一种用于电动汽车充电器的PWM控制串联谐振变换器及方法

文档序号:28500375发布日期:2022-01-15 04:47阅读:233来源:国知局
一种用于电动汽车充电器的PWM控制串联谐振变换器及方法
一种用于电动汽车充电器的pwm控制串联谐振变换器及方法
技术领域
1.本发明属于电力电子领域,具体涉及一种用于电动汽车充电器的pwm控制串联谐振变换器及方法。


背景技术:

2.随着新能源的不断发展,电动汽车的市场不断扩大,人们对电动汽车的充电设施需求变得越来越大,充电链接器的两种主流协议为chademo和ccs,它们有不同的电池电压范围。一般情况下,chademo电压范围为500v以下的电池,ccs的电压范围为950v以下的电池。因此为了保证包括采用chademo和ccs两种协议的电动汽车,需要开发一种覆盖范围极宽的电动汽车充电器。
3.在电动汽车充电器中,串联谐振变换器src和llc变换器由于运用了少量的元件而普遍应用于提高充电器中dc/dc变换器的效率。src区别于llc变换器的地方在于它的磁化电感大小,src的充磁电感较大,而llc的充磁电感较小,大的充磁电感可以引起其循环损耗较小,在谐振频率处的效率较高。然而,src仅提供降压转换比,llc变换器在开关频率变小时可以获得启动增益。因此,src的循环电流较小,但增益范围有限。
4.现有技术中pwm谐振变换器的效率随着输出电压的增加而降低。特别是当需要较高的升压电压转换比时,效率显著下降。这是因为随着增益的增加,采用传统pwm的谐振变换器会远离谐振点操作。在深升压区,谐振电流波形呈三角形,峰值和均方根值较大,导致较大的传导和铁芯损耗。此外,增压开关也会随着大功率开关关闭峰值电流导致较大的关断损耗。


技术实现要素:

5.针对现有技术中存在的问题,本发明提供一种用于电动汽车充电器的pwm控制串联谐振变换器及方法。
6.本发明是通过以下技术方案来实现:
7.一种用于电动汽车充电器的pwm控制串联谐振变换器,其特征在于,包括变压器;
8.所述变压器输入端为半桥电路,所述半桥电路包括输入电压、开关管、开关管s2、谐振电感,谐振电容;
9.所述电压正极连接开关管漏极,负极分别连接开关管s2源极和变压器输入侧;
10.所述开关管和开关管s2并联设置,开关管的源极和开关管s2的漏极分别连接谐振支路电感lr一端,谐振支路电感lr另一端连接有电容cr;
11.所述变压器输出端为全桥整流桥电路,全桥整流桥电路包括开关管s3、开关管s4、稳压二极管d1、稳压二极管d2和电容cb;
12.所述变压器输出端分别连接有开关管s3和开关管s4,所述开关管s3漏极连接有电容cb正极和稳压二极管d2正极,源极连接开关管s4的源极;开关管s4的漏极连接电容cb负极和稳压二极管d1正极;所述稳压二极管d1和稳压二极管d2负极相连。
13.进一步,所述开关管s3、开关管s4、稳压二极管d1和稳压二极管d2共同构成全桥结构且连接输出大电容c0,并形成第二端口。
14.进一步,所述开关管、开关管s2、开关管s3和开关管s4采用mosfet开关管。
15.进一步,所述电容cb采用闭塞电容。
16.进一步,所述开关管和开关管s2与变压器构成第一桥,开关管和开关管s2由占空比为0.5的互补信号驱动。
17.进一步,所述第一桥和输入电压形成第一端口。
18.进一步,所述输入电压采用直流电源。
19.进一步,所述电容cb为飞跨电容。
20.一种pwm控制串联谐振变换方法,其特征在于,包括以下步骤:
21.s1:开启开关管s1,谐振支路电流为0,谐振支路开始发生谐振,谐振电流通过变压器转换至全桥整流桥电路,并经过开关管s3稳压二极管d1输送至输出大电容c0,此过程持续半个谐振周期,直至开关管s1关闭;
22.s2:当开关管s1关闭,开关管s2和开关管s3开启,谐振电感电流增加,使得半桥电路具有向全桥整流桥电路升压能力;
23.s3:开启整流二极管d2和开关管s4,全桥整流桥电路的谐振电流成周期变化,直至谐振电流为0,整流二极管d2和开关管s4关闭;
24.s4:在余下的切换周期内,通过开关管s2使得变压器的磁化电流减小,直至为0,完成一个周期的谐振变换。
25.与现有技术相比,本发明具有以下有益的技术效果:
26.本发明公开一种用于电动汽车充电器的pwm控制串联谐振变换器及方法,基于改进的src串联谐振变换器的拓扑结构,随着输出电压的增加,改变唤起的二次侧整流器逐渐由全桥整流器转变为具有简单pwm控制的倍压整流器;开关频率固定在升压模式的谐振频率上,采用地全桥和倍压整流器自然地实现了“双峰效率点”,而两个效率峰值点限制了效率下降在一个广泛地增益范围内,实现了高和平坦地效率曲线;同时,恒定开关频率操作允许简单的控制和更容易的效率优化,因此本发明提出的转换器的效率可以在整个输出电压范围内保持较高。本方法在vout从vin/2n增加到vin/n时,所提出的转换器更接近“第二”谐振点操作,第二个谐振点限制由pwm增益提升引起的大峰值和rms电流,能够提高谐振点操作时的效率,使得宽增益范围具有两个最高效率点。
附图说明
27.图1为本发明具实施中一种用于电动汽车充电器的pwm控制串联谐振变换器电路图;
28.图2为本发明具实施中当vout=vin/2n时,变换器工作在pwm1模式时序图;
29.图3为本发明具实施中当vin/2n《vout《vin/n时,变换器工作在pwm1模式时序图;
30.图4为本发明具实施中变换器工作在pwm1模式的一种等效电路图;
31.图5为本发明具实施中变换器工作在pwm1模式的一种等效电路图;
32.图6为本发明具实施中变换器工作在pwm1模式的一种等效电路图;
33.图7为本发明具实施中当vout=vin/2n时,变换器工作在pwm2模式时序图;
34.图8为本发明具实施中当vout》vin/n时,变换器工作在pwm2模式时序图;
35.图9为本发明具实施中变换器工作在pwm2模式的一种等效电路图;
36.图10为本发明具实施中变换器工作在pwm2模式的一种等效电路图;
37.图11为本发明具实施中变换器工作在pwm2模式的一种等效电路图;
具体实施方式
38.下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
39.为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
40.需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
41.本发明提供一种用于电动汽车充电器的pwm控制串联谐振变换器,如图1所示,包括变压器;
42.所述变压器输入端为半桥电路,所述板桥电路包括输入电压、开关管、开关管s2、谐振电感,谐振电容;
43.所述电压正极连接开关管漏极,负极分别连接开关管s2源极和变压器输入侧;
44.所述开关管和开关管s2并联设置,开关管的源极和开关管s2的漏极分别连接谐振支路电感lr一端,谐振支路电感lr另一端连接有电容cr;
45.所述变压器输出端为全桥整流桥电路,全桥整流桥电路包括开关管s3、开关管s4、稳压二极管d1、稳压二极管d2和电容cb;
46.所述变压器输出端分别连接有开关管s3和开关管s4,所述开关管s3漏极连接有电容cb正极和稳压二极管d2正极,源极连接开关管s4的源极;开关管s4的漏极连接电容cb负极和稳压二极管d1正极;所述稳压二极管d1和稳压二极管d2负极相连。
47.具体的,所述半桥电路和全桥整流桥电路的匝数比为np:ns=n:1;
48.进一步的,所述开关管s3、开关管s4、稳压二极管d1和稳压二极管d2共同构成全桥结构且连接输出大电容c0,并形成第二端口,具体的,所述输出大电容c0用于滤波后输出,使得输出电流电压更加平稳。
49.进一步的,所述开关管、开关管s2、开关管s3和开关管s4采用mosfet开关管。
50.进一步的,所述电容cb采用闭塞电容。
51.进一步的,所述开关管和开关管s2与变压器构成第一桥,开关管和开关管s2由占空
比为0.5的互补信号驱动。
52.进一步的,所述第一桥和输入电压形成第一端口。
53.进一步的,所述输入电压采用直流电源。
54.进一步的,所述电容cb为飞跨电容。
55.本发明提供一种pwm控制串联谐振变换方法,包括以下步骤:
56.s1:开启开关管s1,谐振支路电流为0,谐振支路开始发生谐振,谐振电流通过变压器转换至全桥整流桥电路,并经过开关管s3稳压二极管d1输送至输出大电容c0,此过程持续半个谐振周期,直至开关管s1关闭;
57.s2:当开关管s1关闭,开关管s2和开关管s3开启,谐振电感电流增加,使得半桥电路具有向全桥整流桥电路升压能力;
58.s3:开启整流二极管d2和开关管s4,全桥整流桥电路的谐振电流成周期变化,直至谐振电流为0,整流二极管d4和开关管s4关闭;
59.s4:在余下的切换周期内,通过开关管s2使得变压器的磁化电流减小,直至为0,完成一个周期的谐振变换。
60.具体的,现有技术中pwm谐振变换器的效率随着输出电压的增加而降低。特别是当需要较高的升压电压转换比时,效率显著下降。这是因为随着增益的增加,采用传统pwm的谐振变换器会远离谐振点操作。在深升压区,谐振电流波形呈三角形,峰值和均方根值较大,导致较大的传导和铁芯损耗。此外,增压开关也会随着大功率开关关闭;
61.在本技术中,pwm1模式下的时域包括,当vout=vin/2n时,如图2所示,本发明一种用于电动汽车充电器的pwm控制串联谐振变换器主要工作于带有全桥整流的常规半桥串联谐振变换器;当变压器输出端的全桥整流桥电路作为全桥整流器工作,具有升压占空比。
62.在pwm1区,升压占空比随vout增加而增加,是用开关管s3的扩展占空比实现的,当vout从vin/2n增加到vin/n时,如图3所示,从0增加到0.5,当vout变为vin/n时,变为0.5,开关管s3完全打开。
63.s1:t0时刻,如图4所示,开关管s1打开,此时谐振支路电流为0,此时,谐振支路开始发生谐振,谐振电流通过变压器转换至变压器输出端的全桥整流桥电路,经二次侧整流元件开关管s3与稳压二极管d1送至输出电容;此步骤持续半谐振周期,半桥电路开关在谐振频率以0.5占空比工作,因此谐振支路电流在s1结束时再次变为零,开关管关闭时s1结束。
64.s2:模式2在开关管s2被打开时开始,在步骤s1结束时,如图5所示,谐振电感电流再次变为零,由于开关管s3仍然是打开的,而导致占空比延长,谐振电感电流迅速增长,由于占空比的延长,为变压器输出端的全桥整流桥电路提供了升压能力,步骤s2的等效电路图如图5所示,步骤s2持续时间为,当谐振电感电流得到足够的提升后步骤s2结束。由于步骤s2延长了开关管s1的占空比db,一次侧的开关可以实现零电压开启;而当开关管s3进一步扩大开通时间,可以增加输入vout,同时也可以实现db的增大。
65.s3:在整流二极管d2和开关管s4打开时开始,如图6所示,此时谐振电感电流变为,其中为切换周期。在步骤s2中提升的谐振电流被送到输出侧,并且谐振电感电流降低。等效电路如图6所示。步骤s3持续到谐振电感电流到达零为止,此时整流二极管d2和开关管s4被关闭。
66.s4:在剩余的切换期间,通过开关管s2使变压器的磁化电流减小,逐渐减小至0。当时开关管s2被关闭,开关管s1被打开,所提变换器回到步骤s1。
67.在pwm 1区域,升压占空比db随着vout的增加而增加。db通过开关管s1的延长占空比实现。当vout从vin/2n增加到vin/n时,db从零增加到0.5,当vout变为vin/n时,db变为0.5和s1完全开启。
68.当步骤s4结束后,开关管s4调控v
out
的区域为pwm2区域,如图7、图8、图9、图10和图11所示,此区域操作步骤和pwm1区域操作的原理一致。进而由于开关频率固定在升压模式的谐振频率上,因此变换器采用地全桥和倍压整流器自然地实现了“双峰效率点”,而两个效率峰值点限制了效率下降在一个广泛地增益范围内,实现了高和平坦地效率曲线。
69.最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1