一种面向民宿能量管理系统及分布式光伏发电的负荷管理优化调度方法

文档序号:37551051发布日期:2024-04-08 14:00阅读:10来源:国知局
一种面向民宿能量管理系统及分布式光伏发电的负荷管理优化调度方法

本发明涉及电力系统自动化领域,更具体地,涉及一种面向民宿能量管理系统及分布式光伏发电的负荷管理优化调度方法。


背景技术:

1、近年来,尽管众多民宿已经接入了光伏用电,然而大部分民宿光伏利用率低,弃电现象严重,急需对光伏用电进行合理调配。在此背景下,亟需针对民宿用电现状,应对民宿产业用电的时段性特点,构建计及分布式光伏发电的负荷管理优化调度方式,在满足用户满意度的前提下,建立光伏出力预测模型和负荷优化调度策略,保障民宿供电的节能性,为民宿产业发展提供有力保障。因此急需一种面向民宿能量管理系统及分布式光伏发电的负荷管理优化调度方法。


技术实现思路

1、为了解决现阶段民宿能量管理系统在分布式光伏发电场景中的负荷调度问题,本发明提供一种面向民宿能量管理系统及分布式光伏发电的负荷管理优化调度方法。该方法构建分布式光伏出力短期预测模型,搭建计及用户满意度的民宿电器运行模型,研究以环保性为目标的多样性负荷优化调度流程,构建用户节能用电激励机制。在保证用户用电满意度的同时,求解负荷管理优化调度策略。本发明解决其技术问题所采用的技术方案是:

2、一种面向民宿能量管理系统及分布式光伏发电的负荷管理优化调度方法,包括以下步骤:

3、步骤1:构建分布式光伏出力短期预测模型;

4、步骤2:搭建计及用户满意度的民宿电器运行模型;

5、步骤3:建立以环保性为目标的多样性负荷优化调度策略。

6、上述技术方案中,进一步地,所述的步骤1构建分布式光伏出力短期预测模型,具体实现方法如下:

7、光伏发电出力模型是基于过去2小时的光伏出力数据,结合当前天气情况,预测未来1小时内的光伏出力,最终形成24小时共48个时段的光伏出力psolar(j),j=1,2,...,48。

8、光伏发电由于天气因素的不稳定随机变化和四季的交替,导致光伏出力的不确定性,因此需要对光伏发电量进行及时准确的预测。

9、具体而言,光伏发电出力模型是一种基于arima(autoregressive integratedmoving average model)-lstm(long short-term memory)-dbn(deep belief nets)的光伏发电预测方法。首先建立arima时间序列预测模型,其中,输入数据来自分布式光伏发电站采集到的每日24个时间点瞬时内光伏发电功率和该时间点采集到的地面以上2米处的气温、偏差校准后的降水量、降雪量、地表空气密度、地表水平入射短波辐射通量、大气入射短波辐射通量、区域云层覆盖比例、大气干球温度8种历史气象数据。

10、将归一化后的时序数据使用arima时间序列预测模型捕捉时间序列中的线性成分,输出arima预测模型的预测值后与实际历史光伏发电功率直接计算残差,生成残差序列(预测数据和实际数据相减的差)。

11、接着分别单独建立lstm神经网络和dbn神经网络,使用arima模型输出的残差数据和历史气象数据对lstm神经网络进行训练;使用残差数据对dbn网络进行训练,通过调整参数使训练误差最小化,获得训练好的lstm-dbn模型。

12、最后将lstm-dbn光伏发电残差功率预测模型预测出的残差值修正arima时间序列预测模型预测出的发电功率大小,提高预测精度。

13、更进一步地,所述的步骤2搭建计及用户满意度的民宿电器运行模型:

14、民宿各类电器用电负荷主要分为柔性负荷和刚性负荷,柔性负荷指运行时间可调控的负荷,刚性负荷的运行时间不可调控。民宿产业中的用电器主要为柔性负荷,柔性负荷也是主要的优化调度对象;刚性负荷可视为一个常量,无需进行特别优化。

15、进一步地,柔性负荷也可以分为可中断负荷与不可中断负荷两种,针对不同的负荷类型建立了不同的模型,以更好地描述了民宿中普通的可中断负荷与不可中断负荷的工作模式。空调、热水器与ev充电桩应作为特殊的用电器进行单独调配。在此基础上,根据光伏发电出力模型获取各个时段光伏出力psolar(j),考虑尽可能更优的光伏发电效率,最终形成总体的光伏用电调配机制。

16、可中断负荷指用电器在运行过程中允许发生中断行为,中断其运行过程不会影响其最终工作效果。典型用电器如热水器、ev充电桩等,这部分用电器的工作依靠的往往是能量的累积,即使发生工作中断,重启后依然可以正常工作。因此,在对可中断负荷进行用电分配时,可以根据需要灵活地将其分配在一段或几段合适的时间。

17、可中断负荷的模型由如下方程组建立:

18、

19、式中:a表示民宿的设备编号;m表示民宿中可中断设备的数量;xa表示设备a在48个时刻的工作状态,时表示i时刻设备处于开启状态,时表示i时刻设备处于关闭状态;αa表示设备a工作时间的下限;βa表示设备a工作时间上限;ta表示设备的总工作时长(h);表示设备在第i个时段的功率(kw)。

20、不可中断负荷指用电器在运行过程中不得发生中断行为,整个工作过程需要连贯地进行。典型用电器如洗衣机、洗碗机,这部分用电器一旦发生工作中断,重启后将无法从中断的位置继续工作。因此,在对不可中断负荷进行用电分配时,需要将其分配在一段连续的时间。

21、不可中断负荷的模型可由如下方程组建立:

22、

23、式中:a表示民宿的设备编号;m表示民宿中可中断设备的数量;xa表示设备a在48个时刻的工作状态,时表示i时刻设备处于开启状态,时表示i时刻设备处于关闭状态;αa表示设备a工作时间的下限;βa表示设备a工作时间上限;ta表示设备的总工作时长(h);表示设备开启的时间;表示设备关闭的时间;表示设备在第i个时段的功率(kw)。

24、空调是民宿中重要的用电器,是民宿中耗电量较大的用电器之一,同时也是造成能源浪费的主要因素之一。通常民宿住客并不会主动地对空调的使用进行节能减排,通过采取合适的方法调控与优化空调工作方式,可以在不牺牲或少量牺牲住客舒适度的前提下,有效降低空调总能耗。

25、空调模型:

26、

27、

28、式中:ti表示t时刻室内温度(℃);tmin表示室内允许的最低温度(℃),tmax表示室内允许的最高温度(℃),tmin和tmax是考虑人体舒适度的情况下给出的常数;to表示t时刻室外温度(℃);c表示空调等值热电阻((kw·h)/℃);pc表示空调额定运行功率(kw);tc表示空调工作总时长。

29、具体而言,在考虑人体舒适温度的前提下,由系统自动设定目标室内温度与允许的变动区间,并在住客外出回到房间前提前开启空调,以保证住客在回到房间时室内温度舒适。客人入住后,空调采取循环开关的方式控制室内温度。

30、热水器是一种重要的可中断负荷,一方面是民宿中用电量较大的耗电器之一,另一方面也可以视为一种能量储存装置。通过合理调配热水器的运行时间,可以进一步提升光伏发电的利用率,减少光伏弃电,同时降低民宿一天内的用电峰值,减轻电网压力。

31、热水器作为一种可中断负荷,其工作特征依然满足上述可中断负荷的基本模型,可视为普通的可中断负荷对待。其区别在于热水器需要考虑烧水的温度,烧水时间与设定温度存在密切的关系,热水器的烧水时间-水温模型可由如下方程建立:

32、

33、式中:qone表示热水器功率(kw);uawh表示水箱热电导(kw/(k*m2));tamb表示房间温度(℃);tw表示水温(℃);cw表示热电容(btu/℉)。

34、考虑民宿现实情况,假设一栋民宿配备n个电动汽车ev充电桩,且ev充电桩均为慢充桩,最大充电功率为pmaxkw。ev充电桩的模型由以下方程建立:

35、

36、式中:s(t)表示t时刻电动汽车的soc;p(t)表示电动汽车的充电功率(kw);ξ表示电动汽车的充电效率;c表示电动汽车的电池容量(kwh);smax表示最大允许soc;sset表示调度时间结束时的soc;send表示实际的调度时间结束时的soc。

37、更进一步地,所述的步骤3建立以环保性为目标的多样性负荷优化调度策略,具体实现方法如下:

38、本负荷优化调度系统考虑用电对环境的负面影响,将环保性作为模型的目标函数。因此,系统的目标是使总体碳排放量尽可能达到最小,从而使本设计真正做到环境意义上的节能减排。环境目标可用目标函数表示为:

39、

40、式中:δ表示采用火力发电的方式发1kwh电产生的碳排放量(kg);p(t)表示第t时段从电网的购电量(kw);ω表示p(t)>0(存在购电行为)的时段集合;carbone表示一天内因为向电网购电所产生的总碳排放量(kg)。

41、本发明的有益效果是:

42、其一、该方法提出的分布式光伏发电预测模型,综合考虑不同的气象因素和季节因素,同时结合8种历史气象数据,达到精度较高的预测效果,为研究民宿能量管理系统负荷优化调度方法奠定了基础;

43、其二、该方法针对分布式光伏发电场景下的民宿能量管理系统负荷优化调度方法进行建模,提高了光伏能源利用率,有利于提高环保性,并为电网起到了“削峰避峰”的作用。

44、其三、该方法易于操作,为分布式光伏发电场景下的民宿能量管理系统提供智能的负荷优化调度方法,具有一定的现实意义。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1