一种基于高阶SOGI的漏电流观测识别方法与流程

文档序号:23851448发布日期:2021-02-05 14:23阅读:73来源:国知局
一种基于高阶SOGI的漏电流观测识别方法与流程
一种基于高阶sogi的漏电流观测识别方法
技术领域
[0001]
本发明属于配网漏电流观测识别技术领域,尤其是一种基于高阶sogi的漏电流观测识别方法。


背景技术:

[0002]
在电力系统中,台区是指一台变压器的供电范围或区域,台区下农村用户由于条件限制,居民自接用电线路的情况较为常见,由于这些自接线路的铺设较为简陋,很容易发生触电漏电情况,这对居民的人身健康和财产都带来了极大的隐患。且由于当前漏电保护较为简易,一般均由漏电开关实现保护功能,该保护功能简单,没有基本判断功能,且漏电流根据有效值判断,实时性不够,保护时间较长。另一方面,前漏电流保护系统也缺乏基本的监测识别功能,无法区分是否为生物体触电,并作出相应的快速保护动作,因此对居民的人生监控带了极大的危险。


技术实现要素:

[0003]
本发明的目的在于克服现有技术的不足,提出一种基于高阶sogi的漏电流观测识别方法,能够快速判断是否为生物体触电,从而做出快速的保护动作,减少人身触电伤害。
[0004]
本发明解决其技术问题是采取以下技术方案实现的:
[0005]
一种基于高阶sogi的漏电流观测识别方法,包括以下步骤:
[0006]
步骤1、根据低压配电网网络拓扑以及漏电流流经路径构建漏电流模型并计算漏电回路总阻抗;
[0007]
步骤2、测量得到电网电压,利用sogi和构建的相应的锁频环计算电网电压的频率相角信息;
[0008]
步骤3、构建高阶sogi滤波器,并通过高阶sogi滤波器得到漏电流幅值和漏电流与电网电压的相角差;
[0009]
步骤4、根据得到的电网电压以及漏电流幅值计算漏电回路阻抗,通过漏电回路阻抗的幅值以及相角信息,与理论阻抗模型进行比对,判断触电物是否为生命体。
[0010]
而且,所述步骤1中根据低压配电网网络拓扑图和漏电流流经路径建立漏电流模型为:电压源正极连接线路阻抗z
l
的一端,z
l
的另一端分别连接接触过渡阻抗z
j
和线路对地阻抗z
n
,接触过渡阻抗z
j
另一端和线路对地阻抗z
n
的另一端连接大地电阻re的一端,大地电阻re的另一端连接电压源负极,其线路阻抗为:
[0011]
z
l
=r
l
+jx
l
[0012]
其线路对地阻抗为:
[0013]
z
n
=r
n
+jx
n
[0014]
根据弗莱贝尔格生物体阻抗模型,求得生物体接触阻抗z
j
,进而得到漏电回路总阻抗z:
[0015]
z=z
l
+r
e
+z
n
//z
j

[0016]
而且,所述步骤2的具体实现方法为:根据sogi结构,得到其时域实施表达式:
[0017][0018]
其中,k为增益系数,为输入电网电压频率观测值,u
in
为输入电压,v
α
=x1,v
β
=x2x1为输入电网电压的同相观测分量,x2为输入电网电压的正交观测分量,根据sogi结构,得到输出电压观测值频域表达式:
[0019][0020]
其中,d(s)为带通滤波器,中心频率为q(s)为低通滤波器,在处相角为90
°
,s为拉普拉斯算子,通过sogi构造的锁频环为:
[0021][0022]
其中,e为电网电压与同相观测值误差,γ为锁频环积分系数。
[0023]
而且,所述步骤3的具体实现方法为:构建的高阶sogi滤波器为采用n阶sogi滤波结构,第一级sogi输入为电网电压,第一级sogi输出同相电压观测值v
α1
作为第二级sogi输入,直到第n级sogi的输出为最终观测值,从而形成n阶sogi滤波器,并利用第n级sogi的观测误差与正交输出信号构建fll观测输入电压频率信息;
[0024]
同时采用第n级sogi输出信号v
α
和v
β
计算电网电压的幅值与相角:
[0025][0026][0027]
v
α
=x1,v
β
=x
2 x1为输入电网电压的同相观测分量,x2为输入电网电压的正交观测分量,检测的瞬时漏电流进过高阶sogi滤波器后,得到相应的电流观测值及其正交信号i
α
和i
β
,利用相角对i
α
和i
β
进行dq变换:
[0028][0029]
得到dq轴电流i
d
和i
q
,并求得到漏电流幅值和漏电流与电网电压的相角差:
[0030][0031]
而且,所述步骤4中漏电回路阻抗为:
[0032][0033]
[0034]
其中a
u
为电网电压的幅值,a
i
为漏电流幅值,为漏电流与电网电压的相角差,通过漏电回路阻抗的幅值以及相角信息,与式中的理论阻抗模型进行比对,即可估计触电物是否为生命体,从而做出相应对策。
[0035]
本发明的优点和积极效果是:
[0036]
本发明通过根据低压配电网网络拓扑以及漏电流流经路径构建漏电流模型并计算漏电回路总阻抗;测量得到电网电压,利用sogi和构建的相应的锁频环计算电网电压的频率相角信息;构建高阶sogi滤波器,并通过高阶sogi滤波器得到漏电流幅值和漏电流与电网电压的相角差;根据得到的电网电压以及漏电流幅值计算漏电回路阻抗,通过漏电回路阻抗的幅值以及相角信息,与理论阻抗模型进行比对,判断触电物是否为生命体,做出相应对策。本发明利用高阶广义二阶积分器观测电网电压幅值相角以及频率信息,同时观测漏电流的幅值相角信息,进而可估计漏电流的相关信息以及漏电回路阻抗,从而可进一步判断是否为生物体触电,从而做出快速的保护动作,减少人身触电伤害。
附图说明
[0037]
图1为漏电流拓扑示意图;
[0038]
图2为本发明构建的漏电流电路模型;
[0039]
图3为生物体阻抗模型;
[0040]
图4为本发明设计的锁频环结构;
[0041]
图5为本发明构建的n阶sogi滤波器结构。
具体实施方式
[0042]
以下结合附图对本发明做进一步详述。
[0043]
一种基于高阶sogi的漏电流观测识别方法,包括以下步骤:
[0044]
步骤1、根据低压配电网网络拓扑以及漏电流流经路径建立漏电流模型,根据漏电回路建立等效电路模型,根据等效电路模型计算漏电回路总阻抗。其中回路总阻抗中的接触物阻抗对总阻抗的影响最大,不同的接触阻抗,即生物体和非生物体,观测到的总阻抗幅值相角会有不同,因此可通过对总阻抗的观测,从而识别是否生物体触电。
[0045]
本步骤的具体实现方法为:如图1所示,根据低压配电网网络拓扑以及漏电流流经路径建立漏电流模型,电压源正极连接线路阻抗z
l
的一端,z
l
的另一端分别连接接触过渡阻抗z
j
和线路对地阻抗z
n
,接触过渡阻抗z
j
另一端和线路对地阻抗z
n
的另一端连接大地电阻r
e
的一端,大地电阻re的另一端连接电压源负极,当人或者其他物品触电时,电源通过线路触电物以及大地形成回路,产生漏电流,同时电源通过线路对地电阻和电容也形成一部分漏电流。如图2所示,根据漏电回路建立电路模型,线路阻抗为:
[0046]
z
l
=r
l
+jx
l
[0047]
其由线路长短决定,线路对地阻抗为:
[0048]
z
n
=r
n
+jx
n
[0049]
线路对地阻抗,一般为kω-mω级,z
j
为接触过渡阻抗,当不同接触物触电时,其阻抗不同,因而引起的漏电流也不同,如图3所示,根据freiberger生物体阻抗模型能够求得接触过渡阻抗z
j
,进而得到漏电回路总阻抗z为:
[0050]
z=z
l
+r
e
+z
n
//z
j

[0051]
由于接触过渡阻抗z
j
对总阻抗的影响最大,不同的接触过渡阻抗z
j
,即生物体或非生物体,观测到的总阻抗幅值相角会有不同,因此可通过对总阻抗的观测,从而识别是否生物体触电。
[0052]
步骤2、测量的电网电压,利用sogi和相应的锁频环计算电网电压的频率相角信息;
[0053]
根据测量得到的电网电压,利用sogi以及相应的锁频环计算电网电压的频率相角信息,同时需要实现单级sogi以及相应的锁频环,用以观测生产电压电流的同相及正交信号,并设计锁频环,观测电网频率。
[0054]
本步骤的具体实现方法为:根据测量得到的电网电压以及漏电流瞬时值,利用观测方法,估计计算漏电回路阻抗。如图4所示,sogi结构的时域实施表达式为
[0055][0056]
其中,k为增益系数,为输入电网电压频率观测值,u
in
为输入电压,v
α
=x1,v
β
=x2x1为输入电网电压的同相观测分量,x2为输入电网电压的正交观测分量,sogi结构输出电压观测值频域表达式为:
[0057][0058]
其中d(s)为带通滤波器,中心频率为q(s)为低通滤波器,在处相角为90
°
,s为拉普拉斯算子。通过sogi能够实现对输入电网电压的谐波滤除,以及获取其正交信号分量,该正交信号分量用于计算输入电网电压相角。
[0059]
通过sogi构造锁频环,观测输入电压的频率和相角信息,如图4所示,锁频环为:
[0060][0061]
其中e为电网电压与同相观测值误差,γ为锁频环积分系数,归一化后,取90。
[0062]
步骤3、常规sogi存在滤波性能与响应速度互相矛盾的问题,当设计较低截止频率,提高滤波性能时,则响应速度会降低,而当提高响应速度时,滤波性能又会下降,无法去除谐波影响,通过构建高阶sogi滤波器结构,用以观测基波漏电电流的幅值相角信息,有效滤除谐波影响,并得到漏电流幅值以及与电网电压的相角差。
[0063]
本步骤的具体实现方法为:如图5所示,采用n阶sogi滤波结构,第一级sogi输入为电网电压,第一级sogi输出同相电压观测值v
α1
作为第二级sogi输入,直到第n级sogi的输出为最终观测值,从而形成n阶sogi滤波器,并利用第n级sogi的观测误差与正交输出信号构建fll观测输入电压频率信息。
[0064]
同时采用第n级sogi输出信号v
α
和v
β
计算电网电压的幅值与相角:
[0065]
[0066][0067]
v
α
=x1,v
β
=x
2 x1为输入电网电压的同相观测分量,x2为输入电网电压的正交观测分量,检测的瞬时漏电流进过高阶sogi滤波器后,得到相应的电流观测值及其正交信号i
α
和i
β
,利用相角对i
α
和i
β
进行dq变换:
[0068][0069]
得到dq轴电流i
d
和i
q
,并求得到漏电流幅值和漏电流与电网电压的相角差:
[0070][0071][0072]
步骤4、根据所得电网电压以及漏电流幅值计算漏电回路阻抗,通过漏电回路阻抗的幅值以及相角信息,与理论阻抗模型进行比对,判断触电物是否为生命体,做出相应对策。
[0073]
本步骤的具体实现方法为:
[0074][0075][0076]
通过漏电回路阻抗的幅值以及相角信息,与漏电流模型的总阻抗进行比对,即可估计触电物是否为生命体,从而做出相应对策。
[0077]
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1