带功率因数校正功能的单级AC-DC变换器电路的制作方法

文档序号:20561498发布日期:2020-04-28 21:45阅读:294来源:国知局
带功率因数校正功能的单级AC-DC变换器电路的制作方法

本实用新型涉及电力电子领域,尤其涉及一种带功率因数校正功能的单级三相带隔离的ac-dc变换器电路。



背景技术:

随着节能减排以及控制大气污染要求的提高,以电动汽车为代表的大功率用电设备逐渐在市场商用。电源是用电设备从电网获取能量的主要媒介,为了减小用电设备工作时对电网电流的谐波污染,电源必须具备功率因数校正功能。而现有技术中,功率因数校正模块是作为电源的前级为后级隔离直流变换器提供稳定的输入电压的两级结构,这种结构需要较高的滤波电感和较大的稳压电容,造成充电源模块体积较大,成本增加。

因此,如何设计一种带功率因数校正功能的、单级的ac-dc变换器电路是业界亟待解决的技术问题。



技术实现要素:

为了解决现有技术中存在的上述缺陷,本实用新型提出一种带功率因数校正功能的单级三相带隔离的ac-dc变换器电路。

本实用新型采用的技术方案是设计一种带功率因数校正功能的单级ac-dc变换器电路,其包括一次侧交直变换器、变压器、二次侧交直变换器和控制器,其中所述一次侧交直变换器用于将交流电源变换成直流电、然后向变压器一次侧绕组供电;所述变压器的一次侧绕组连接一次侧交直变换器的直流输出侧和交流电源,其二次侧绕组连接二次侧交直变换器的交流输入侧和二次侧交直变换器的直流输出侧;所述二次侧交直变换器由变压器二次侧绕组处接收电能、并将之转换成直流电向负载供电;所述控制器控制一次和二次侧交直变换器中功率开关的占空比、以及一次和二次侧交直变换器中功率开关控制信号之间的相位差来控制电能的传递量和校正功率因数。

所述交流电源为三相交流电,所述一次侧交直变换器和二次侧交直变换器采用三相桥式可控整流电路、所述变压器采用三相变压器。

所述一次侧交直变换器直流输出侧的正极和负极之间连接第一稳压模块,第一稳压模块包括串联的第一电容c1和第二电容c2,第一电容c1和第二电容c2的连接点为一次侧公共中性点、其分别通过第三电容c3、第四电容c4和第五电容c5连接变压器一次侧各相绕组的头端,各相绕组的尾端分别通过a相高频电感lσa、b相高频电感lσb和c相高频电感lσc对应连接所述一次侧交直变换器交流输入侧的各相线;所述二次侧交直变换器直流输出侧的正极和负极之间连接第二稳压模块,第二稳压模块包括串联的第六电容c6和第七电容c7,第六电容c6和第七电容c7的连接点为二次侧公共中性点、其分别通过第八电容c8、第九电容c9和第十电容c10连接变压器二次侧各相绕组的头端,各相绕组的尾端对应连接所述二次侧交直变换器交流输入侧的各相线;所述一次侧交直变换器交流输入侧分别通过a相电感la、b相电感lb、c相电感lc对应连接所述交流电源的三条相线。

所述a相高频电感lσa、b相高频电感lσb和c相高频电感lσc制成漏感集成在所述变换器中。

所述变换器具有a相、b相和c相,其a相的一次侧绕组和二次侧绕组绕制在a相磁柱上,其b相的一次侧绕组和二次侧绕组绕制在b相磁柱上,其c相的一次侧绕组和二次侧绕组绕制在c相磁柱上。

上述a相、b相和c相磁柱的轴心呈三角形排列,三根磁柱共用顶部和底部的磁路。

上述a相、b相和c相磁柱的轴心呈一字形排列,三根磁柱共用顶部和底部的磁路。

所述一次侧交直变换器和二次侧交直变换器中的功率开关采用碳化硅开关。

所述控制器驱动一次侧交直变换器和二次侧交直变换器中功率开关的控制信号采用相同的开关频率。

本实用新型提供的技术方案的有益效果是:

本实用新型采用单级ac-dc电源变换拓扑结构,将交流输入端和直流输出端用变压器相隔离,通过调整占空比和移相可以方便的校正功率因数;减小了滤波电感、稳压电容的容量和体积,具有线路简单成本低廉的优点。

附图说明

下面结合实施例和附图对本实用新型进行详细说明,其中:

图1是本实用新型的电路图;

图2是本实用新型较佳实施例的电路图;

图3是变压器磁柱三角形排列的结构图;

图4是变压器磁柱一字形排列的结构图;

图5是本实用新型输入侧三相电压和输入电流波形图;

图6是本实用新型使用的三相变压器上电压与磁通量波形;

图7是变压器绕组连接示意图。

具体实施方式

为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本实用新型,并不用于限定本实用新型。

本实用新型公开了一种带功率因数校正功能的单级ac-dc变换器电路,参看图1,其包括一次侧交直变换器、变压器t、二次侧交直变换器和控制器(图中未绘画)。其中所述一次侧交直变换器连接外部的交流电源并将之变换成直流电、然后向变压器一次侧绕组供电;所述变压器t传递电能,其一次侧绕组连接一次侧交直变换器的直流输出侧和交流电源,其二次侧绕组连接二次侧交直变换器的交流输入侧和二次侧交直变换器的直流输出侧;所述二次侧交直变换器由变压器二次侧绕组处接收电能、并将之转换成直流电向负载供电。所述控制器控制一次和二次侧交直变换器中功率开关的占空比、以及一次和二次侧交直变换器中功率开关控制信号之间的相位差来控制电能的传递量和校正功率因数。

当需要向负载提供电能时,控制器控制一次侧交直变换器向二次侧交直变换器传递能量,构成单级ac-dc交流直流的转换,实现直流电压输出侧稳压输出,同时校正功率因数将输入电流对电网电流的污染降至最低。参看图1或图2,三相工频交流电网通过一次侧低通滤波电感(即a相电感la、b相电感lb、c相电感lc)及一次侧交直变换器将能量以工频电压、电流形式传递给一次侧直流电压稳压电路(即第一电容c1和第二电容c2);控制器控制一次侧交直变换器将一次侧直流电压稳压电路内储存的能量转变为开关频率电压、电流,通过变压器t将能量以开关频率电压、电流形式传递给二次侧;能量最终将通过二次侧交直变换器传递给负载。

较佳实施例中,所述交流电源为三相交流电,所述一次侧交直变换器和二次侧交直变换器采用三相桥式可控整流电路、所述变压器采用三相变压器。参看图1或图2,一次侧交直变换器由第一至第六开关管s1-s6构成,第一和第二开关管s1、s2串联构成一次侧a相桥臂,连接点为a相桥臂输入p.a;第三和第四开关管s3、s4串联构成一次侧b相桥臂,连接点为b相桥臂输入p.b;第五和第六开关管s5、s6串联构成一次侧c相桥臂,连接点为c相桥臂输入p.c。三条相桥臂并联后构成一次侧三相桥式可控整流电路。所述第一至第六开关管s1-s6的栅极分别与所述控制器连接。二次侧交直变换器第七至第十二开关管s7-s12构成,第七和第八开关管s7、s8串联构成二次侧a相桥臂,连接点为a相桥臂输入s.a;第九和第十开关管s9、s10串联构成二次侧b相桥臂,连接点为b相桥臂输入s.b;第十一和第十二开关管s11、s12串联构成二次侧c相桥臂,连接点为c相桥臂输入s.c。三条相桥臂并联后构成三相桥式可控整流电路。所述第七至第十二开关管s7-s12的栅极分别与所述控制器连接。

较佳实施例中,所述一次侧交直变换器直流输出侧的正极和负极之间连接第一稳压模块,第一稳压模块包括串联的第一电容c1和第二电容c2,第一电容c1和第二电容c2的连接点为一次侧公共中性点、其分别通过第三电容c3、第四电容c4和第五电容c5连接变压器一次侧各相绕组的头端,各相绕组的尾端分别通过a相高频电感lσa、b相高频电感lσb和c相高频电感lσc对应连接所述一次侧交直变换器交流输入侧的各相线(连接点是图1或图2中的p.a、p.b、p.c);所述二次侧交直变换器直流输出侧的正极和负极之间连接第二稳压模块,第二稳压模块包括串联的第六电容c6和第七电容c7,第六电容c6和第七电容c7的连接点为二次侧公共中性点、其分别通过第八电容c8、第九电容c9和第十电容c10连接变压器二次侧各相绕组的头端,各相绕组的尾端对应连接所述二次侧交直变换器交流输入侧的各相线(连接点是图1或图2中的s.a、s.b、s.c);所述一次侧交直变换器交流输入侧分别通过a相电感la、b相电感lb、c相电感lc对应连接所述交流电源的三条相线。

参看图1,一次侧的第三电容c3、第四电容c4和第五电容c5采用y形接法,c3、c4和c5左边连接于一点,右边连接变压器t一次侧各相绕组的头端(ap*、bp*、cp*),各相绕组的尾端(ap、bp、cp)对应连接所述一次侧交直变换器交流输入侧的各相线(a、b、c)。参看图7示出的变压器绕组连接示意图,一次侧有a、b、c三相绕组,ap*、bp*、cp*为绕组的头端,ap、bp、cp为绕组的尾端。二次侧的第八电容c8、第九电容c9和第十电容c10采用y形接法,c8、c9和c10的右边连接于一点,左边连接变压器t二次侧各相绕组的头端(as*、bs*、cs*),各相绕组的尾端(as、bs、cs)对应连接所述二次侧交直变换器交流输入侧的各相线。参看图7示出的变压器绕组连接示意图,二次侧有a、b、c三相绕组,as*、bs*、cs*为绕组的头端,as、bs、cs为绕组的尾端。

参看图1示出的实施例,所述一次侧交直变换器交流输入侧分别通过a相电感la、b相电感lb、c相电感lc对应连接所述交流电源的三条相线。a相电感la、b相电感lb、c相电感lc采用低通特性滤波电感。

参看图1示出的实施例较佳实施例,所述a相高频电感lσa、b相高频电感lσb和c相高频电感lσc制成漏感集成在所述变换器中。a相高频电感lσa、b相高频电感lσb和c相高频电感lσc采用高通特性滤波电容。由于高通滤波电路的高通特性,星形连接各相电容上的电压被三相交流电网对应相电压钳位。

参看图7示出的变压器绕组连接示意图,所述变换器具有a相、b相和c相,其a相的一次侧绕组和二次侧绕组绕制在a相磁柱上,其b相的一次侧绕组和二次侧绕组绕制在b相磁柱上,其c相的一次侧绕组和二次侧绕组绕制在c相磁柱上。变压器t起隔离作用,将三相集成在一起。

在图3示出的实施例中,所述a相、b相和c相磁柱的轴心呈三角形排列,三根磁柱共用顶部和底部的磁路。三根磁柱相互独立对称放置,共用顶部与底部磁路。这种设计能有效提高磁材利用率,降低磁材成本,平衡各相之间磁通,能有效提高效率。

在图4示出的实施例中,所述a相、b相和c相磁柱的轴心呈一字形排列,三根磁柱共用顶部和底部的磁路。三根磁柱相互独立并排放置,共用顶部与底部磁路。这种设计能有效提高磁材利用率,降低磁材成本。虽然三根磁柱不对称放置,但是外形更加规整,便于优化散热能力。

在较佳实施例中,所述一次侧交直变换器和二次侧交直变换器中的功率开关采用碳化硅开关。

在较佳实施例中,所述控制器驱动一次侧交直变换器和二次侧交直变换器中功率开关的控制信号采用相同的开关频率。

下面参看图2阐述较佳实施例工作原理:

ac-dc变换器电路稳定工作时,所述控制器控制一次侧三相桥式可控整流电路功率开关、二次侧三相桥式可控整流电路功率开关对应交替导通,控制导通占空比及一次侧二次侧对应相桥臂导通相移实现一次侧向二次侧的能量传输。

由于控制器控制一次侧、二次侧三相桥式可控整流电路功率开关工作在高频开关状态,因此ac-dc变换器电路中一次侧与二次侧电路都会产生开关频率的高频电压振荡,而二次侧高频电压振荡通过三相变压器映射到一次侧后与一次侧的高频电压震荡叠加在a、b、c相高频电感lσa、lσb、lσc上。一次侧高频电压振荡和二次侧高频电压振荡的占空比以及相移由控制器决定,因此在a、b、c相高频电感lσa、lσb、lσc上将产生可控高频电流纹波,经三相耦合变压器t实现一次侧与二次侧之间的能量传播。

由于一次侧低通滤波电感电路(la、lb、lc)作用,高频纹波电流不会直接对电网电流造成冲击,而是通过一次侧高通滤波电路(lσa、lσb、lσc)传导,由一次侧电容c3至c5和一次侧电容c1、c2吸收,使一次侧第一至第五电容c1-c5上的电荷量增加或减少,a相电感la、b相电感lb、c相电感lc两端产生电压差值,使三相电网的输出电流发生改变。

通过改变一次侧、二次侧三相桥式可控整流电路的导通占空比和一次侧、二次侧各相桥臂之间导通的相移可以控制各相高频纹波电流的幅值和持续时间,进而控制第一至第五电容c1-c5上电荷的改变量,实现对a相滤波电感la、b相滤波电感lb、c相滤波电感lc上的电流分别进行控制,最终达到功率因数校正的目的。

ac-dc变换器电路使用三相集成变压器将一次侧与二次侧耦合,为了保证电能传输效率最大,根据额定工作时一次侧直流电压稳压电路电压udc1与二次侧直流电压稳压电路电压udc2设计变压器一次侧与二次侧之间变比为:

ac-dc变换器电路驱动一次侧三相桥式可控整流电路的控制信号与驱动二次侧三相桥式可控整流电路的控制信号具有相同的开关频率,通过控制两组控制信号之间的相位差来实现对一次侧电路和二次侧电路之间电能传递的控制。

以一次侧与二次侧a相桥臂为例,在一个开关周期ts中,一次侧与二次侧导通占空比为d1=d2=d,相位差为φ,一次侧高通滤波电路a、b、c相高频电感有lσa=lσb=lσc=lσ。由于n·udc2=udc1,所以一个开关周期内开关频率电流的幅值为:

在一个开关周期内的平均电流大小为:

所以控制占空比随输入工频交流电vac(t)=vpeaksin[2π(50hz)t](vac(t)为输入的实时电压;vpeak为输入电压的峰值;t是时间)改变即可控制输入系统的电流与输入工频交流电压同步变化,得:

功率pф之间关系为:

由单相电压与电流之间关系可得,开关频率为fs时:

为了保证整个工频周期内电路都能正常工作,需要对高频电感lσ做出限制:

本实用新型提供的ac-dc变换器电路如图1所示,在实施例一次侧高通滤波电路a、b、c相高频电感lσa、lσb、lσc通过制作工艺作为变压器漏感集成在三相变压器内,用于控制一次侧与二次侧之间的能量传输。

本实用新型稳定工作时三相交流电输入端相电压、相电流波形如图5所示,输入三相电流基本随正弦规律变化,三相电流相位与输入相电压相位基本一致。对变换器进行闭环控制可优化输入电流波形并更好跟踪输入电压相位。输入电流包含开关频率高频分量,是由一次侧三相桥式可控整流电路工作产生的。

变换器电路稳定工作时三相集成变压器上三相电压、三相磁通波形如图6所示。其中t_lega是a相变压器一次侧绕组上的电压,t_legb是b相变压器一次侧绕组上的电压,t_legc是c相变压器一次侧绕组上的电压。根据伏秒积原理:n·b·s=∫vdt得到三相变压器各相磁通。参看图6,b_lega是a相磁通,b_legb是b相磁通,b_legc是c相磁通,以及三相磁通之和b_plus。由于三相磁通平衡,b_plus基本为0,使三相集成变压器实现自然均磁功能。

以上实施例仅为举例说明,非起限制作用。任何未脱离本申请精神与范畴,而对其进行的等效修改或变更,均应包含于本申请的权利要求范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1