功率管控制系统和用于开关电源的外置功率管驱动电路的制作方法
【技术领域】
[0001]本实用新型涉及功率管驱动技术,特别涉及功率管控制系统和用于开关电源的外置功率管驱动电路。
【背景技术】
[0002]随着开关电源技术发展的逐渐成熟,EMI (Electro magnetic Interference,电磁干扰)性能成为电源系统不可避免的,也是最难解决的问题。
[0003]电源EMI性能的好坏,除了与PCB Layout (PCB布局)、变压器结构有直接关系外,更重要的是与功率管的开通相关,功率管工作在ON-OFF快速循环转换的状态,漏源电流在急剧变化,而影响开关电源EMI性能的关键是在功率管开启阶段的漏源电流变化的斜率(di/dt),而这些都与功率管的驱动技术息息相关。
[0004]现有的功率管驱动技术普遍采用图腾柱结构,即接到电源与地的驱动管均采用开关形式,如图1所示,第一开关管SI为上驱动管,第二开关管S2为下驱动管,利用此驱动电路结构来驱动功率管,其应用电路如图2所示。在上驱动管SI开启的瞬间,上驱动管以其最大电流能力为功率管Ml的栅极电容(包括栅源电容和栅漏电容)充电,导致功率管Ml迅速开启,在功率管Ml开启过程中其漏源电流上升斜率很大,即di/dt很大,而大的di/dt会导致开关电源的EMI性能变差。
[0005]为了改善上述驱动技术引起的EMI性能变差问题,常规的解决办法是在外置功率管的栅极与驱动级之间串入一个驱动电阻R1,如图3所示,此驱动电阻Rl可以用来限制为功率管Ml栅极充电的电流,以起到降低漏源开启电流的斜率(di/dt)的作用。但这种改善方法具有其不可忽视的弊端:其一、此驱动电阻Rl在功率管Ml导通和关断的过程中都有驱动电流流过,产生额外的功耗,降低效率;其二、在功率管Ml关断过程中,此驱动电阻Rl会增大功率管Ml关断所需的时间,最终增大了功率管Ml的开关损耗,降低了效率。
[0006]可见,现有外置功率管的驱动技术仍有很大的改进空间。
【实用新型内容】
[0007]鉴于上述现有技术的不足之处,本实用新型的目的在于提供一种功率管控制系统和用于开关电源的外置功率管驱动电路,在改善EMI性能的同时,不会增加额外的功率损耗。
[0008]为了达到上述目的,本实用新型采取了以下技术方案:
[0009]—种用于开关电源的外置功率管驱动电路,包括功率管开启驱动模块和功率管关断驱动模块,所述功率管开启驱动模块包括比较单元、控制单元、第一开关管、第二开关管和电流源,所述功率管关断驱动模块包括反相器和第三开关管;当外部PWM控制信号为高电平时第二开关管闭合,所述比较单元比较外置功率管的栅极电压与第一参考电压和第二参考电压的大小,当栅极电压低于第二参考电压时,控制单元使第一开关管闭合,第一开关管的漏端连接驱动电压供电端,由第一开关管和电流源给外置功率管的栅极充电,当栅极电压大于第二参考电压、且小于第一参考电压时,控制单元使第一开关管断开,使第一开关管停止给外置功率管的栅极充电,当栅极电压大于第一参考电压时,控制单元使第一开关管闭合,使第一开关管给外置功率管的栅极充电;当外部PWM控制信号为低电平时,第一开关管和第二开关管均断开、第三开关管闭合,使外置功率管的栅极放电。
[0010]所述的用于开关电源的外置功率管驱动电路中,所述第一参考电压是外置功率管开启过程中漏源电压降低到Rdson*Id时所对应的外置功率管的栅极电压,其中Rdson表示外置功率管的导通阻抗,Id表示外置功率管完全导通时对应的漏极电流;所述第二参考电压是外置功率管的阈值电压。
[0011]所述的用于开关电源的外置功率管驱动电路中,所述功率管开启驱动模块还包括第一缓冲器和第二缓冲器,所述功率管关闭驱动模块还包括第三缓冲器;所述比较单元的输入端连接外置功率管的栅极,比较单元的第一输出端连接控制单元的第一输入端,比较单元的第二输出端连接控制单元的第二输入端,控制单元的输出端通过第一缓冲器连接第一开关管的栅极;第二缓冲器的输入端连接外部PWM控制信号输出端和控制单元的第三输入端,第二缓冲器的输出端连接第二开关管的栅极;第一开关管的漏极接驱动电压供电端、还通过电流源连接第二开关管的漏极,第一开关管的源极和第二开关管的源极连接外置功率管的栅极;所述反相器的输入端连接外部PWM控制信号输出端,反相器的输出端通过第三缓冲器连接第三开关管的栅极,第三开关管的漏极连接第一开关管的源极、第二开关管的源极和连接外置功率管的栅极,第三开关管的源极接地。
[0012]所述的用于开关电源的外置功率管驱动电路中,所述比较单元包括第一比较器和第二比较器;所述第一比较器的正相输入端连接第一参考电压提供端,所述第二比较器的正相输入端连接第二参考电压提供端,所述第一比较器的反相输入端和第二比较器的反相输入端为比较单元的输入端、连接外置功率管的栅极,所述第一比较器的输出端为比较单元的第一输出端、连接控制单元的第一输入端,所述第二比较器的输出端为比较单元的第二输出端、连接控制单元的第二输入端。
[0013]所述的用于开关电源的外置功率管驱动电路中,所述控制单元包括或非门、与门、或门;所述或非门的第一输入端为控制单元的第一输入端、连接比较单元的第一输出端和与门的第一输入端,所述或非门的第二输入端为控制单元的第二输入端、连接比较单元的第二输出端和与门的第二输入端,所述或非门的输出端连接或门的第一输入端,所述与门的输出端连接或门的第二输入端,所述或门的输出端为控制单元的输出端、连接第一缓冲器的输入端。
[0014]所述的用于开关电源的外置功率管驱动电路中,所述第一开关管、第二开关管和第三开关管均为N MOS管。
[0015]—种功率管控制系统,包括:电感、外置功率管和如权利要求1-6任意一项所述的驱动电路,所述外置功率管的栅极连接所述驱动电路,所述外置功率管的漏极通过所述电感连接VIN供电端,所述外置功率管的源极接地。
[0016]相较于现有技术,本实用新型提供的功率管控制系统和用于开关电源的外置功率管驱动电路,包括功率管开启驱动模块和功率管关断驱动模块,所述功率管开启驱动模块包括比较单元、控制单元、第一开关管、第二开关管和电流源,所述功率管关断驱动模块包括反相器和第三开关管;当外部PWM控制信号为高电平时第二开关管闭合,所述比较单元比较外置功率管的栅极电压与第一参考电压和第二参考电压的大小,当栅极电压低于第二参考电压时,控制单元使第一开关管闭合,第一开关管的漏端连接驱动电压供电端,由第一开关管和电流源给外置功率管的栅极充电,当栅极电压大于第二参考电压、且小于第一参考电压时,控制单元使第一开关管断开,使第一开关管停止给外置功率管的栅极充电,当栅极电压大于第一参考电压时,控制单元使第一开关管闭合,使第一开关管给外置功率管的栅极充电;当外部PWM控制信号为低电平时,第一开关管和第二开关管均断开、第三开关管闭合,使外置功率管的栅极放电,从而由比较单元来检测外置功率管的栅极电压的变化,实现了在外部PWM控制信号为高电平时对外置功率管开启时漏极电流上升斜率(di/dt)的控制,达到改善了 EMI性能又没有增加额外的损耗的功能,在PffM信号为低电平时外置功率管被迅速关断,没有增加额外的关断损耗。
【附图说明】
[0017]图1为现有功率管的驱动电路的示意图。
[0018]图2为现有功率管的驱动电路的应用实施例的不意图。
[0019]图3为现有技术一种改良方式的驱动电路的应用实施例的示意图。
[0020]图4为本实用新型提供的用于开关电源的外置功率管驱动电路的结构示意图。
[0021]图5为本实用新型提供的功率管控制系统的结构示意图。
[0022]图6为本实用新型利用驱动电路检测外置功率管电压和电流波形示意图。
[0023