电源装置及其操作方法与流程

文档序号:30232689发布日期:2022-06-01 06:22阅读:82来源:国知局
电源装置及其操作方法与流程

1.本发明涉及一种装置及方法,且特别是涉及一种电源装置及其操作方法。


背景技术:

2.在电源供应器应用环境中,系统数据是极为重要的资产,而在输入电压不稳定的情况下,更是需要稳定的输出电压来维持系统运行或存档,于是在输入电源于正常供电期间突然断电时,电源供应器输出电力维持时间(hold up time)的要求与日俱增,由10ms到20ms不等。而该维持时间的设计,会直接影响到第二级直流转换器的工作范围的设计。
3.现行做法是将功率因数校正器的输出电容量加大,这样做会导致功率密度下降。或者将后级输入的工作范围加大,但通常越大的工作范围,其正常工作时的效率就会越低。
4.现有技术一,是在功率因数校正器后级,串联加入升压(boost)电路,在输入交流(ac)电压消失时,提供后级能量来维持输出。但其因为与电路为串联形式,在正常操作时会增加损耗,降低总体效率。并且当输入瞬间掉电再回复时,因为主电容的能量已下降至极低,输入端会有一个极大的涌浪电流(inrush current),该电流可能会导致输入端的断路器跳闸,或不断电系统(ups)进入保护。
5.现有技术二,是在功率因数校正器后级,并联方式加入一个三个开关降压型(buck)电路,其中一个开关用意是控制电容充电,另两个开关形成降压型电路,在输入交流电压消失时,提供主电容能量来维持输出。然而降压型电路对于输出电压的维持能力是有限的。


技术实现要素:

6.本发明提出一种电源装置及其操作方法,改善先前技术的问题。
7.在本发明的一实施例中,本发明所提出的电源装置包括功率因数校正器、辅助电容器、切换装置、辅助升压电路、控制器以及电压转换装置。切换装置具有第一端、第二端与中间端,第一端电性连接功率因数校正器的输出端,第二端电性连接辅助电容器的一端。辅助升压电路的输出端电性连接功率因数校正器的输出端,辅助升压电路的输入端电性连接中间端,辅助升压电路的接地端电性连接辅助电容器的另一端。控制器电性连接切换装置及辅助升压电路,电压转换装置具有输入端电性连接功率因数校正器的输出端。当功率因数校正器停止工作时,控制器控制切换装置与辅助升压电路的切换,使辅助电容器所储存的电力可通过切换装置与辅助升压电路来对功率因数校正器的输出端进行稳压。
8.在本发明的一实施例中,本发明所提出的电源装置的操作方法,电源装置包括功率因数校正器、电压转换装置以及与电压转换装置并联设置于功率因数校正器的输出端的辅助电路,操作方法包括以下步骤:(a)当功率因数校正器动作时,控制辅助电路中的切换装置于第一切换状态,使功率因数校正器的输出端通过切换装置对辅助电路中的辅助电容器进行充电;(b)当功率因数校正器停止工作未超出一预设时间时,将切换装置维持于第一切换状态;(c)当功率因数校正器停止工作超出预设时间时,将切换装置切换至第二切换状
态,使辅助电容器分别通过切换装置与辅助电路中的辅助升压电路来对功率因数校正器的输出端进行稳压。
9.综上所述,本发明的技术方案与现有技术相比具有明显的优点和有益效果。由于未来高效率高功率密度的要求越来越严峻,本发明提升维持时间的技巧可以大幅提升工作效率,借由减少主电容器电容的尺寸来提高功率密度,辅助电路易于模块化设计,并且没有传统式辅助升压的副作用,极具技术价值。
10.以下将以实施方式对上述的说明作详细的描述,并对本发明的技术方案提供更进一步的解释。
附图说明
11.为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂,附图的说明如下:
12.图1是依照本发明一实施例的一种电源装置的方框图;
13.图2是依照本发明一实施例的一种电源装置的电路图;以及
14.图3是依照本发明一实施例的一种电源装置的操作方法的流程图。
15.为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂,附图标记说明如下:
16.100:电源装置
17.101:输出端
18.102:输入端
19.103:接地端
20.110:功率因数校正器
21.111:输出端
22.112:接地端
23.120:辅助电路
24.121:辅助升压电路
25.122:切换装置
26.125:第一端
27.126:中间端
28.127:第二端
29.130:控制器
30.140:电压转换装置
31.141:输入端
32.142:负载
33.143:接地端
34.150:第二电感器
35.152:倍压电路
36.160:整流器
37.162:输入电源
38.170:光耦合器
39.c1:辅助电容器
40.c2:主电容器
41.d1:辅助二极管
42.d2:二极管
43.d11:第一本体二极管
44.d12:第二本体二极管
45.l1:辅助电感器
46.l2:第一电感器
47.r:限流电阻器
48.s1:第一半导体开关
49.s2:第二半导体开关
50.s3:辅助开关
51.s4:开关
52.s5:切换开关
53.vcc:辅助电源
54.vc3:电压
55.vc4:电压
56.200:操作方法
57.s201~s203:步骤
具体实施方式
58.为了使本发明的叙述更加详尽与完备,可参照附图及以下所述各种实施例,附图中相同的号码代表相同或相似的元件。另一方面,众所周知的元件与步骤并未描述于实施例中,以避免对本发明造成不必要的限制。
59.于实施方式与权利要求中,涉及“连接”的描述,其可泛指一元件通过其他元件而间接耦合至另一元件,或是一元件无须通过其他元件而直接连结至另一元件。
60.于实施方式与权利要求中,涉及“源极/漏极”的描述,其可泛指一元件可视实际应用而做为源极或漏极。
61.于实施方式与权利要求中,除非内文中对于冠词有所特别限定,否则“一”与“该”可泛指单一个或复数个。
62.本文中所使用的“约”、“大约”或“大致”是用以修饰任何可些微变化的数量,但这种些微变化并不会改变其本质。于实施方式中若无特别说明,则代表以“约”、“大约”或“大致”所修饰的数值的误差范围一般是容许在百分之二十以内,优选地是于百分之十以内,而更优选地则是于百分之五以内。
63.图1是依照本发明一实施例的一种电源装置100的电路图。如图1所示,在功率因数校正器110后级,加入一个辅助电路120。辅助电路120包括辅助升压电路121、切换装置122以及辅助电容器c1。在架构上,切换装置122的第一端125与第二端127可为两相对的末端,切换装置122的中间端126可为介于第一端125与第二端127之间的节点,切换装置122的第
一端125电性连接功率因数校正器110的输出端111,辅助电容器c1的一端电性连接切换装置122的第二端127,辅助升压电路121的输出端101电性连接功率因数校正器110的输出端111,辅助升压电路121的输入端102电性连接切换装置122的中间端126,辅助升压电路121的接地端103电性连接辅助电容器c1的另一端。控制器130电性连接功率因数校正器110、切换装置122及辅助升压电路121,电压转换装置140(如:直流对直流转换器)与辅助电路120并联设置,电压转换装置140的输入端141电性连接功率因数校正器110的输出端111。电压转换装置140的输出电性连接负载142。功率因数校正器110的接地端112、辅助升压电路121的接地端103与电压转换装置140的接地端143共地。实作上,控制器130可泛指电源装置100中的一个、多个或全部的控制电路,亦可选择性涵盖外部控制电路,熟习此项技艺者当视实际应用而弹性设计之。
64.当输入电源162断电时,控制器可送出禁能信号使功率因数校正器110停止工作,并通过切换开关s5(如:双载子接面晶体管)借以对切换装置122进行切换,且启动辅助升压电路121,使辅助电容器c1所储存的电力可通过切换装置122与辅助升压电路121,对功率因数校正器110的输出端111进行稳压,亦即将辅助电容器c1的能量回灌至主回路(如:功率因数校正器110),使功率因数校正器110的输出端111电压保持在某个电压水平之上(如:功率因数校正器110在正常运行时,输出端111电压的95%以上),以维持后段功率级(如:电压转换装置140及负载142)的操作。此操作可以使得后段功率级的工作范围缩小,因此可以设计在最佳工作点。
65.为了对上述电源装置100的硬件架构做更进一步的阐述,请参照图1、图2,图2是依照本发明一实施例的一种电源装置100的电路图。在图2中,辅助升压电路121包括辅助二极管d1、辅助开关s3以及辅助电感器l1。在架构上,辅助二极管d1的阴极电性连接辅助升压电路121的输出端101,且电性连接功率因数校正器110的输出端111。辅助开关s3(如:n通道增强型金属氧化物半导体场效晶体管)的一端(如:漏极)电性连接辅助二极管d1的阳极,辅助开关s3的另一端(如:源极)电性连接接地端103,辅助开关s3的控制端(如:栅极)耦接控制器130。辅助电感器l1的一端电性连接辅助开关s3的一端,辅助电感器l1的另一端电性连接辅助升压电路121的输入端102。
66.在本发明的一实施例中,切换装置122可为背靠背装置,其包括第一半导体开关s1以及第二半导体开关s2。在架构上,第一半导体开关s1(如:n通道增强型金属氧化物半导体场效晶体管)的一端(如:漏极)电性连接第一端125及功率因数校正器110的输出端111,第一半导体开关s1的另一端(如:源极)电性连接中间端126及辅助升压电路121的输入端102,第一半导体开关s1具有第一本体二极管d11,第一本体二极管d11的阴极与阳极分别电性连接第一半导体开关s1的一端与另一端。第二半导体开关s2(如:n通道增强型金属氧化物半导体场效晶体管)的一端(如:源极)电性连接第一半导体开关s1的另一端、中间端126及辅助升压电路121的输入端102,第二半导体开关s2的另一端(如:漏极)电性连接第二端127及辅助电容器c1的一端,第二半导体开关s2具有第二本体二极管d12,第二本体二极管d12的阳极与阴极分别电性连接第二半导体开关s2的一端与另一端。
67.在本发明的一实施例中,切换装置122还包括限流电阻器r。在架构上,限流电阻器r电性连接于第一半导体开关s1与功率因数校正器110的输出端111之间。或者,在本发明的另一实施例中,借由控制器130控制第一半导体开关s1的电流流量,从而省略限流电阻器r。
68.在本发明的一实施例中,功率因数校正器110包括主电容器c2、二极管d2、开关s4以及第一电感器l2。在架构上,主电容器c2的两端分别电性连接功率因数校正器110的输出端111与接地端112,且分别电性连接辅助升压电路的输出端101与接地端103。二极管d2的阴极电性连接辅助二极管d1的阴极。开关s4(如:n通道增强型金属氧化物半导体场效晶体管)的两端(如:漏极、源极)分别电性连接二极管d2的阳极与接地端112,开关s4的控制端(如:栅极)耦接控制器130。第一电感器l2的两端分别电性连接二极管d2的阳极与整流器160,整流器160电性连接输入电源162。
69.在本发明的一实施例中,电源装置100还包括第二电感器150以及倍压电路152。在架构上,第二电感器150与第一电感器l2电感耦合,倍压电路152电性连接第二电感器150。
70.在本发明的一实施例中,电源装置100还包括光耦合器170。在架构上,光耦合器170电性连接倍压电路152、控制器130与切换装置122。
71.在本发明的一实施例中,电源装置100还包括切换开关s5(如:双载子接面晶体管)。在架构上,切换开关s5的一端(如:射极)电性连接第一半导体开关s1的另一端(如:源极),而另一端(如:集极)电性连接第二半导体开关s2的控制端(如:栅极),切换开关s5的控制端(如:基极)电性连接第一半导体开关s1的控制端(如:栅极)并耦接控制器130。借此,控制器130可以仅使用一只控制引脚,就可让第一、第二半导体开关s1、s2的控制信号一定是反向。换言之,第一半导体开关s1导通,第二半导体开关s2就关断;反之,第一半导体开关s1关断,第二半导体开关s2就导通。此为本发明的其中一实施例,然不以此为限,本发明的第一半导体开关s1与第二半导体开关s2也可直接由控制器130分别提供独立的控制信号做控制。
72.具体而言,于运行时,由于一次侧功率因数校正器110需要侦测交流丧失(ac loss),以确保输入电源162断电,但其侦测需要做些延迟,避免于交流电于正常零交越点时误动作,因此电源装置100的运行可分为三个区间:正常情况、交流丧失未超出预设时间、交流丧失已超出预设时间。
73.于正常情况(即,交流不掉电)下,输入电源162提供交流电,通过整流器160转换为直流电,控制器130可借由调制电压vc4给开关s4的控制端,以控制开关s4交替地导通与关断,使功率因数校正器110动作,另可通过第一电感器l2耦合电力至第二电感器150,使倍压电路152提供辅助电源vcc给切换装置122,控制器130并送出控制信号以通过切换开关s5导通第一半导体开关s1并关断第二半导体开关s2,辅助开关s3处于关断状态,使辅助升压电路121不动作,功率因数校正器110的输出端111的电压通过第一半导体开关s1及第二本体二极管d12对辅助电容器c1进行充电。充电完成后,此回路几乎不耗电,因此在一般工作状况下不会造成损耗而降低电源转换效率。
74.于交流丧失未超出预设时间(如:约2ms),亦即输入电源162断电,第一半导体开关s1维持导通且第二半导体开关s2维持关断,功率因数校正器110停止工作未超出预设时间,辅助开关s3亦维持关断状态,此时主电容器c2因提供电力给电压转换装置140,故其电压低于辅助电容器c1的电压,使第二本体二极管d12为截止状态。
75.于交流丧失超出预设时间,亦即功率因数校正器110停止工作超出预设时间,控制器130可送出一与原先反相的控制信号以通过切换开关s5关断第一半导体开关s1并导通第二半导体开关s2,并借由调制电压vc3给辅助开关s3的控制端,以控制辅助开关s3交替地导
通与关断,使辅助升压电路121动作。由于此时辅助电容器c1的电压高于主电容器c2的电压,因此在电流路径上会有一路是辅助电容器c1通过第二半导体开关s2及第一本体二极管d11对主电容器c2进行充电,另一路则是通过辅助升压电路121中辅助开关s3受控制器130所提供的脉冲宽度调变(pwm)信号控制,以对主电容器c2进行充电。当辅助电容器c1的电压持续下降,辅助开关s3的脉冲宽度调变(pwm)控制信号的责任周期越来越大,来达到使主电容器c2稳压,即可达到加长维持时间(hold up time)的效果。
76.由于主回路上的主电容器c2会被维持在一个高点,若输入电源162瞬间掉电并回复时,不会产生极大的涌浪电流,进而保护线路上所有元件。
77.另一方面,由于现今电源供应器瓦特数需求与日俱增,且维持时间需求越来越长,但因为关机时会因主电容器c2电压降低而使后级隔离级电路(如:直流对直流转换器)的一次侧电流逐渐增加,甚至高于开关(如:金属氧化物半导体场效晶体管)本身耐流大小而必需选用更高耐流的半导体规格,而辅助电路120架构可以在关机时使隔离级的输入电压箝制固定的电压值,进而延长后级电源转换器的可工作时间,而不须更换更高耐流的元件。
78.为了对上述电源装置100的操作方法做更进一步的阐述,请同时参照图1~图3,图3是依照本发明一实施例的一种电源装置100的操作方法200的流程图。于图1、图2中,电源装置100包括功率因数校正器110、电压转换装置140以及与电压转换装置140并联设置于功率因数校正器110的输出端111的辅助电路120。如图3所示,操作方法200包含步骤s201~s203(应了解到,在本实施例中所提及的步骤,除特别叙明其顺序者外,均可依实际需要调整其前后顺序,甚至可同时或部分同时执行)。
79.于步骤s201,当功率因数校正器110动作时,控制辅助电路120中的切换装置122于第一切换状态,使功率因数校正器110的输出端111通过切换装置122对辅助电路120中的辅助电容器c1进行充电。
80.于步骤s202,当功率因数校正器110停止工作未超出预设时间时,将切换装置122维持于第一切换状态。此时,功率因数校正器110中的主电容器c2提供电力给并联于辅助电路120的电压转换装置140。
81.于步骤s203,当功率因数校正器110停止工作超出预设时间时,将切换装置122切换至第二切换状态,使辅助电容器c1分别通过切换装置122与辅助电路120中的辅助升压电路121对功率因数校正器110的输出端111进行稳压。
82.在本发明的一实施例中,步骤s201为正常情况(即,输入电源162不掉电)的操作方式,当功率因数校正器110动作时,切换装置122的第一切换状态为导通第一半导体开关s1并关断第二半导体开关s2,辅助开关s3处于关断状态,使辅助升压电路121不动作,功率因数校正器110的输出端111的电压通过第一半导体开关s1及第二本体二极管d12对辅助电容器c1进行充电。另外,通过第一电感器l2与第二电感器150电感耦合,使倍压电路152提供辅助电源vcc给切换装置122。
83.在本发明的一实施例中,步骤s202为输入电源162丧失未超出预设时间的操作方式,当功率因数校正器110停止工作未超出预设时间时,导通第一半导体开关s1并关断第二半导体开关s2,辅助开关s3处于关断状态,主电容器c2的电压低于辅助电容器c1的电压,使第二本体二极管d12为截止状态,由主电容器c2提供电力给电压转换装置140。
84.在本发明的一实施例中,步骤s203为输入电源162丧失超出预设时间的操作方式,
当功率因数校正器110停止工作超出预设时间时,切换装置122的第二切换状态为关断第一半导体开关s1并导通第二半导体开关s2,并控制辅助开关s3交替地导通与关断,使辅助升压电路121动作,辅助电容器c1同时也通过第二半导体开关s2及第一本体二极管d11对主电容器c2进行充电,亦通过辅助电感器l1及辅助二极管d1对主电容器进行充电。
85.虽然本发明的实施方式公开如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视后附的权利要求所界定者为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1