一种利用梯级水电扩建全功率变速抽水蓄能机组的方法与流程

文档序号:28810249发布日期:2022-02-09 03:47阅读:312来源:国知局
一种利用梯级水电扩建全功率变速抽水蓄能机组的方法与流程

1.本发明涉及抽水蓄能技术领域,更具体地说,它涉及一种利用梯级水电扩建全功率变速抽水蓄能机组的方法。


背景技术:

2.随着以新能源为主体的新型电力系统加快构建,超大规模新能源陆续将接入电网,预计到2030年新能源装机将突破12亿千瓦,新能源固有的随机性、波动性、间歇性给电力系统电力电量平衡、安全稳定控制都带来极大的挑战。为提升系统灵活调节能力,国家已相继出台多项政策支持多能互补、储能等的发展。作为最优质的储能技术之一,抽水蓄能已成为提升系统调节能力的重要手段之一。
3.按照转速是否变化,抽水蓄能可分为定速抽水蓄能机组和可变速抽水蓄能机组。其中变速机组发电工况功率可同时通过变导叶或变转速进行调节,调节范围更广,抽水工况一般具有一定的功率调节能力,可根据水头等运行工况变化调整最优转速,提高抽水和发电效率,响应速度更快,被认为是最具代表性的国际前沿技术,是抽水蓄能领域重大技术变革和电网柔性技术的重要体现。得益于变速机组具有的快速响应、宽调节范围、无功支撑等优点,非常适合与新能源进行互补联合发电,特别是补偿新能源快速功率波动。而根据变转速原理不同,可分为双馈式和全功率式。双馈式变流器容量小一般用于大型机组,全功率式调节速度快,适合在中小型机组上使用。
4.然而,传统常规大型抽水蓄能勘测、设计、建设周期长,一般需要6-8年时间,很难满足2030年实现碳达峰目标对新能源接入的需求。因此,如何研究设计一种能够克服上述缺陷的一种利用梯级水电扩建全功率变速抽水蓄能机组的方法是我们目前急需解决的问题。


技术实现要素:

5.为解决现有技术中的不足,本发明的目的是提供一种利用梯级水电扩建全功率变速抽水蓄能机组的方法,以全功率变速恒频抽抽水蓄能机组技术为基础,利用常规水电水工系统的冗余量,在常规梯级水电基础上扩建形成中小型变速抽水蓄能电站,作为一种优质的储能资源,具有建设周期短、响应速度快、调节范围广、运行效率高、无功支撑能力强等优点,非常适合与新能源进行互补联合发电。
6.本发明的上述技术目的是通过以下技术方案得以实现的:一种利用梯级水电扩建全功率变速抽水蓄能机组的方法,包括以下步骤:
7.根据梯级水电系统的冗余量和新能源互补需求确定全功率变速抽水蓄能机组的容量;
8.在梯级水电系统中的上水库和下水库之间并联接入已确定容量的全功率变速抽水蓄能机组。
9.进一步的,所述全功率变速抽水蓄能机组的容量确定过程具体为:
10.根据机组与新能源互补的需求,确定最小容量;
11.对扩建抽水蓄能后的原水道进行安全复核,确定最大容量;
12.若最大容量大于或等于最小容量,则以最小容量为全功率变速抽水蓄能机组的容量;
13.若最大容量小于最小容量,则以最大容量为全功率变速抽水蓄能机组的容量。
14.进一步的,所述最小容量的确定过程具体为:
15.获取新能源的装机容量和典型功率曲线;
16.依据置信概率确定预设时间内新能源功率波动容量的上限值;
17.根据新能源功率波动容量的上限值和新能源的装机容量之积计算得到不考虑常规水电机组参与调节时的抽水蓄能容量的最小容量。
18.进一步的,所述最大容量的确定过程具体为:
19.获取梯级水电系统中的原常规水电装机容量和水力数据;
20.在原常规水电装机容量基础上逐步增加容量,并进行调保计算安全复核,得到梯级水电系统可扩机组的最大容量。
21.进一步的,所述全功率变速抽水蓄能机组的输入口通过扩建支管连接梯级水电系统中的压力钢管。
22.进一步的,所述梯级水电系统中的下水库新建取水口,全功率变速抽水蓄能机组的输出口通过尾水管连接取水口。
23.进一步的,所述全功率变速抽水蓄能机组的电力输出与梯级水电系统的电力输出以共同的送出线路输出。
24.进一步的,所述全功率变速抽水蓄能机组由依次连接的水泵水轮机、发电电动机、双向变流器以及变压器组成。
25.进一步的,所述双向变流器配置有旁路断路器。
26.进一步的,所述梯级水电系统由依次设置的上水库、坝址、引水隧洞、压力钢管、常规机组以及下水库组成;
27.或,所述梯级水电系统由依次设置的上水库、坝址、引水隧洞、调压井、压力钢管、常规机组以及下水库组成。
28.与现有技术相比,本发明具有以下有益效果:
29.1、本发明提出的一种利用梯级水电扩建全功率变速抽水蓄能机组的方法,以全功率变速恒频抽抽水蓄能机组技术为基础,利用常规水电水工系统的冗余量,在常规梯级水电基础上扩建形成中小型变速抽水蓄能电站,作为一种优质的储能资源,具有建设周期短、响应速度快、调节范围广、运行效率高、无功支撑能力强等优点,非常适合与新能源进行互补联合发电;
30.2、本发明通过对待扩建的全功率变速抽水蓄能机组的容量进行精准分析确定,使得扩建后的抽水蓄能运行可靠,增强了现有资源的最大利用率;
31.3、本发明在双向变流器上并联旁路断路器,双向变流器检修或故障退出运行时,机组可作为定速抽水蓄能发电机组继续保持运行,提升了机组运行的灵活性和可靠性。
附图说明
32.此处所说明的附图用来提供对本发明实施例的进一步理解,构成本技术的一部分,并不构成对本发明实施例的限定。在附图中:
33.图1是本发明实施例中扩建的整体结构示意图;
34.图2是本发明实施例中旁路断路器的安装示意图。
35.附图中标记及对应的零部件名称:
36.1、上水库;2、坝址;3、引水隧洞;4、调压井;5、压力钢管;6、扩建支管;7、水泵水轮机;8、发电电动机;9、双向变流器;10、变压器组;11、送出线路;12、竖井式厂房;13、尾水管;14、取水口;15、下水库;16、常规机组;17、旁路断路器。
具体实施方式
37.为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
38.需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。
39.需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
40.此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
41.实施例:一种利用梯级水电扩建全功率变速抽水蓄能机组的方法,包括以下步骤:
42.s1:根据梯级水电系统的冗余量和新能源互补需求确定全功率变速抽水蓄能机组的容量;
43.s2:在梯级水电系统中的上水库1和下水库15之间并联接入已确定容量的全功率变速抽水蓄能机组。
44.全功率变速抽水蓄能机组的容量s确定过程具体为:根据机组与新能源互补的需求,确定最小容量s
min
;对扩建抽水蓄能后的原水道进行安全复核,确定最大容量s
max
;如果s
max
≥s
min
,则s=s
min
;如果s
max
<s
min
,则s=s
max

45.其中,最小容量s
min
的确定过程具体为:获取新能源的装机容量和典型功率曲线;依据置信概率确定预设时间内新能源功率波动容量的上限值;根据新能源功率波动容量的上限值和新能源的装机容量之积计算得到不考虑常规水电机组参与调节时的抽水蓄能容量的最小容量。
46.最大容量的确定过程具体为:获取梯级水电系统中的原常规水电装机容量和水力数据;在原常规水电装机容量基础上逐步增加容量,并进行调保计算安全复核,得到梯级水
电系统可扩机组的最大容量。
47.以四川某水光互补系统为例,光伏电站装机容量50mw,根据光伏出力统计,按照95%置信概率,10s内光伏功率波动容量小于10%。为了满足光伏波动调节,在不考虑常规水电机组参与调节时,抽水蓄能容量至少占光伏装机约10%,即s
min
=5mw。拟扩建抽水蓄能的原常规水电装机容量为54mw,经过调保计算安全复核后,水工系统最大可扩机组容量s
max
=5.2mw,由于s
max
>s
min
,则s=5mw。
48.如图1所示,全功率变速抽水蓄能机组的输入口通过扩建支管6连接梯级水电系统中的压力钢管5。梯级水电系统中的下水库15新建取水口14,全功率变速抽水蓄能机组的输出口通过尾水管13连接取水口14。全功率变速抽水蓄能机组的电力输出与梯级水电系统的电力输出以共同的送出线路11输出。
49.在本实施例中,全功率变速抽水蓄能机组由依次连接的水泵水轮机7、发电电动机8、双向变流器9以及变压器组10组成。水泵水轮机7、发电电动机8、双向变流器9以及变压器形成竖井式厂房12。
50.如图2所示,双向变流器9并联设置有旁路断路器17,双向变流器9上并联旁路断路器17,双向变流器9检修或故障退出运行时,机组可作为定速抽水蓄能发电机组继续保持运行,提升了机组运行的灵活性和可靠性。
51.作为一种可选的实施方式,梯级水电系统由依次设置的上水库1、坝址2、引水隧洞3、调压井4、压力钢管5、常规机组16以及下水库15组成。
52.作为另一种可选的实施方式,梯级水电系统由依次设置的上水库1、坝址2、引水隧洞3、压力钢管5、常规机组16以及下水库15组成。
53.工作原理:以全功率变速恒频抽抽水蓄能机组技术为基础,利用常规水电水工系统的冗余量,在常规梯级水电基础上扩建形成中小型变速抽水蓄能电站,作为一种优质的储能资源,具有建设周期短、响应速度快、调节范围广、运行效率高、无功支撑能力强等优点,非常适合与新能源进行互补联合发电;此外通过对待扩建的全功率变速抽水蓄能机组的容量进行精准分析确定,使得扩建后的抽水蓄能运行可靠,增强了现有资源的最大利用率;
54.此外,通过双向变流器9上并联旁路断路器17,双向变流器9检修或故障退出运行时,机组可作为定速抽水蓄能发电机组继续保持运行,提升了机组运行的灵活性和可靠性。
55.以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1