
3的第二直流总线14。然图4仅为本发明的其中一种实施方式,换言之,亦可通过单组电源装置的配置为图1a(总线数量为1)或者单组电源装置的配置为图1b(总线数量为2)的方式,组合成多组隔离直流电源的电源装置单一相连接的架构。
[0057]
如图4所示,交流电源vac侧是采串联耦接方式,而各双向直流转换单元13的第二侧是采并联耦接方式。具体地,电源装置的数量是由系统电压与每一个电源装置耐压的比值所决定,举例来说,当系统电压的线间电压是13.2kv(其相间电压则是7.62kv),若每一个电源装置耐压为0.847kv时,则每一相电源装置的数量则可设计为九组。因此,此九组电源装置的交流对直流转换单元11采串联耦接,而每一组电源装置的双向直流转换单元13互为并联耦接,以共同提供直流电压至所对应的第二直流总线14,或者接收外部装置提供至第二直流总线14的直流电压。
[0058]
请参见图5所示,其为本发明应用于固态变压器架构的电源装置三相连接的电路方框图。如图4所示的每一相架构,可结合成三相多组的架构。具体地,交流电源vac侧是以y接、中性点n接地的连接方式,而三相中电源装置所对应的每一组可互相并联耦接。以前述九组的每一相电源装置数量为例,通过将三相结合,使得第一个27组(r相、s相、t相各9组)的双向直流转换单元13的第二侧彼此并联、第二个27组的双向直流转换单元13的第二侧彼此并联,以及第三个27组的双向直流转换单元13的第二侧彼此并联,如此,可达到均压且供电平衡的技术效果。承前所述,充电站23所需的电能可通过第一个27组的双向直流转换单元13所提供的直流电压供应。其中,可以27组的双向直流转换单元13平均地提供充电站23所需的电能,或者比例地提供充电站23所需的电能,然不以所述的供电方式为限制本发明。
[0059]
此外,三相电源系统中耦接每一相的该等交流对直流转换单元11是以交错相移(interleaved phase-shift)方式控制。举例来说,若该些交流对直流转换单元11的数量为三组,且每一组交流对直流转换单元11是以10khz进行切换控制,且相位角互差120度,则每一相的系统频率可倍增为30khz,借此,可使每一组交流对直流转换单元11有较低的切换频率而能够提高效率,并且使系统有较佳的总谐波失真(total harmonic distortion,thd)而可使用较小的滤波器元件。
[0060]
综上所述,本发明具有以下的特征与优点:
[0061]
1、通过具有功率传输功能的双向直流转换单元,可达到双向功率潮流操作,以提高对外部装置应用的共通性与弹性。
[0062]
2、可使用具有较佳转换效率的单级转换架构的双向直流转换单元,或者使用可提供较宽的转换电压范围,可获得较佳的电压动态调节的两级转换架构的双向直流转换单元,以因应实际应用的需求。
[0063]
3、为因应充电站、光伏电池,以及储能系统对于不同电压需求以及隔离需求,具有多组隔离直流电源的电源装置可提供不同的电压需求且满足隔离需求,并且提高电力供需的弹性。
[0064]
4、通过将三相中电源装置所对应的每一组互相并联耦接,以达到均压且供电平衡的技术效果。
[0065]
5、通过交错相移方式控制每一相的该些交流对直流转换单元,可使每一组交流对直流转换单元有较低的切换频率而能够提高效率,并且使系统有较佳的总谐波失真而可使用较小的滤波器元件。
[0066]
以上所述,仅为本发明优选具体实施例的详细说明与附图,而本发明的特征并不局限于此,并非用以限制本发明,本发明的所有范围应以下述的权利要求为准,凡合于本发明权利要求的构思与其类似变化的实施例,皆应包含于本发明的范围中,任何本领域技术人员在本发明的领域内,可轻易思及的变化或修饰皆可涵盖在以下本公开的权利要求。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1